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Accuracy of an AI‑based automated 
plate reading mobile application 
for the identification of clinical 
mastitis‑causing pathogens 
in chromogenic culture media
Breno Luis Nery Garcia 1, Cristian Marlon de Magalhães Rodrigues Martins 2, 
Lucas Faria Porto 2, Diego Borin Nobrega 3 & Marcos Veiga dos Santos 1*

Using on‑farm microbiological culture (OFC), based on chromogenic culture media, enables the 
identification of mastitis causing pathogens in about 24 h, allows rapid decision making on selective 
treatment and control management measures of cows with clinical mastitis (CM). However, accurate 
interpretation of OFC results requires trained and experienced operators, which could be a limitation 
for the use of OFC in dairy farms. Our hypothesis was that AI‑based automated plate reading mobile 
application can analyze images of microorganisms’ colonies in chromogenic culture media with similar 
diagnostic performance as a trained specialist evaluator. Therefore, the aim of the present study was 
to evaluate the diagnostic accuracy of an AI‑based application (Rumi; OnFarm, Piracicaba, São Paulo, 
Brazil) for interpreting images of mastitis causing microorganism colonies grown in chromogenic 
culture media. For this study two trials were organized to compare the results obtained using an 
AI‑based application Rumi with the interpretation of: (1) a trained specialist, using MALDI‑TOF MS 
as the gold standard; (2) farm personnel users (FPU). In trial 1, a total of 476 CM milk samples, from 
11 farms located in São Paulo (n = 7) and Minas Gerais (n = 4), southeast Brazil, were inoculated in 
chromogenic culture media plates (Smartcolor 2, OnFarm, Piracicaba, São Paulo, Brazil) by specialists 
under lab conditions, and digital images were recorded 24 h after incubation at 37 °C. After that, all 
the 476 digital images were analyzed by the Rumi and by another specialist (who only had access to 
the digital images) and the diagnostic accuracy indicators sensitivity (Se) and specificity (Sp) were 
calculated using MALDI‑TOF MS microbiological identification of the isolates as the reference. In Trial 
2, a total of 208 CM milk samples, from 150 farms from Brazil, were inoculated in chromogenic culture 
media plates by FPU, and the results of microbiological growth were visually interpreted by FPU under 
on‑farm conditions. After visual interpretation, results were recorded using an OnFarmApp application 
(herd manage application for mastitis by OnFarm, Piracicaba, São Paulo, Brazil), and the images of the 
chromogenic culture plates were captured by the OnFarmApp to be evaluated by Rumi and Bayesian 
Latent Class Models were performed to compare Rumi and the FPU. In Trial 1, Rumi presented high 
and intermediate accuracy results, with the only exception of the low Enterococcus spp.’s Se. In 
comparison with the specialist, Rumi performed similarly in Se and Sp for most groups of pathogens, 
with the only exception of non‑aureus staphylococci where Se results were lower. Both Rumi and the 
specialist achieved Sp results > 0.96. In Trial 2, Rumi had similar results as the FPU in the Bayesian 
Latent Class Model analysis. In conclusion, the use of the AI‑based automated plate reading mobile 
application can be an alternative for visual interpretation of OFC results, simplifying the procedures 
for selective treatment decisions for CM based on OFC.
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Mastitis is one of the main reasons for the use of antimicrobials on dairy farms, representing around 80% of the 
total use of antimicrobials in dairy  production1. However, antimicrobial treatment of all clinical mastitis (CM) 
cases is not always justified, because around 40% of CM cases have no isolation of mastitis-causing pathogens. 
Moreover, among culture-positive results, some pathogens respond poorly to antimicrobial therapy, and/or have 
a high rate of spontaneous cure (e.g., Escherichia coli2). The rapid and accurate diagnosis of mastitis pathogens 
is an important element of an effective protocol for selective therapy of clinical  mastitis3. Different on-farm 
microbiological culture (OFC) methods have been used for rapid on-farm identification of mastitis pathogens, 
including the use of chromogenic culture  media4. The adoption of OFC enables selective treatment for CM, which 
can reduce antimicrobial use by 50%5,6, without reduction on bacteriological cure  risk7.

Interpreting OFC results requires adequate training and experienced farm personnel, which can be a limita-
tion to the adoption of OFC systems in dairy herds. Substantial differences in accuracy are observed between 
specialists and untrained users, showing that specific training is critical to appropriate mastitis treatment deci-
sions based on OFC  results6. Furthermore, in chromogenic media-based OFC, because of the subjectivity of 
color interpretation of colonies, variation in diagnostic performance is observed between specialists and farm 
personnel users (FPU)8, which can compromise the diagnostic performance of the method.

Automation in the culture media evaluation can be an alternative to minimize subjectivity in the OFC results 
interpretation. It has been reported that automatic evaluation systems can present similar accuracy as the evalua-
tion of a trained specialist when using urine  samples9. Automating procedures and diagnoses using computational 
techniques is not a recent subject in research. Solutions using machine learning for automatic image diagnosis 
have been explored with several applications, such as: analysis using X-ray  images10, photo-anthropometric 
analysis of facial  images11,12, identification of cancer  cells13, dental sexual dimorphism classification using radi-
ography  images14, classification of bacteria and nematodes on microscope  images15,16. The automation of the 
chromogenic culture results interpretation comprises the use of artificial intelligence (AI) to analyze images of 
culture media plates and, in real time, categorize them as positive or negative for specific pathogens based on 
interpreting the color and colony characteristics of specific  microorganisms17.

