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Defining the roles of local 
precipitation and anthropogenic 
water sources in driving 
the abundance of Aedes aegypti, 
an emerging disease vector 
in urban, arid landscapes
Erica A. Newman 1,2*, Xiao Feng 3, Jesse D. Onland 4, Kathleen R. Walker 5, Steven Young 6, 
Kirk Smith 6, John Townsend 6, Dan Damian 7 & Kacey Ernst 8

Understanding drivers of disease vectors’ population dynamics is a pressing challenge. For short-lived 
organisms like mosquitoes, landscape-scale models must account for their highly local and rapid 
life cycles. Aedes aegypti, a vector of multiple emerging diseases, has become abundant in desert 
population centers where water from precipitation could be a limiting factor. To explain this apparent 
paradox, we examined Ae. aegypti abundances at > 660 trapping locations per year for 3 years in the 
urbanized Maricopa County (metropolitan Phoenix), Arizona, USA. We created daily precipitation 
layers from weather station data using a kriging algorithm, and connected localized daily precipitation 
to numbers of mosquitoes trapped at each location on subsequent days. Precipitation events 
occurring in either of two critical developmental periods for mosquitoes were correlated to suppressed 
subsequent adult female presence and abundance. LASSO models supported these analyses for 
female presence but not abundance. Precipitation may explain 72% of Ae. aegypti presence and 90% 
of abundance, with anthropogenic water sources supporting mosquitoes during long, precipitation-
free periods. The method of using kriging and weather station data may be generally applicable to the 
study of various ecological processes and patterns, and lead to insights into microclimates associated 
with a variety of organisms’ life cycles.

Localized environmental data can be linked to disease vectors’ life cycles
Predicting disease vector dynamics is of considerable importance for human and wildlife health globally, and is 
becoming increasingly urgent with global climate and land use  changes1,2. Understanding the drivers of disease 
vectors’ abundances and range expansions, as well as their life cycles, population structures, and interaction 
with human-modified environments will have immediate applications for prediction of disease exposure and 
 transmission3, public health, and intervention  efforts4–7. However, one of the major challenges in predicting 
population-level dynamics of disease vectors is defining and incorporating the appropriate data to represent the 
relevant spatial and temporal extents of complex processes and ecological  interactions8–10.
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In disease ecology, the mechanisms relating both climate and weather to their effects on organisms at the 
appropriate scales are often poorly studied, and rely on lab- rather than field-based  studies11. Relevant environ-
mental conditions are often short-term, variable, and highly localized, and appropriate statistical approaches 
to connect local-scale weather information to organisms’ life cycles may be  lacking12 (but  see13,14). Although 
laboratory  experiments15,16 can help define the causal relationships between weather variables and organismal 
biology, they do not translate directly to landscape-level or regional predictions. Many spatial models of disease 
vector establishment and spread therefore rely on coarse-resolution climate predictors over broad extents, such as 
recent attempts employing climate envelope  approaches17,18. These studies demonstrate that broad distributional 
patterns may be predictable with high error, and that climate envelope models applied over large extents fail to 
match the resolution of fine-scale processes and patterns. These may include weather changes, microclimates, 
as well as environmental variability related to structure, weather, species  interactions11,19–21, and reproductive 
 success22. Climate envelope approaches may be inappropriate for modeling emerging diseases when system-
specific knowledge is  ignored3,23 or the goal is to predict population  densities24. Fine-scale environmental data 
is therefore necessary for testing hypotheses linking spatially- and temporally- structured population dynamics 
to underlying ecological  variation25,26.

The urban, peridomestic mosquito Ae. aegypti (L.) (Diptera: Culicidae) is the primary vector of several major 
diseases, including the arboviruses dengue, Zika, chikungunya, and yellow fever. A highly invasive species origi-
nating from Africa, Ae. aegypti is now established throughout tropical and semitropical regions of the  world27–29, 
and is expanding into the United  States22,30,31. As the species is strongly anthropophilic, its distribution is linked 
to urban environments and clustered human dwellings in rural  areas32. Although temperature responses and sur-
vival limits have been extensively studied for Ae. aegypti (e.g.,33,34), there may be other limits on the abundance of 
mosquitoes that depend on water availability. Less is known about the effects of environmental factors other than 
temperature on Ae. aegypti16, such as seasonal and cumulative precipitation, and the importance of individual 
rainfall events to their choices of oviposition sites, larval development, and subsequent emergence. Precipitation 
is known to be an important factor at global, regional, and local scales, e.g.,35–37. However, it is still unknown 
if lack of precipitation can limit population density and overall abundance of Ae. aegypti mosquitoes, in part 
because water from anthropogenic sources can provide sufficient resources for container breeding  mosquitoes38. 
Understanding the basic role of precipitation in driving mosquito abundance at fine spatial and temporal scales 
in conjunction with knowledge of the life cycle of the mosquito can reveal where and when anthropogenic water 
sources become important (Fig. 1).

Life history of Aedes aegypti
The life history and population biology of Ae. aegypti is dependent on water availability. Female mosquitoes lay 
their eggs in small water containers, and do not oviposit in large, permanent water bodies, irrigation ditches or 
temporary, shallow pools of  water27. This species has several traits that may result from adaptation to arid envi-
ronments, for example, Ae. aegypti eggs can survive desiccation for months to years, and persistent water is not 
 necessary39. Hatching of eggs is triggered by inundation by water. Progression through life stages for Ae. aegypti 
is temperature-dependent, requiring temperatures between 16 °C, and 34 °C for successful  development27,34, 
with the transition from hatching to adult emergence occurring in as few as 7 days at higher  temperatures40. 
Adults generally do not disperse beyond 30–60 m from their hatch site and tend to cluster around homes, but will 
rarely disperse as far as 500 m for oviposition  sites41–43. The close association between Ae. aegypti and humans 
has allowed the species to establish in otherwise inhospitable climates, relying on human-created water sources 
such as stored drinking water for larval  development44–46.