AI-based application has been tested in human medicine and have achieved satisfactory accuracy (> 80% 
sensitivity) in interpreting microbiological culture results in urinary tract  isolates9,18; screening for methicillin-
resistant/sensible Staphylococcus aureus infection in patients in intensive care  units17; detection of group B 
Streptococcus in  women19 and Streptococcus pyogenes isolates in pharyngitis  cases20. However, there are no studies 
evaluating AI-based application method for chromogenic culture media used for mastitis-causing pathogens 
identification.

We hypothesize that employing an AI-driven automated mobile application for plate reading, designed to 
interpret images of prevalent mastitis-causing bacteria in chromogenic culture media, can achieve diagnostic 
accuracy comparable to that of a trained specialist. Such a technological advancement holds the potential to 
streamline milk culturing on farms, mitigating the risk of diagnostic errors that may arise when untrained per-
sonnel are responsible for plate reading. Therefore, the aim of the present study was to evaluate the diagnostic 
accuracy of an AI-based application (Rumi; OnFarm, Piracicaba, São Paulo, Brazil) for interpreting images of 
mastitis-causing microorganism colonies grown in chromogenic culture media. The study was organized into 
two trials with the following objectives: 1) Assess the diagnostic accuracy of Rumi in contrast to a trained spe-
cialist, using MALDI-TOF-MS as the gold standard; 2) compare the accuracy of Rumi and FPU to read plates 
on farms, which will serve as a proxy to estimate the improvements in diagnostic accuracy attributed to the 
implementation of Rumi (Table 5).

Results
Trial 1
Nearly half of the CM samples (267/476) were considered negative, while 43.9% (209/476) were considered 
positive. From all samples, 20.4% (97/476) contained isolates with two distinct morphologies (mixed culture). In 
total, 306 isolates from 46 different species were identified in MALDI-TOF MS. Among the groups of pathogens 
that can be identified by Smartcolor2, Lactococcus spp., Pseudomonas spp., yeast, Prototheca spp., other Gram-
negative and other Gram-positive microorganism had a low frequency of isolation (n < 10) and were, therefore, 
grouped as “other pathogens”. The most frequently isolated pathogen group was non-aureus staphylococci (10.9%) 
followed by E. coli (7.6%) and Staphylococcus aureus (7.3%; Table 1).

Both the specialist and Rumi had Sp results > 0.96 for all the groups of pathogens evaluated (Table 1). The 
specialist Se ranged from 0.60 (Enterococcus spp.) to 0.97 (E. coli), while Rumi’s Se ranged from 0.20 (Enterococ-
cus spp.) to 0.97 (Klebsiella spp./Enterobacter spp./Serratia spp.). There were no significant differences in the 
Se and Sp of Rumi and the specialist to identify most group of pathogens evaluated (Table 2). For non-aureus 
staphylococci, Rumi had lower Se (0.94) than the specialist (0.73).A list of cross tabulated results according to 
the MALDI-TOF MS status is available as supplemental material (Tables S1).

Trial 2
According to our case definition, 28.8% (60/208) of the samples were considered negative, while 71.1% (148/208) 
were positive. A total of 31.2% (65/208) of samples had mixed cultures. Lactococcus spp., Serratia spp., Pseu-
domonas spp., yeast, Prototheca spp., other Gram-negative and other Gram-positive microorganism had a low 
frequency of isolation (n < 10) and were not considered for Bayesian Latent Class models. Non-aureus staphylo-
cocci was the most frequently isolated group (35.1%) followed by Streptococcus agalactiae/dysgalactiae (13.0%) 
and Streptococcus uberis (11.5%; Table 3).

In total, 35 models (5 models per pathogen group) were run. In general, Rumi performed as well as the FPU 
for all groups of pathogens evaluated (Table 2). No statistically significant differences in Se and Sp were observed 
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Table 1.  Frequency isolation of mastitis-causing pathogens from 476 clinical mastitis samples cultured in 
blood agar and identified by MALDI-TOF MS.

Variable Frequency (n) %

Total 476 100.0

Negative 267 56.1

Mixed culture 97 20.4

Gram-positive 214 45.0

 Streptococcus agalactiae 9 1.9

 Streptococcus dysgalactiae 13 2.7

 Streptococcus uberis 19 4.0

 Enterococcus spp. 10 2.1

 Lactococcus spp. 6 1.3

 Staphylococcus aureus 35 7.3

 Non-aureus staphylococci 52 10.9

 Other Gram-positive pathogens 70 14.7

Gram-negative 92 19.3

 Escherichia coli 36 7.6

 Klebsiella spp. 20 4.2

 Enterobacter spp. 5 1.0

 Serratia spp. 5 1.0

 Pseudomonas spp. 8 1.7

 Yeast and Prototheca spp. 10 2.1

 Other Gram-negative pathogens 8 1.7

Table 2.  Diagnostic sensitivity (Se) and specificity (Sp) of the visual identification of mastitis-causing 
pathogens from clinical mastitis samples (n = 476) in chromogenic culture media triplates (SmartColor 
2—OnFarm. Brazil) made by a trained specialist and by an artificial intelligence-based application (Rumi; 
OnFarm. Piracicaba. São Paulo. Brazil). The microbiological identification using MALDI-TOF MS was 
considered the gold standard. CI = 95% confidence intervals. a,b Accuracy parameters followed by different 
superscripts for the same pathogen category denote statistically significant differences at 5% significance level.