In Maricopa County, Arizona, USA (including metropolitan Phoenix), urbanization has led to human uses of 
water that create favorable conditions for mosquitoes. Anthropogenic uses of water have reduced the aridity of 
the local metropolitan area compared to the surrounding Sonoran Desert  environment47. Urban microclimates 
have altered temperature, humidity, and availability of oviposition  sites48,49 including in stormwater  drains50–53, 
which constitute refugia for mosquito populations in desert cities. While monitoring natural rainfall events is 
common, there are no comprehensive measurements of the large amounts of surface water generated by activities 
such as “urban greening”: landscape maintenance, intentional flooding of lawns, and watering of ornamental 
plants; as well as recreational uses, ornamental features known to be important breeding  sites49, car washing, and 
flooding fields for agriculture. Based on biological requirements, we expect that precipitation could be a limiting 
factor in mosquito activity. If lack of precipitation does not limit mosquito activity at trapping locations, mosquito 
breeding habitat is only available from the only other source of water: anthropogenic uses.

Precipitation and Aedes aegypti abundance
We address how daily and cumulative precipitation affect mosquito abundance where piped water is available. 
We build our hypotheses off of a useful functional relationship proposed for regions that store drinking water, 
which specifies that increasing amounts of rainfall will have a complicated but deterministic, non-monotonic 
relationship with the abundance of adult Ae. aegypti  mosquitoes11,54. The abundance of adult mosquitoes is 
expected to decrease with increasing precipitation and less need for stored  water38; then increase along with 
additional precipitation and habitat formation; and then decrease with further precipitation flushing developing 
larvae out of  containers55,56. This conceptual model provides important baseline expectations consistent with the 
biology of the container-breeding Ae. aegypti, but does not distinguish between precipitation from individual 
rainfall events, and total accumulated precipitation prior to mosquito emergence. From this conceptual model, 
we expect that female Ae. aegypti presence and abundance will be strongly influenced by cumulative precipitation.

We additionally expect that the timing of individual precipitation events will be important to the subsequent 
abundance of mosquitoes. Because only females transmit arboviruses, we focus on them. Related to their life 
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cycle, Ae. aegypti counts 1-6 days following rainfall events should correspond to increased activity of adult 
females, whereas abundance from 7 to 15 days following rainfall events may additionally correspond to the 
emergence of new  adults27,40 due to the local development of eggs into adult mosquitoes. Alternatively, if we 
find that mosquito abundance is constant after rainfall, this would imply that oviposition sites are available at all 
times and are not a limiting factor. Ae. aegypti numbers may even decrease 5–20 days following a rainfall event if 
large amounts of rain, such as from monsoon storms, flush away developing larvae from water-filled containers 
that had contained immature life  stages57.

A broad network of mosquito traps employed in this study catches mosquitoes from newly emerged to 
long-lived adult females. These may live slightly longer than 20 days in the wet  tropics58, but their lifespan in 
the Sonoran Desert is expected to be shorter due to drier conditions, and dependent on anthropogenic water 
for survival as well as breeding. By matching trap locations to spatially interpolated precipitation data at those 
sites for 20 days, counting backwards from the trap collection date, we were able to test two explicit hypotheses 
for presence and abundance:

H1 Adult mosquito presence and abundance (measured by female counts in traps) is limited by daily precipita-
tion from days prior to and after the egg-laying period. To assess this, we associated all trapping events with daily 
precipitation data at the trapping location on each previous day leading up to the trap collection date.

H2 Adult mosquito presence and abundance (females only) is limited by accumulated precipitation prior to and 
after the egg-laying period in the vicinity of the trapping location. Cumulative precipitation was calculated as the 
sum of the spatially interpolated precipitation at the trapping location for 10 and 20 days. Here, abundance will 
represent both the activity of previously emerged adult females, and emergence of new females.

A distinct empirical relationship between precipitation and the response variable would support the hypoth-
esis being tested (H1 or H2), even if that relationship is complicated or multimodal. On the other hand, we would 
interpret no significant correlation and explanatory power of predictor variables with female counts as a lack of 
control on mosquito abundance resulting from precipitation (the alternative hypotheses in each case). We would 

Figure 1.  Realigning precipitation data to the trap collection date for Ae. aegypti mosquitoes. (a) Mosquitoes 
are trapped on different days (represented by raster layers of interpolated precipitation) at different locations. 
Here, trapping event 1 at location 1 is shown as an orange square, and trapping event 2 at location 2 is shown as 
a blue circle. Arrows indicate the series of highly localized precipitation data each day leading up to the trapping 
event. Although a limited amount of data extraction is illustrated, all trapping events are associated with 20 days 
of prior precipitation. (b) Here, we align trapping event 1 (in orange) with trapping event 2 (in blue) by the 
mosquito trapping date, rather than calendar date. This daily precipitation reconstruction and realignment was 
done for all 100,757 trapping events in the study. We interpret the resulting patterns as they are relevant to (c), 
the well-established developmental stages and life cycle of Ae. aegypti. Photographs copyright Alex Wild and 
Centers for Disease Control and Prevention, used with permission under CC BY.
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then conclude that anthropogenic sources of water are releasing the mosquito species from the constraints of 
water available from precipitation in urban contexts.

We investigated these hypotheses, as well as other relationships of spatial and temporal patterns of abundance, 
by matching daily precipitation at the trapping locations to numbers of female Ae. aegypti captured each week by 
the Maricopa County Environmental Services Vector Control Division (Fig. 2). These data were collected from 
2014 to 2016, from a network of over 660 weekly-sampled  CO2-baited traps distributed throughout Maricopa 
County, with more locations added in each year (Table 1). An application of a kriging  algorithm59 to weather 
station data allowed us to interpolate local conditions between measured points, generate daily precipitation data 
layers, and match the scale of this predictor variable to the life cycle of mosquitoes. We then reconstructed the 
relationship between daily precipitation amounts and timing to the eventual outcomes of each trapping event. 
With increased spatial and temporal resolution available from kriging, we were able to generate new insights 
into how mosquitoes are directly affected by precipitation at the sites where they develop, emerge, and breed.

Figure 2.  Spatially interpolated precipitation is matched to trapping station locations. Example of daily 
precipitation (rainfall) data for a single day, with spatial interpolation between 355 weather stations at the 
resolution of 10 arc-seconds (~ 300 m). The 842 traps were matched with spatially explicit, daily precipitation 
data from multiple rasterized layers of interpolated precipitation. This allowed us to examine how the amount of 
precipitation received prior to trapping events interacted to affect Ae. aegypti developmental period (i.e. the time 
from egg laying to emergence of the adult mosquito) and therefore the abundance of trapped adult mosquitoes. 
(a) A map of Arizona, USA is shown with Maricopa County highlighted. (b) In the map of Maricopa County, 
locations of weather stations are shown as black crosses, and trap locations are in light green. Maps were made 
in the R programming language (https:// www.r- proje ct. org/) v4.3.189, with package ‘ggmap’ (https:// CRAN.R- 
proje ct. org/ packa ge= ggmap) v.3.0.293.

Table 1.  Summary of trapping effort. Year, number and type of trap, number of Ae. aegypti mosquitoes 
trapped, and number of and percentage of Ae. aegypti females from Maricopa County, Arizona, USA for 
2014–2016. The number of traps with non-zero abundance are those that contained at least 1 male or female 
Ae. aegypti mosquito; those that only contained positive female counts are 15,882 traps, or 15.8% of total 
trapping events.

Year/
data Trap type Traps

Number of 
surveys

Number of traps with non-zero 
abundance (percentage)

Aedes aegypti mosquitoes 
trapped

Number of females 
(percentage)

2014 CO2-baited 666 28,131 3951 (14.1%) 39,915 27,208 (68.2%)

2015 CO2-baited 785 34,447 6051 (17.6%) 37,746 24,155 (64.0%)

2016
CO2-baited 794 37,901 6560 (17.3%) 44,219 32,132 (72.7%)

BG Sentinel 19 278 105 (37.8%) 377 254 (67.4%)

Totals Unique 
traps: 842 100,757 16,667 (16.5%) 122,257 83,749 (68.5%)

https://www.r-project.org/
https://CRAN.R-project.org/package=ggmap
https://CRAN.R-project.org/package=ggmap
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Results
Mosquito trapping
Maricopa County Environmental Services Vector Control Division collected mosquitoes from  CO2-baited traps 
weekly and BG Sentinel traps at a total of 842 unique locations from January 2014–December 2016. Median 
distances between traps were determined to be 0.825 mi (1328 m) (using R package ‘raster’60). There were a total 
of 100,757 discrete trapping events, and 122,257 Ae. aegypti mosquitoes were collected. The majority of trapping 
events did not contain Ae. aegypti, but there were 15,882 unique trapping events with 1 or more females. Of the 
trapped Ae. aegypti mosquitoes, 68.5% or 83,749 were female (Table 1).

Seasonal effects on the number of female Ae. aegypti
Female counts, a proxy measure for total Ae. aegypti activity and abundance and more direct indicator of disease 
transmission risk than total Ae. aegypti adults, varied seasonally. The monsoon season July–September coincides 
with high temperatures, reducing the generation time for the Ae. aegypti mosquitoes and providing additional 
water sources for breeding and survival. Based on historical data, we expected higher trapped abundance counts 
in June-October, but found high female counts both within the monsoon season, and in the surrounding months 
(Fig. 3) including March-November.

Spatial autocorrelation
Our spatial analyses focused on female counts at 765 equally sampled trapping locations, with counts aggregated 
over 3 years. We calculated the Global Moran’s I statistic to understand the clustering of events over the study 
area extent (Fig. 4). We calculated Iobs = 0.055 (sd = 0.003; p <  10−10), with an expected value of Iexp = -0.001, 
indicating that Ae. aegypti trap locations and/or trap counts are significantly highly clustered in space compared 
to a baseline of a random distribution. As trapping locations are placed mostly on a regular grid, this implies 
high spatial autocorrelation of trap counts.

Determining the relationship of daily precipitation to trap outcomes
Our precipitation analyses were aimed at gaining insight into which variables best predict Ae. aegypti presence 
and abundance. For comparison, we calculated average precipitation across all observations at the trap loca-
tions, and found that it is low and nearly constant (0.025 in., var ~10−5 in.). Because this single, regional average 
of precipitation cannot explain the highly variable patterns of local mosquito abundance, we investigated the 
localized, daily precipitation patterns, including daily and cumulative precipitation.