Frequency (n) Se (CI) Sp (CI)

Streptococcus agalactiae/Streptococcus dysgalactiae 25

Specialist 0.86 (0.65–0.97) 0.97 (0.95 -0.98)

Rumi 0.68 (0.45–0.86) 0.98 (0.96–0.99)

Streptococcus uberis 24

Specialist 0.89 (0.67–0.99) 0.98 (0.96–0.99)

Rumi 0.84 (0.60–0.97) 0.96 (0.94–0.97)

Enterococcus spp. 13

Specialist 0.60 (0.26–0.88) 0.97 (0.95–0.98)

Rumi 0.20 (0.02–0.56) 0.97 (0.95–0.99)

Other Pathogens 7

Specialist 0.61 (0.49–0.71) 0.98 (0.96–0.99)

Rumi 0.38 (0.29–0.49) 0.98 (0.97–0.99)

Klebsiella spp./Enterobacter spp./Serratia spp. 31

Specialist 0.93 (0.78–0.99) 1.00 (0.98–1.00)

Rumi 0.97 (0.83–1.00) 0.99 (0.98–1.00)

Escherichia coli 47

Specialist 0.97 (0.88–1.00) 0.99 (0.98–1.00)

Rumi 0.89 (0.74–0.97) 0.99 (0.98–1.00)

Staphylococcus aureus 35

Specialist 0.83 (0.66–0.93) 0.99 (0.98–1.00)

Rumi 0.74 (0.57–0.87) 0.98 (0.97–0.99)

Non-aureus staphylococci 70

Specialist 0.94a (0.84–0.99) 0.99 (0.98–1.00)

Rumi 0.73b (0.61–0.84) 0.98 (0.97–1.00)
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between Rumi and FPUs for identifying isolates, irrespective of bacterial species (Table 4). These comparisons 
were not affected by our choice of prevalence or diagnostic prior information, as demonstrated by sensitivity 
analysis (Tables S3, S4). A list of cross tabulated results for the two diagnostic procedures is available as sup-
plemental material (Tables S2).

Discussion
The diagnostic accuracy of the OFC depends on various factors, which includes the pathogen and culture media 
diagnostic accuracy, the level of training and experience of the operator in interpreting the  results8. AI-based 
application that automatically interprets OFC results can be an alternative to enhance the diagnostic accuracy 
of OFC systems. The present study was divided in two trials which aimed to: (a) evaluated the performance of 
an AI-based application for microbiological diagnosis of mastitis-causing pathogens using chromogenic cul-
ture media images (b) evaluate if this AI-based application can improve the accuracy OFC diagnosis of CM in 
comparison to a farm personal user.

Trial 1
Rumi demonstrated high Se for the most prevalent environmental pathogens evaluated (Streptococcus uberis; 
Klebsiella spp./Enterobacter spp./Serratia spp. and Escherichia coli), indicating that, for this group of pathogens, 
the AI-based application can perform comparably to a specialist in interpretating chromogenic culture media 
results. Considering the majority of the herds using the OFC system were compost-barn farms, and that envi-
ronmental streptococci and Escherichia coli were the most prevalent causes of CM in compost-barn Brazilian 
 herds21, achieving a high diagnostic accuracy for these pathogens is crucial for implementing adequate CM 
treatments. Additionally, for the Gram-negative pathogens evaluated (Klebsiella spp./Enterobacter spp./Serratia 

Table 3.  Distribution of mastitis-causing pathogens of 208 clinical mastitis samples cultured on chromogenic 
culture media triplate (Smartcolor 2. OnFarm. Piracicaba. São Paulo. Brazil).

Variable Frequency (n) %

Total 208 100.0

Negative 60 28.8

Mixed culture 65 31.2

Streptococcus agalactiae/Streptococcus dysgalactiae 27 13.0

Streptococcus uberis 24 11.5

Enterococcus spp. 16 7.7

Staphylococcus aureus 16 7.7

Non-aureus staphylococci 73 35.1

Escherichia coli 18 8.6

Klebsiella spp./Enterobacter spp./Serratia spp. 10 4.8

Other pathogens 55 26.4

Table 4.  Mode Sensitivity (Se) and Specificity (Sp) of the visual identification of mastitis-causing pathogens 
from clinical mastitis milk samples (n = 208) in chromogenic culture media triplates (SmartColor 2—OnFarm. 
Brazil) made by farm personnel users (FPU) and by an artificial intelligence-based application (Rumi; 
OnFarm. Piracicaba. São Paulo. Brazil).