Figure 3.  Mosquito abundance varies with season outside of laboratory-derived temperature limits. The 
numbers of trapped Ae. aegypti females are shown on a  log10 scale by month for 2014–2016 (non-zero counts 
only). The yellow highlighted region represents the active season (March-November), and the “high activity” 
season (June-November) is shown in orange. These include all of the monsoon months (July–September). 
Historically, average minimum monthly temperatures are below the larval survival threshold for Ae. aegypti 
(12 °C/54°F) in December-April65, and exceed the laboratory-derived physiological limit for maximum 
temperature (35 °C/95°F) in May-September34, however, monthly temperature normals have been increasing in 
recent years. The activity period, determined empirically by Maricopa County Environmental Services Vector 
Control Division, was longer in duration for this time period compared to historical norms.
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To determine whether or not daily precipitation variables were likely to affect trap outcomes, we performed 
preliminary analyses. We graphed daily precipitation from kriging and resulting counts of mosquitoes, with 
zeroes separated from non-zero counts (Supplementary Material: Fig. S1), with no clear pattern apparent. We 
then calculated correlation coefficients for daily precipitation and female presence, and separately, female abun-
dance (Supplementary Material: Fig. S2). These analyses showed that prior days’ precipitation had differing 
effects, both in magnitude and direction, on trap outcomes. These preliminary analyses are similar to a Cross 
Correlation Function, in that each approach is used to compare two time series and identify which lagged vari-
ables from one time series can be used to predict values from the other time series. In CCF analysis, the larger 
environment drives the patterns in the time series on the same calendar dates, but here it was necessary to realign 
the time series to the emergence date. The correlation coefficients form an intermediate step to establishing that 
the days have different effects on outcomes, to justify the more rigorous  LASSO61 (least absolute shrinkage and 
selection operator) modeling.

Modeling prior precipitation, female presence, and counts
For hypothesis H1, we tested whether or not adult mosquito presence and abundance is limited by daily precipita-
tion from days prior to and after the egg-laying period. With a priori knowledge of the life cycle of Ae. aegypti at 
higher environmental temperatures, we expected clear increases in counts on days 7–15 days following precipita-
tion events, and decreases 5–20 days following precipitation events. Based on LASSO modeling described below, 
we did find that the daily patterns of precipitation mattered to presence and abundance, but we did not find the 
expected pattern. For hypothesis H2, which tests whether or not adult mosquito presence and abundance (both 
emergence and activity of previously emerged adult females) is limited by cumulative precipitation both before 
and after the egg-laying period in the vicinity of the trapping location, we calculated accumulated precipitation at 
each trapping location (counts including zeros are shown in Supplementary Materials: Fig. S3). We investigated 
the effects of precipitation for two cumulative precipitation thresholds, 10 and 20 days leading up to trap collec-
tion, for each trapping event. We compared the explanatory power of daily precipitation information with that 
of cumulative precipitation for the two cumulative precipitation thresholds through multi-model comparisons.

For mosquito presence in traps, LASSO logistic regressions show we obtain better results when using all the 
daily precipitation predictors instead of combining them into cumulative predictors, at a small cost in model 
complexity (Table 2). However, the gains are not large, and the AUC-ROC value of the best model is <0.75, 
indicating a poor model fit overall. Several daily precipitation variables are consistent with zero (days 1, 5, 9, 13, 
and 20) and may have no effect on ultimate trapping success. Precipitation 2 days before trap collection had a 
strong, negative effect on female presence in traps, and day 8 has a weaker effect. All other days had a positive 
correlation with presence of female mosquitoes.

We constructed similar models for abundance with Poisson distributions. LASSO regressions in this case 
show that daily precipitation combined with cumulative precipitation over 20 days is the best model for mosquito 
abundance, however, the gains over the other models including the null, intercept-only model are minimal, gen-
erally indicating poor model fit (Table 2). This implies that the LASSO modeling may not be appropriate for this 
application and other types of models should be investigated, or that major, driving variables, such as tempera-
ture, must be included for meaningful models. With only kriged precipitation data, we cannot resolve this issue, 
and similarly kriged and locally interpolated temperature data would be required for this kind of investigation.

We find that for H1, daily precipitation variables affect presence outcomes and may influence abundance out-
comes. We find that for H2, cumulative precipitation does not affect presence outcomes, but 20-day cumulative 

Figure 4.  The spatial distribution of trapped mosquitoes shows extreme local differences, even within the same 
climate. Spatial distribution of female Ae. aegypti counts recorded from 100,757 discrete trapping events at 842 
locations from January 2014-December 2016 in Maricopa County, Arizona, USA. The observed Global Moran’s 
Iobs = 0.055 (sd = 0.003; p <  10–10; expected value of Iexp = − 0.001) for aggregated trapped female Ae. aegypti over 
three years (765 traps surveyed 60 times each) indicates that mosquitoes are highly clustered in space compared 
to a uniform distribution. A color ramp is used to better visually distinguish between point sizes. Maps were 
made in the R programming language (https:// www.r- proje ct. org/) v4.3.189, with package ‘ggmap’ (https:// 
CRAN.R- proje ct. org/ packa ge= ggmap) v.3.0.293.

https://www.r-project.org/
https://CRAN.R-project.org/package=ggmap
https://CRAN.R-project.org/package=ggmap
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precipitation may affect abundance. Models for both presence and abundance containing either 10-day or 20-day 
cumulative precipitation by themselves did not perform as well as models containing daily precipitation.

Overlaying the correlations with the life cycle as presented in Fig. 1, we see that precipitation events occur-
ring during the early larval stages or at the time of adult emergence can prevent the presence of mosquitoes in 
traps entirely, and at other times during mosquito development, precipitation has no effect, or a positive effect 
on mosquito presence (Fig. 5).

Estimating the minimum influence of anthropogenic water on mosquito abundance
To assess the potential importance of anthropogenic water sources on driving patterns of mosquito abundance 
and activity, we examined all trapping events that produced at least one positive female count (“positive traps”; 
15,882 observations). We then examined which of these trapping events were associated with little to no measur-
able precipitation in the 20 days prior to collection. Precipitation-free periods would not meet the inundation 

Table 2.  Multiple model comparisons for presence and abundance of female Ae. aegypti, with daily and 
cumulative precipitation predictors. Models for both presence and abundance are compared using each 
day’s daily precipitation as predictors, as well as cumulative precipitation with a 10 or 20 day horizon. Best-
supported models are chosen through LASSO (least absolute shrinkage and selection operator) regressions 
and shown in bold. Logistic models are performed for presence and evaluated with area under the curve of 
the receiver-operating characteristic curve (AUC-ROC; with larger values corresponding to better model fits), 
while abundance models are fit to Poisson distributions and evaluated with root mean squared error (RMSE; 
with lower values corresponding to better model fits). Precipitation variables increase model performance for 
presence models, but abundance models all perform similarly, indicating poor model performance with only 
these variables.

Model Metric Estimate

Logistic Presence intercept-only (null model) AUC-ROC 0.500

Logistic Presence (days + 10 days cumulative precipitation) AUC-ROC 0.543

Logistic Presence (days + 20 days cumulative precipitation) AUC-ROC 0.582

Logistic Presence (Daily precipitation) AUC-ROC 0.656

Poisson abundance intercept-only (null model) RMSE 4.850

Poisson abundance (days + 10 days cumulative precipitation) RMSE 4.850

Poisson abundance (days + 20 days cumulative precipitation) RMSE 4.832

Poisson abundance (Daily precipitation) RMSE 4.844
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Figure 5.  Modeled coefficients of prior precipitation effects on female Ae. aegypti presence (intercept excluded). 
A best-performing LASSO model for female mosquito presence contains all daily precipitation variables and 
no cumulative precipitation variables. Although the estimate for the intercept is not shown, its coefficient is 
− 1.86 (95% CI − 1.89, − 1.82), which is by comparison a larger effect than any single daily precipitation variable. 
Estimated coefficients are shown with 95% bootstrap confidence intervals, constructed from 1000 replicates. 
Several daily precipitation variables are consistent with zero (days 1, 5, 9, 13, and 20) and may have no effect 
on ultimate trapping success. Precipitation 2 days before trap collection has a strong, negative effect on female 
presence in traps, and day 8 has a weaker effect. All other days have a positive contribution to mosquito 
presence, with the largest effect 10 days before trap collection.
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requirements for developing eggs in containers, and therefore, mosquitoes that are trapped in these periods 
would require anthropogenic water sources for their development.

We determined a “low precipitation threshold” by examining trap outcomes for which additional precipita-
tion did not affect the maximum count in the trap. The minimum precipitation threshold was determined to be 
0.02 inches (27.6% of all trapping events; max female count = 175), below which all counts were approximately 
or actually equal. These traps contain 10% of total trapped females. Above 0.02 inches of precipitation, mosquito 
counts increased rapidly. We therefore estimate a background population of at minimum 10% of Ae. aegypti that 
are not dependent upon precipitation.

Discussion
Understanding conditions that lead to greater presence and abundances of Ae. aegypti is critical to controlling 
the spread of arboviruses to humans. We examined how the amount of preceding precipitation interacts with the 
Ae. aegypti life cycle to affect the abundance of trapped female mosquitoes. We found that the active season of 
Ae. aegypti in urban Maricopa County, Arizona as determined by the Maricopa County Environmental Services 
Vector Control Division was longer in duration during this time period compared to historical norms (Fig. 3). 
Summer temperatures exceed laboratory survival tolerances for Ae. aegypti, and their increased abundance dur-
ing these periods may point to dispersal to suitable  microhabitats62. We also examined the clustering of female 
counts at 765 equally-sampled locations over three years using global Moran’s I, and found high clustering com-
pared to a random baseline. Areas where exceedingly high counts (>500 individuals in a single trap) appear on 
the map indicate where it could be productive to search for larval development sites and target control efforts. 
Here, the specific locations of large outbreaks might be associated with clogged and unmaintained storm drains 
(K. Walker, unpublished data) serving as breeding habitat, as have been found to support Ae. aegypti populations 
in other  regions50,63.

The interaction between precipitation and human-built structures may indeed be driving the emergence of a 
major disease vector in this  region64, but more investigation is warranted, given that human density, differences 
in land usage, and site-specific, targeted mosquito control efforts may also influence these counts (see https:// 
maric opa. maps. arcgis. com/ apps/ webap pview er/ index. html? id= c00b3 ecbb3 344ca 2930a 30b97 8184d dd; accessed 
November 2023). Tracking the large amounts of outdoor water generated by human uses (70% of all human uses 
estimated; see https:// www. azwat er. gov/ conse rvati on/ public- resou rces) could lead to validation of some results 
presented here, as well as better mosquito control efforts.

We expected that cumulative rainfall over the period of 20 days prior to trap collection should influence the 
presence and abundance of trapped mosquitoes, and also tested whether or not daily precipitation leading up 
to trapping had any influence on trap outcomes. Through correlation analyses, we found differing influences, 
in terms of both magnitude and sign, of each prior day’s precipitation on subsequent female mosquito presence 
and counts (Supplementary Material: Figure 2).

Although we expected to find that both low and high precipitation limits Ae. aegypti numbers, we instead 
found a relatively flat relationship of abundance with cumulative precipitation over 20 days (Supplementary 
Material: Fig. S3). LASSO models revealed a potential role for cumulative precipitation to be driving patterns 
of abundance, but not mosquito presence. Our preliminary correlation coefficient analyses showed relatively 
clear patterns of differing daily effects of precipitation on both presence and abundance (Supplementary Mate-
rial: Fig. S2), only a subset of these patterns were supported with the applications of LASSO regressions. LASSO 
models demonstrated that daily (but not cumulative) precipitation influences mosquito presence, with suppres-
sion of mosquito presence when precipitation occurs on days 2 or 8 before trap collection. These results imply 
interruption of critical life cycle events, such as larval development or selection of oviposition sites of the parent 
generation (day 8 prior to trap collection), or emergence (day 2 prior to trap collection). Precipitation on many 
other days, most notably day 10 before trap collection, positively influence presence. Cumulative precipitation 
on a 20-day time horizon (in addition to daily precipitation variables) may be important for predicting mosquito 
abundance, but not presence. However, we also find that LASSO models for female Ae. aegypti presence and 
abundance are insufficient when only containing precipitation variables. LASSO models may perform better with 
the inclusion of local temperature, humidity, and other important environmental variables. We conclude that 
neither daily nor cumulative precipitation by themselves explain mosquito presence or abundance, and better 
models may need to include predictors known to influence mosquito populations.