Comparison Mode

Streptococcus agalactiae/Streptococcus dysgalactiae
Se Rumi > Se FPU 0.06

Sp Rumi > Sp FPU 0.67

Sreptococcus uberis
Se Rumi > Se FPU 0.37

Sp Rumi > Sp FPU 0.72

Enterococcus spp.
Se Rumi > Se FPU 0.33

Sp Rumi > Sp FPU 0.33

Klebsiella spp./Enterobacter spp./Serratia spp.
Se Rumi > Se FPU 0.5

Sp Rumi > Sp FPU 0.65

Escherichia coli
Se Rumi > Se FPU 0.41

Sp Rumi > Sp FPU 0.59

Staphylococcus aureus
Se Rumi > Se FPU 0.18

Sp Rumi > Sp FPU 0.92

Non-aureus staphylococci
Se Rumi > Se FPU 0.22

Sp Rumi > Sp FPU 0.69
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spp. and Escherichia coli) both the specialist and Rumi had all high diagnostic accuracy results, indicating the 
identification capacity of the chromogenic culture media for those groups, as observed by Granja et al.4 and Fer-
reira et al.22. Moreover, the results indicate that Rumi was able to differentiate between the two groups, Klebsiella 
spp./Enterobacter spp./Serratia spp. and Escherichia coli. This ability is critical for decision-making on mastitis 
treatment using OFC results, since Escherichia coli usually does not require antibiotic treatment because of its 
high spontaneous cure  rate2, while Klebsiella spp. would benefit of antimicrobial therapy in the treatment of 
non-severe and clinical  mastitis23.

Regarding the predominantly contagious pathogens evaluated, although Rumi’s Sp results were all > 0.95, 
the Se results were < 0.80. As contagious pathogens control is predominantly related to prevention of transmis-
sion and identification of the positive  cows24, Se results are the most important accuracy predictors. Rumi’s Se 
results for Staphylococcus aureus was 0.73, which can be related to the misidentification between Staphylococcus 
aureus and non-aureus staphylococci, since 5 out of 9 FN results were classified as non-aureus staphylococci. 
However, despite of been numerically greater, the specialist Se results for Staphylococcus aureus and the Strepto-
coccus agalactiae/Streptococcus dysgalactiae group weren’t statistically different at a 5% significance level, which 
denotes that the low Se is probably related to the accuracy of the chromogenic culture media itself for those 
species. Similar results were reported by Garcia et al.25 using the same chromogenic culture media, but with 
post-partum subclinical mastitis samples (Se = 0.67), and those results were attributed to inconsistencies in the 
colony color pattern of this pathogen, in the chromogenic culture media. Staphylococcus aureus identification 
is particularly important because of its high transmission capacity, low cure rates and high resistance to anti-
microbial  treatment24,26. However, Staphylococcus aureus is mostly associated with subclinical mastitis, and the 
primarily focus of Rumi’s microbiological identification is related to CM cases for selective treatment decisions.

The group non-aureus staphylococci was the only one in which a statistical difference in accuracy parameter 
results was observed between the specialist and Rumi. A lower Se was observed for Rumi compared to the spe-
cialist, potentially resulting in fewer treatment of positive cows for non-aureus staphylococci, since FN results 
correspond to positive samples classified as negative within this group. This difference can possibly be atributed 
to the chromogenic culture media not having a specific color definition for non-aureus staphylococci as a group, 
and classifying it as any color other than pink. Rumi’s supervised machine-learning model was developed based 
on digital images of SmartColor 2 plates labeled with the presumptive microbiological identification result. 
Considering that the non-aureus staphylococci group presents about 11 different species causing  mastitis27, 
Rumi was exposed to a broad variation in colony color and morphology in the training process, which may have 
decreased the accuracy of the identification for the group.

Although a difference was observed in the Se results of one of the pathogen groups evaluated, Rumi performed 
similarly as the specialist in Sp results. Both the specialist and Rumi presented satisfactory results regarding Sp, 
for all groups of pathogens evaluated. Considering that the selective treatment of CM presupposes that only cases 
which will benefit from treatment are  treated3, a high Sp is essential for adopting OFC results as a criterion for 
therapy. For most of the evaluated groups of pathogens (with the only exception of Escherichia coli), an FP result 
could lead to unnecessary treatment, and so a high Sp is crucial for the reduction of antimicrobial therapy on 
mastitis control, which is one of the primary reasons for the OFC implementation on dairy herds.

The only group of pathogens witch Rumi presented diagnostic accuracy results <0.60 was Enterococcus spp. 
(Se = 0.20). Although, Rumi’s low accuracy for this group can be probably attributed to the chromogenic culture 
media performance itself, since both the specialist and Rumi evaluation presented low Se. The specialist inter-
pretation had 4 FN results, while Rumi had 8 FN results for Enterococcus spp. identification. Half of Rumi’s FN 
results (4 out of 8) were in the same samples that were classified as FN for the specialist’s evaluation, indicating 
that this incorrect identification is associated with the chromogenic culture media performance. Those results 
agree with the diagnostic accuracy obtained by Granja et al. (2021), evaluating the same chromogenic culture 
media for clinical mastitis samples (Se = 0.43) and subclinical mastitis (Se = 0.25). Additionally, Enterococcus 
spp. and Streptococcus spp. genus has narrow phenotypic similarity which leads to a difficult morphological 
 differentiation28, even in chromogenic media, in which the identification is made by the color patterns. Ferreira 
et al.22 found, in Accumast chromogenic culture media, the group Lactococcus/Enterococcus as the most common 
cause of FP results, leading to a low PPV (0,538±0.26), as it was observed in our study. Probably, the low isola-
tion frequency of Enterococcus spp. (n = 13) has compromised the results of Se, both for the specialist and Rumi 
evaluation. Considering that the criteria for separately calculating the diagnostic accuracy predictors (out of the 
“other pathogens” group) were, at least 10 isolations, Enterococcus spp. had only 3 isolates above the breakpoint.

It is necessary to consider that, our gold standard method used blood agar as the primary isolation medium 
incubated by 48-hour period (with inspections at 24 and 48 hours), while the SmartColor 2 plates had a period 
incubation of only 24 hours. This difference of incubation period between the methods can be considered a limi-
tation of the study because some pathogens have fastidious growth and demand a longer period of incubation 
(e.g., 2 to 3 days for growth of Corynebacterium spp.29). Although, 24 hours is the maximum safe awaiting period 
recommended for decision-making on CM treatment without affecting cure  rates3,30. In this sense, prolonging the 
incubation period of SmartColor 2 plates to match the gold standard methodology would bias our results, once 
this procedure is not replicable on the field. Another potential limitation is the use of swabs instead of platinum 
loops for the inoculation procedures of both methodologies, which, due to the lack of a standardized volume, 
could increase the risk of FP results. However, as the OFC procedure is based on the swab inoculation, using 
a platinum loop only on blood agar would lead to additional bias, as low colony-forming unit samples could 
be erroneously considered FP on SmartColor 2 due to the inoculation volume difference between methods. To 
mitigate bias, we chose to apply the same procedure for both, SmartColor2 and blood agar.
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Trial 2
The results of the Bayesian Latent Class Model indicate no differences in accuracy parameters between FPU 
and Rumi. Although no accuracy improvement was found, the use of Rumi can help in simplifying the OFC 
identification process, reducing the need for an additional operation. Considering that, currently, all FPU need 
to be trained by OnFarm employees to perform microbiological identification, the use of Rumi can make the 
process simpler and faster for new FPU that are implementing the selective treatment of CM based on OFC. This 
simpler implementation process can also be important for farms to decide on implementing the OFC system, as 
changes in management can present challenges. Additionally, as Rumi automatically provides the microbiological 
identification, there is no need for manually registering the results on the CM management recordings, which 
improve the record-keeping efficiency.

Despite the lower Se results of Rumi in comparison to the specialist in Trial 1, no difference was observed in 
the diagnostic accuracy parameters of the non-aureus staphylococci identification between Rumi and FPU. This 
denotes that there is no disadvantage in using Rumi for microbiological identification of this group. Although, 
concurrently, it indicates that the OFC method itself does not have a good diagnostic performance for this group 
of pathogens, since the use of Rumi did not affect the accuracy, even though it was lower than the specialists Se 
in Trial 1.

It should be pointed out that the Rumi and FPU evaluations were not performed under the same conditions. 
The FPU had the advantage of holding and moving the chromogenic culture media Petri dishes for the interpreta-
tion of the microbiological colonies, while Rumi only had access to the digital image of each plate. Nevertheless, 
similar accuracy parameter results were observed for all groups of pathogens evaluated. Even though, none of 
Rumi’s evaluations presented lower diagnostic accuracy results than an FPU, the use of Rumi did not improve 
the diagnostic accuracy of the OFC method as it was hypothesized. Our results indicated that there is still room 
for improvement in the development of the AI-based application for chromogenic culture media plate reading. 
Using a greater number of images for the training could be an alternative, especially for some groups of pathogens 
with low frequencies of isolation (e.g. Enterococcus spp.) or a broad difference in colony morphology among the 
species within a specific group (e.g. non-aureus staphylococci). Additionally, it is necessary to highlight that the 
frequency of isolation found for some groups of pathogens in Trial 2 limited the power of the test, which can 
address the sample size as a limitation of the trial.

Methods
On‑farm microbiological culture system
The OFC system provided by OnFarm (Piracicaba, São Paulo, Brazil) is currently used by approximately 2,000 
dairy farms located in 20 different states of Brazil. The OFC system is composed of the following items: (1) triplate 
chromogenic culture media plates (SmartColor 2), (2) incubators equipped with a Petri dish reader support, a 
dark background (for photography of SmartColor 2 plate) and luminosity with 6000 K LED light (SmartLab; 
Fig. 1) and (3) a mobile application for herd and cow mastitis data recording (OnFarmApp). When implementing 
OnFarm’s system, the farms receive an online training by OnFarm’s team about how to operate the OnFarmApp 
and how to perform OFC.