We note that on occasions when rain events happen concurrently with the operation of the trap, there may 
be multiple reasons for reduced counts. Trap effectiveness can be disrupted if the attractant  CO2 column is 
dissipated by rain or accompanying wind, making it difficult for the mosquito to find the location of the trap 
(thereby reducing catches), or local temperature fluctuations during rainfall events lower the sublimation rate 
of the dry ice that provides the  CO2 bait. Fewer counts are recorded when there are wet mosquitoes in the trap, 
because these are often damaged and not easily identified. However, it may be generally true that precipitation 
interferes with successful emergence of adults, which could explain why precipitation on day 8 before trap col-
lection (corresponding to one generation) correlates negatively with mosquito presence.

We did not find direct evidence of larval flushing, and future efforts may need to look at large precipi-
tation events in isolation to determine if this is a special factor in determining mosquito abundance. Other 
future research may focus on another precipitation pattern known to affect mosquito abundance, dry-rainy 
 frequency13,14, which might be testable with this method if the study period was lengthened beyond 20 days of 
precipitation.

Where patterns of Ae. aegypti emergence and capture are not affected by low precipitation (as is true for ~28% 
of traps with any female Ae. aegypti in them, and ~10% of the total number of trapped females in this study), we 
conclude that anthropogenic water sources provide the likely breeding habitat for Ae. aegypti  populations41,46,49,62. 

https://maricopa.maps.arcgis.com/apps/webappviewer/index.html?id=c00b3ecbb3344ca2930a30b978184ddd
https://maricopa.maps.arcgis.com/apps/webappviewer/index.html?id=c00b3ecbb3344ca2930a30b978184ddd
https://www.azwater.gov/conservation/public-resources
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However, the true dependency of the population on anthropogenic water for all reasons (e.g., microclimate 
modification, survival, breeding) is likely much higher than 10%.

Along with precipitation, it is well established that both temperature and relative humidity affect larval devel-
opment rate, adult survival and activity, with increasing temperatures leading to faster development  times40,65. 
Relative humidity might show similar trends due to increased movement and survival among eggs and  adults39,66, 
but this relationship may be complicated by the interaction with mosquito  fecundity67.

We looked uniquely at precipitation and trap data that were pooled across all trapping dates and locations, and 
re-indexed these data to a 20-day data set. Although this is a powerful way of determining positive or negative 
influence of precipitation events during the development of the mosquitoes, we note that fixed factors like land 
use and human density would broaden the variation around the estimates of the influence of daily precipitation, 
while factors that vary in time, such as temperature and humidity, would blur the effect of which particular 
days were significant. We again conclude that attempts to model presence and abundance of mosquitoes given 
microclimate-scale data will benefit from the incorporation of additional variables measured or interpolated at 
the same scale, such as  temperature68.

The application of kriging to the problem of predicting mosquito abundance allows us to gauge the relative 
effects of precipitation and anthropogenic water sources in this region. Taking this further, urban planners might 
incorporate this information for smarter use of urban water that does not directly lead to increased mosquito 
abundance. If kriging methods were also applied to local-scale variations in temperature and humidity, along 
with their interaction with precipitation in the environment, we could gain further insight into what makes up 
the microclimates that drive establishment patterns and abundance of Aedes mosquitoes across very different 
 climates21. In this way, the search for commonalities among regions from a “microclimate perspective” might 
resolve some of the issues surrounding how to accurately predict Aedes invasions into new regions including 
humid, tropical regions, and the urbanized Sonoran Desert. These results might then be applied where fine-
grained environmental data is collected by satellites, as data are abundant and not yet used to their full potential 
in disease  ecology26.

This study demonstrates that kriging with weather station precipitation data can resolve certain questions 
about precipitation and the Ae. aegypti life cycle in the presence of anthropogenic water sources, and outside 
of a laboratory setting. Kriging with multiple variables could bring “big data” science (and the computational 
storage and power required) to bear on questions of disease vector expansion, which has extreme significance 
to global human health. Broader applications of kriging with multiple variables could serve as a useful decision 
support tool for disease vector control in urban settings, as microclimates can be modified more easily than 
climate normals.

Beyond understanding the dynamics of disease vector populations and disease ecology applications, the 
application of kriging in conjunction with organismal life cycles will be useful in the context of conservation 
 planning69. The ability to examine highly localized and variable conditions that precede ecological events and 
the distributions of seasonal phenological  phenomena70 will have broad applicability across ecological questions 
and ecosystems. Kriging may become a valuable planning tool for many organismal-environment problems, 
including predicting outbreaks of tree-killing  beetles71, understanding drivers of arthropod  declines72, anticipat-
ing changes to water bodies after  precipitation73,74; and making more granular predictions of effects of global 
change on organisms such as  amphibians75,76, those dependent on specialized interaction  partners77,78, and rare 
and biogeographically limited  species79.