OFC procedures are generally carried out by trained employees, chosen from the farm existing staff, following 
the farm’s own criteria, but with no specific qualification required at first (only the initial training by OnFarm). 
All CM cases are identified by farm personnel, based on the identification of abnormalities in milk secretion or 
in the udder of cows. The OnFarm training program emphasizes protocols for obtaining milk samples aseptically, 
inoculating, and incubating culture plates, and utilizing the OnFarmApp for storing information and reading 
culture plates. After the microbiological identification, FPU are oriented to record pictures of the SmartColor 2 
triplates on the reader support of the SmartLab and upload it in the OnFarmApp along with the CM case data. 
The images are recorded by individuals with no advanced technical knowledge of photography using a variety of 
phone devices, and stored at a resolution of 2500 × 2500 pixels, 24 bits of color. When FPU have doubts regarding 
the identification of specific pathogens, a remote inspection of uploaded images can be requested.

Figure 1.  Reader Support (A) located at the SmartLab Incubator (B; OnFarm, Piracicaba, São Paulo, Brazil) 
used to take pictures for model training and performance evaluation. Source: OnFarm (Piracicaba, São Paulo, 
Brazil).
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Chromogenic culture media interpretation
The Smartcolor 2 triplate, whose images were used in the study, comprises of a triplate Petri dish composed of 
three different selective chromogenic culture media: Section 1: Streptococcus spp.; Section 2: Staphylococcus aureus 
and Staphylococcus spp. and Section 3: gram-negative bacteria. Interpretation of the growth in each section of 
the plate was done according to the following colony colors:

Section 1—(a) dark blue = Streptococcus uberis; (b) turquoise blue = Streptococcus agalactiae or Streptococcus 
dysgalactiae; (c) purple = Enterococcus spp.; (d) lilac = Lactococcus spp., and (e) other colors = Gram-positive 
microorganism other than Streptococcus uberis; Streptococcus agalactiae; Streptococcus dysgalactiae; Enterococ-
cus spp. or Lactococcus spp. (other Gram-positive microorganism).
Section 2—Gram-negative: (a) purple = E. coli; (b) metallic blue = Klebsiella spp., Enterobacter spp., or Ser-
ratia spp.; (c) yellow = Pseudomonas spp.; (d) white and dry = yeast and Prototheca spp., and (e) other colors 
= Gram-negative microorganism other than E. coli; Klebsiella spp.; Enterobacter spp.; Serratia spp. or Pseu-
domonas spp. (other Gram-negative microorganism).
Section 3—(a) pink = Staphylococcus aureus; (b) other colors = other bacteria from Staphylococcus spp genus 
other than Staphylococcus aureus (non-aureus staphylococci).

Development of the AI‑based mobile application
Convolutional neural networks model: inputs, training and the validation procedure
Machine learning methods based on supervised learning were used to create an automatic classifier based on a 
convolutional neural networks model to make an automated diagnosis of mastitis-causing pathogens growth in 
chromogenic culture media (Smartcolor 2). The image database contained images of Petri dishes that presented 
growth of at least one microorganism colony isolated from milk samples from mastitic cows. All images were 
captured at the farms using OnFarm OFC system and were registered using the OnFarmApp.

Before the training procedure, all the images were labeled by a specialist (PhD veterinarian specializing in 
microbiology, with six years of experience in microbiological identification by the chromogenic culture media 
triplate used in the study) with bounding boxes indicating on images the object’s region (microorganism’s colo-
nies) with their respective object classes (positive diagnosis)31. The labeled database with target information 
(classes for positive diagnosis) is the procedure in a supervised learning approach that indicates what the model 
should learn using the data from the dataset in the training  process32.

Experimental set‑up and evaluation metrics
An experimental set using the Petri dishes images was adopted to create the classifier of the automatic mastitis-
causing pathogen diagnosis. For this, we used an open-source model for object detection in images named 
YoloV5 version “M”33. The main model’s features used in this study were: model size = 42.2 megabytes; trainable 
parameters = 20,875,359; image size = 640 X 640 and depth = 169. The main hyperparameters used in the train-
ing procedure were: optimization algorithm = stochastic gradient descent; batch size = 32; momentum = 0.937; 
weight decay = 0.0005 and learning rate = 0.01.

To the training process we adopted the weights and a trained model using the “transfer learning” approach 
in our application. In this procedure, the model (YoloV5m) was trained using the Common Objects in Context 
dataset (COCO) composed of over 330 thousand images, around 1.5 million instances of objects to detect 80 
different types of objects in  images34. The transfer learning technique uses a trained model as a starting point 
(mode = l’s weights) to train a new model for a new context using new images, for new objects, new classes and 
especially, using a smaller training  dataset35. Our application was implemented using the programming language 
Python 3.836 combined with PyTorch 1.837 as back-end. To evaluate the classifier model, the Diagnostic Accuracy 
Measures was  adopted38, which was composed by four parameters: True Positives (TP), True Negatives (TN), 
False Positives (FP) and False Negatives (FN), that enabled the analyses of the Accuracy (Acc), Sensitivity (Se), 
Specificity (Sp), Positive Predictive Value (PPV) and Negative Predictive Value (NPV).

To develop the classifier, we utilized 1,550 images randomly selected from the OnFarmApp database, which 
contained around 450,000 mastitis case images recorded by FPU during standard OFC procedures. All images 
underwent encryption of farm and cow information prior to selection to safeguard the privacy of the farms 
involved. The dataset was divided randomly into two subsets, representing 80% and 20% from the dataset. In the 
first subset, the total of 1,240 images were selected for the training process and in the second, 310 images were 
selected for the validation process. To evaluate entire database in the training process, we adopted the k-fold 
cross-validation  method39,40. In our experiment a fivefold cross-validation procedure was used, randomly separat-
ing the dataset five times with 80% of images for training the classifiers and 20% of images for testing ensuring 
the best model at the end of the training process. After the training procedure, the machine learning model has 
been deployed a Rest service with a HTTP protocol developed in Flask Python in an EC2 service hosted in an 
Amazon Web Service (AWS). Then, a mobile and web application was built (Rumi, OnFarm, Piracicaba, Brazil), 
which was integrated with the machine learning algorithms services using an Application Program Interface 
(API). The service worked uploading the digital image in the service and getting back the result from the Rumi 
AI-based application service.

Evaluation of the reliability of the AI‑based application
The database for training and validation, composed of 1,550 images, was used to ensure the best model at the 
end of the training process. Meanwhile, the test data set, which was not used in the training procedure, was 
a sample of unknown data for the trained model. The test dataset contained 684 images, including 476 from 
plates with bacteria previously identified by Matrix-Assisted Laser Desorption Ionization—Time-of-Flight Mass 
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Spectrometry (MALDI-TOF MS), as described by Granja et al. (2021). The remaining 208 images were randomly 
selected from the OnFarmApp image database, and identified by the trained specialist.

Trial 1 Diagnostic accuracy of Rumi and a trained specialist for the identification 
of CM causing pathogens in chromogenic culture media images, using MALDI‑TOF 
MS as the reference (Fig. 2)

Objective
Evaluate the diagnostic accuracy of Rumi using MALDI-TOF MS as the gold standard, and compare its results 
with the accuracy of a specialist with six years of experience in microbiological identification using the chromo-
genic culture media triplate Smartcolor 2.

Images, data collection and diagnostic accuracy under laboratory conditions
A total of 476 images of SmartColor 2 triplate with colony growth from CM milk samples, originating from 
a previous  study4 were used in Trial 1. These images were generated from 476 CM cases, from 441 cows of 25 
farms located in two states of Brazil (São Paulo and Minas Gerais), selected as a non-probabilistic convenience 
sampling. The number of samples was chosen in accordance with the comparable  literature41,42. Briefly, all CM 
milk samples were sent from the farm to the laboratory frozen at −20°C and then, in laboratory conditions, 
milk samples were inoculated, with a sterile swab, simultaneously in SmartColor 2 and in blood agar. After 24 h 

Figure 2.  Trial 1 Flowchart—Estimation of the Sensitivity (Se) and Specificity (Sp) of the artificial intelligence-
based application (Rumi; OnFarm, Piracicaba, São Paulo, Brazil) and the trained specialist to identify pathogens 
growing on chromogenic culture media on farms. MALDI-TOF MS was considered as the gold standard.
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(for SmartColor 2) and 24 to 48 hours (for blood agar) of incubation at 37°C, the plates were inspected and all 
microbiological colonies grown in SmartColor 2 and in blood agar were submitted to species identification using 
MALDI-TOF MS. Concurrently, the SmartColor 2 plates were photographed for further evaluation.

All images were classified by the following two methods: (a) a trained specialist (not involved in the previous 
study) and (b) Rumi. The specialist had access to the digital images and recorded a presumptive diagnosis based 
on colonies color patterns and growth on selective media, following manufacturer’s recommendations. Rumi’s 
readings were carried out by uploading and processing digital images using the Web OnFarmApp.

Diagnostic performance indicators
The diagnostic accuracy (Se, Sp and accuracy), for the microbiological identification of the specialist and Rumi, 
were estimated using the MALDI-TOF MS microbiological identification results as gold standard. The recorded 
number of colonies of each isolate was considered to classify a sample as positive. In our criteria, all samples with 
the isolation of less than three colonies (with the exception of Staphylococcus aureus), were classified as negative 
for that particular species. Images of plates displaying the isolation of two different morphologies of colonies 
were classified as mixed culture, and considered positive for the two species in the analysis. Contaminated sam-
ples (defined as the presence of three or more morphologically-distinct colonies in the same sample) were not 
included in the analysis. Pathogens with a frequency of isolation lower than 10 were grouped as “other pathogens”.

For each pathogen group evaluated, samples were considered TP when microbiological growth was observed, 
and the visual presumptive identification of chromogenic media coincided with the identification in MALDI-
TOF MS for isolates in blood-agar. A sample was considered TN when no microbiological growth with color 
pattern associated with this specie was observed in chromogenic media and no identification of the species was 
done by MALDI-TOF MS in blood-agar isolates of the same sample. A sample was considered FP when there 
was an isolation of microorganism with different identification result between the chromogenic culture media 
and MALDI-TOF MS identification of blood-agar isolates of the same sample. Finally, a sample was considered 
FN when no bacterial growth with color pattern associated with this specie was observed in chromogenic media, 
but a microbiological identification of the pathogen was made in MALDI-TOF MS for blood-agar isolates of 
the same sample.

The diagnostic performance indicators were calculated using the software R Studio (version 4.1.3). Using 
the recorded results of TP, TN, FP and TN. A confusion matrix was created using bdpv  package43, and the 
results were used to generate the Se and Sp, as well as the Wald confidence intervals (0.95 confidence limits). 
McNemar’s Exact tests were used for comparing sensitivities and specificities between the specialist and Rumi 
for each pathogen group.