Methods
Study region
The current range of Ae. aegypti now includes almost all populated areas in Maricopa County, overlapping with 
high and increasing human population density, and land use modifications arising from increasing urbaniza-
tion and suburbanization. Maricopa County spans 9,224 square miles (~23,890 sq. km), and contains 27 cities 
and towns including the metropolitan Phoenix area, and all or part of five tribal nations’ federally designated 
reservation lands. Maricopa County includes 4.552 million people as residents as of the 2022 census.80

Maricopa County is located in the biogeographic region of the Sonoran Desert, which has five seasons (winter, 
spring, fore-summer occurring in May and June, summer monsoon in July and August, and fall), and experiences 
two seasons of rainfall (winter and summer monsoon). Climate normals for the area from 1981 to 2010 include a 
mean minimum temperature of the coldest month (December) of 44.8 °F (7.1 C); mean maximum temperature 
of the warmest month (July) of 106.1 °F (41.2 C); and average annual precipitation of 8.03 inches (20.4 cm), with 
25% of the rainfall occurring in July and August, and approximately half of the precipitation arriving throughout 
December-March (retrieved from the NOAA National Center for Environmental Information via the National 
Weather Service Forecast Office website: https:// w2. weath er. gov/ clima te). Recent climate change (post-2010) 
is increasing the maximum temperatures of the warmest months, as well as the average temperature, and the 
number of days over 100°F. High and low temperatures in this region are known to exceed laboratory-derived 
physiological limits for Ae. aegypti27,34,65.

Mosquito trapping protocols
Mosquitoes were trapped by Maricopa Environmental Services–Vector Control Division at trapping sites estab-
lished throughout the urban and suburban areas of Maricopa County. Traps were placed at a density of one trap 
per square mile ( ~ 1610 meters), while accommodating urban structures (Fig. 2). Additional traps were placed 
temporarily in response to complaints about mosquito densities and in areas with reported human arbovirus 
cases. Standard  CO2-baited traps (Silver 2007) were established at 842 unique sites (Table 1). Trapping occurred 
once per week at each site throughout the year. Traps were hung ~1 m from the ground and left overnight to 

https://w2.weather.gov/climate
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collect mosquitoes, which were then identified to species in the Maricopa County Environmental Services Vector 
Control Division laboratory, sorted by sex, and counted.

The Maricopa County mosquito surveillance program was designed primarily to monitor Culex mosquitoes 
associated with West Nile Virus transmission. The current recommended methods for collecting adult female Ae. 
aegypti are the BG-Sentinel trap, the Autocidal Gravid trap, or backpack  aspiration81,82, however, the  CO2-baited 
traps used to trap Culex spp. do attract Ae. aegypti mosquitoes, and trap counts are expected to reflect the true 
variability across the geographic area. Of the total trapping effort, BG traps were only used in 19 locations in 2016, 
for a total of 278 discrete trapping events (and 254 total Ae. aegypti females). These were excluded from analyses.

Environmental data
Daily precipitation data were downloaded from the Flood Control District of Maricopa County (FCDMC) 
weather stations (n=355) (at https:// www. maric opa. gov/ 625/ Rainf all- Data). While this is a high density of 
weather stations compared to other similar sized regions in the US, the weather stations are clustered together, 
and geographic coverage was not complete. Values for daily precipitation for areas not directly measured were 
therefore spatially interpolated between weather stations using kriging. Kriging is a standard algorithm used to 
predict values in regions where data has been collected from the surrounding  regions59, that is used to search 
out parameters associated with known covariance data, and apply this information to new or unknown regions. 
In this study, a kriging algorithm was trained on daily precipitation data using elevation as a covariate using R 
‘automap’  package83. We adopted an automatic kriging function where a variogram model was fit using predefined 
models (spherical, exponential, Gaussian, Matern) with the default settings. The initial sill was estimated as the 
mean of the maximum and median of the semi-variance. The initial range was defined as 0.1 times the diagonal 
of the bounding box of the data, and the initial nugget was defined as the minimum semivariance. Elevation 
data were downloaded from the USGS National Elevation Dataset (http:// ned. usgs. gov) and resampled to the 
resolution of 309 by 371 meters.

Kriging was carried out on daily precipitation data for all days from October 2012-September 2017, to create 
spatially resolved, daily rasters for the study region (Fig. 2)84. A relevant subset of these rasters were then matched 
to each individual trapping event, from 1 to 20 days prior to the event, inclusive. Interpolated precipitation data 
was then extracted by location. Dispersal distances of Ae. aegypti are known to be much lower than the distances 
between traps in the network. Therefore, information derived from kriging should better represent the conditions 
relevant to life cycle events of the mosquitoes than regional averages for precipitation.

The methods presented in this manuscript track all mosquito trapping events over space, realign the pre-
cipitation time series by presumptive mosquito emergence date, and correlate the emergences to precipitation. 
This method is appropriate in light of the spatial heterogeneity of landscape factors such as differences in human 
density, agricultural uses, and targeted mosquito control (which is performed occasionally for Ae. aegypti after 
large trapping events have occurred, and not over the entire trapping region), as those will not affect the esti-
mation of the precipitation’s effect on presence or abundance of mosquitoes, but rather, will only increase the 
variance on modeled fits.

Spatial autocorrelation
We limited statistical analyses to female Ae. aegypti mosquitoes, as only females transmit arboviruses. The 
number of individual females in each trap (“counts”) is used as the proxy metric for the activity of female Ae. 
aegypti. We first investigated the spatial autocorrelation of mosquito counts across the study area on aggregated 
female counts trapping locations over all three years. Global Moran’s I measures spatial autocorrelation of events 
based on their location and values, and reports whether they are clustered, dispersed, or random in space. To 
calculate Global Moran’s I, we required a set of points that were sampled equally, so we limited the analysis to 
765 locations with  CO2 traps that were sampled 60 or more times (those with >60 trapping events were limited 
to a random draw of 60 events).

Seasonal effects on the number of female Ae. aegypti
We examined trap counts over months, and expected higher counts in trapping events that occur during June-
October, as average minimum monthly temperatures have historically fallen below 15 °C outside this range. 
Temperatures of 12–15 °C and below are known to negatively affect adult female mosquito survival, and severely 
limit successful  oviposition65,85,86. However, microclimates in Maricopa  County62 can mitigate non-ideal tem-
perature and precipitation conditions for mosquito development and lead to low emergence numbers, and 
temperature normals are changing rapidly in this region. We therefore included trapping events from all months 
in our analyses.