Trial 2 Diagnostic accuracy of Rumi and farm personnel users for the identification 
of mastitis‑causing pathogens in chromogenic culture media plates (Fig. 3)

Objective
Compare the diagnostic accuracy of Rumi and FPU to estimate potential gains of using Rumi for the interpreta-
tion of OFC results.

Images and Data Selection
For this trial, we selected 208 images, originating from 150 Brazilian dairy farms located in three Brazilian states 
(Minas Gerais, São Paulo and Paraná). Images were randomly selected from a pool of eligible images meeting 
the following criteria: (1) Image captured using the Onfarm’s reader support located at the top of the SmartLab 
incubator; (2) Image of a plate placed in the correct position at the reader support and (3) Image without environ-
mental interferences (e.g., camera flashes, objects in front of the plate). No minimum specification was required 
for the devices or image quality. The images, as well as the FPU’s presumptive microbiological identification, were 
previously recorded in OnFarmApp. Additionally, images were also identified using the Rumi.

Milk samples were considered culture-positive if 3 or more colonies with the color patterns defined for the 
species were present. The only exception was Staphylococcus aureus, in which the growth of a single colony was 
considered positive. Mixed samples were defined as the presence of 2 distinct species in sufficient numbers on 
the same sample. Plates were considered contaminated when > 2 different morphology of colonies were present. 
Mixed culture plates were considered positive for both groups of pathogens whereas contaminated samples were 
not included in the analyses.

Bayesian Latent Class Model
Since two distinct tests (Rumi and FPU reading) were used, and none of the two could be regarded as a gold 
standard for bacterial identification, we opted for a Bayesian approach to estimate the differences in sensitivity 
and specificity between Rumi and FPU. This difference served as a proxy for assessing the potential on-farm 
gains in diagnostic accuracy through automated plate reading. Trial 2 contained no missing data or indetermi-
nate results.

To accomplish this, we developed a set of Bayesian latent class models following the STARD-BLCM guidelines 
(Table S1). These models were tailored for each group of pathogens, taking into account the utilization of the two 
tests within a particular  population44. The latent variable in this instance was a positive culture result on blood 
agar for a species or group of species, as identified by MALDI-TOF. The two tests were considered independent 
from one another. A multinomial distribution was used to represent all possible 4 outcome combinations, as 
follows:
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where  yobserved is a vector that denotes the number of observed results after n trials that fall in each possible com-
bination according to the diagnostic test results, assumed to follow a multinomial distribution with cell prob-
ability  Pobserved.  Ppopulation represents the true prevalence of each group of pathogens.  Pobserved [1] to [4] represent 
the different probabilities of samples being classified as test positive or negative in each diagnostic test according 
to the true pathogen prevalence.  SeFPU,  SeRumi,  SpFPU and  SpRumi, represent the sensitivities and specificities of 
the FPU and Rumi, respectively. A sample code is available as supplementary material (Supplementary Text 1).

Prior information on the Se and Sp of Rumi as well as true prevalence priors were incorporated into the 
Bayesian latent class models (Table 5). These were chosen according to the Trial 1 results. Non-informative priors 
were used for the Se and Sp of FPU. Priors were determined using the betaExpert function in  R45. Distributions 
were not truncated and could attain any value in the parameter space. We carried a set of sensitivity analysis 
considering alternative prevalence priors, as well as weaker diagnostic priors for Rumi with identical modes.

A Markov chain Monte Carlo approach using Gibbs sampling was performed with 4 chains in parallel with 
a total of 400,000 iterations using the runjags package in  R46. Visual inspection of the chains, effective sample 
sizes, and autocorrelation plots were used as measures of efficacy. An effective sample size of at least 10,000 was 
required for all parameters. The step() function was used to estimate the probability of the Se and Sp of Rumi 

yobserved = multinomial
(

Pobserved[1:4], n
)

Pobserved[1] = Ppopulation × (SeRumi × SeFPU )+
(

1− Ppopulation
)

×
((

1− SpRumi

)

×
(

1− SpFPU
))

Pobserved[2] = Ppopulation × (SeRumi × (1− SeFPU ))+
(

1− Ppopulation
)

×
((

1− SpRumi

)

× SpFPU
)

Pobserved[3] = Ppopulation × ((1− SeRumi)× SeFPU )+
(

1− Ppopulation
)

×
(

SpRumi ×
(

1− SpFPU
))

Pobserved[4] = Ppopulation × ((1− SeRumi)× (1− SeFPU ))+
(

1− Ppopulation
)

×
(

SpRumi × SpFPU
)

Figure 3.  Trial 2 Flowchart—A comparison of Sensitivity (Se) and Specificity (Sp) between the artificial 
intelligence-based application (Rumi; OnFarm, Piracicaba, São Paulo, Brazil) and farm personnel users for the 
identification of clinical mastitis pathogens in images from chromogenic culture media plates.
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being greater than those of the FPU for the identification of each group of pathogens. Statistical significance was 
considered at the 5% level. These analyses were carried out in R.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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