Determining the relationship of daily precipitation to trap outcomes
To understand the strength and direction of the effects each day’s precipitation ultimately had on trap outcomes, 
we first examined the daily precipitation relationship to female presence. Because repeated sampling from a single 
trap within a 20 day period would cause repeated values of precipitation to show up at 7-day intervals (which 
is coincidentally the approximate development period for an Ae. aegypti mosquito), we included a step of thin-
ning the data. Only one trapping event from each location per month was used for all presence and abundance 
analyses. Data points were ordered by calendar date and selected from early in the month to prevent overlapping 
20-day periods.

To analyze each day’s effect on subsequent mosquito presence or abundance, modeled presence or abundance 
as a function of a single day’s precipitation, and extracted a correlation coefficient. For mosquito presence, we 
fit an independent logistic model for each day and its relationship to trap outcomes. Similarly for abundance, 

https://www.maricopa.gov/625/Rainfall-Data
http://ned.usgs.gov


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2058  | https://doi.org/10.1038/s41598-023-50346-3

www.nature.com/scientificreports/

we assessed the correlation between each day’s precipitation and its relationship to trap counts (Supplementary 
Material: Fig. S2). Once we could establish that the precipitation data plausibly had different effects on trap pres-
ence and female count outcomes, we were then able to justify more rigorous modeling. LASSO models were then 
carried out for both presence and count models, as described below.

Modeling prior precipitation, female presence, and counts
Considering all precipitation data together, we were able to analyze multiple relationships between prior precipi-
tation and the number of Ae. aegypti collected from traps, with daily precipitation for 20 days leading up to trap 
collection, and with cumulative precipitation for 10 days and 20 prior to trap collection). Presence of females 
was modeled separately from total abundance of females.

For both presence and abundance models, we used LASSO regressions to eliminate variables from four mod-
els: a null, intercept-only model; a full model containing all daily precipitation predictors; a full model with all 
daily precipitation predictors and cumulative precipitation for the full 20 days leading up to trap collection; and a 
similar full model with a 10-day horizon for cumulative precipitation leading up to trap collection instead of the 
20 days. LASSO regressions minimize the total summed coefficients of the predictors, and have the ability to drop 
predictors entirely, resulting in lower model complexity. For the cases of both the presence and the abundance 
models, we divided sites into training and testing sets so that 75% of observations are assigned to the former and 
25% to the latter. For the regularized LASSO regression, we normalized the predictors in the abundance model 
so that the variable coefficients would be comparable, but the presence model did not improve with increasing 
the regularization penalty tuning parameter, so the parameter was set to zero for the final model comparisons.

We modeled female presence and absence with LASSO logistic models, and compared them with AUC-
ROC (area under the receiver-operator characteristic curve) statistics, implemented in ‘tidymodels’87 in the R 
programming language. Similarly, we modeled abundance with multiple models, fitting each relationship with a 
Poisson distribution. We evaluated the abundance models by evaluating their root mean squared errors (RMSE).

The influence of anthropogenic water sources on mosquito abundance
Finally, background levels of mosquito emergence with little or no measurable precipitation in the preceding 
20 days were used to quantify the importance of anthropogenic water sources in driving mosquito abundance. 
Here we note a technical definition for “little to no measurable precipitation.” The values that result from kriging 
and spatial interpolation of weather station precipitation data can take on a range of values, including those that 
are small but negative (and therefore do not correspond to realistic precipitation predictions), and those that 
have exceedingly small, positive values (example from data: “2.252000e-10” inches). As part of this analysis, all 
precipitation values obtained by kriging were cleaned such that negative values, as well as values that fell below 
the threshold of measurable precipitation were set to zero. Small, positive values under 0.01 inches of precipita-
tion are below the threshold of measurable precipitation according to the National Weather Service, which is 
part of the USA’s National Oceanic and Atmospheric Administration (https:// www. weath er. gov/ ajk/ Forec astTe 
rms; accessed February 12, 2022)88. The definition of “little to no precipitation” for data interpolated by kriging 
therefore included true zeros (reset from negative values), and also included those values that were close enough 
to zero to fall below the measurable precipitation threshold.

Data were cleaned and analyzed in the R programming language (v.4.3.1)89 with the packages ‘dplyr’90 and 
‘raster’60, and ‘lme’91. Global Moran’s I was calculated using package ‘ape’ (v5.0)92. Mapping of data was carried 
out with the package ‘ggmap’93.

Data availability
Details of trap information, including locations of traps, is available online at: https:// maric opa. maps. arcgis. 
com/ apps/ webap pview er/ index. html? id= c00b3 ecbb3 344ca 2930a 30b97 8184d dd. Weather station precipitation 
data are available through the Maricopa County website at: https:// www. maric opa. gov/ 625/ Rainf all- Data, and 
climate normals for the region are available through the NOAA National Center for Environmental Information 
via the National Weather Service Forecast Office website: https:// w2. weath er. gov/ clima te. Rasterized daily pre-
cipitation data layers generated for this project are available at Zenodo: https:// doi. org/https:// doi. org/ 10. 5281/ 
zenodo. 54227 29. The public, online repository https:// github. com/ iskan derun/ maric opamo squit oes contains Ae. 
aegypti mosquito male and female trap counts for Maricopa County, Arizona, USA from 2014 to 2016, including 
type and approximate location of traps, date of trap collection, as well as the R programming language software 
script containing the function that associates the trap location with precipitation data from single, previous days, 
or cumulatively for multiple previous days. Resolution of the locations of traps has been coarsened to protect 
currently operating equipment.
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