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HMGB1 mediates 
microbiome‑immune axis 
dysregulation underlying 
reduced neutralization capacity 
in obesity‑related post‑acute 
sequelae of SARS‑CoV‑2
Noelle C. Rubas 1,2,5, Rafael Peres 1,5, Braden P. Kunihiro 1, Nina P. Allan 1, 
Krit Phankitnirundorn 1, Riley K. Wells 1,2, Trevor McCracken 1, Rosa H. Lee 1, Lesley Umeda 1,2, 
Andie Conching 3, Ruben Juarez 3,4 & Alika K. Maunakea 1,3*

While obesity is a risk factor for post‑acute sequelae of SARS‑CoV‑2 infection (PASC, "long‑COVID"), 
the mechanism(s) underlying this phenomenon remains poorly understood. To address this gap 
in knowledge, we performed a 6‑week longitudinal study to examine immune activity and gut 
microbiome dysbiosis in post‑acute stage patients recovering from SARS‑CoV‑2 infection. Self‑
reported symptom frequencies and blood samples were collected weekly, with plasma assessed 
by ELISA and Luminex for multiple biomarkers and immune cell profiling. DNA from stool samples 
were collected at the early stage of recovery for baseline assessments of gut microbial composition 
and diversity using 16S‑based metagenomic sequencing. Multiple regression analyses revealed 
obesity‑related PASC linked to a sustained proinflammatory immune profile and reduced adaptive 
immunity, corresponding with reduced gut microbial diversity. In particular, enhanced signaling of 
the high mobility group box 1 (HMGB1) protein was found to associate with this dysregulation, with 
its upregulated levels in plasma associated with significantly impaired viral neutralization that was 
exacerbated with obesity. These findings implicate HMGB1 as a candidate biomarker of PASC, with 
potential applications for risk assessment and targeted therapies.

Although the number of new cases of SARS-CoV-2 infection globally is subsiding, the prevalence of post-acute 
sequelae of SARS-CoV-2 (PASC) in individuals recovering from COVID-19 remains a significant public health 
concern. In particular, individuals with pre-existing conditions associated with immune dysregulation are more 
susceptible to  PASC1, and collectively, studies have associated systemic inflammation and reduced humoral 
activity with this  condition1,2. In addition, given the role of the gut microbiome in regulating immune func-
tion, gut microbial dysbiosis also associates with  PASC3,4. Further, obesity is a common risk factor for PASC in 
association with a dysregulated microbiome-immune  axis5. Thus, the combination of metabolic dysfunction 
(from insulin resistance and adiposity) and pre-existing disruptions in the microbiome associated with chronic 
low-grade inflammation in obesity may exacerbate viral persistence that underlies PASC in recovering  patients6.

PASC is a complex and multifactorial syndrome, and establishing its pathophysiology has proven  challenging7, 
requiring further molecular assessment of implicated processes to distinguish its full biological cascade. PASC’s 
molecular obscurity has prompted several challenges to disease  management5. First, without molecular mark-
ers for laboratory testing, clinical diagnosis is the only option, likely leading to underdiagnosis. Additionally, 
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without molecular diagnosis, there remains debate when defining and accepting the transition from COVID-19 
to  PASC8–10. Although biomarkers linked to COVID-19 severity and PASC have recently been  proposed11,12, with 
no clear understanding of their relationship to PASC, these remain to be validated. Finally, a major challenge 
is the inability to predict who may develop PASC, which might otherwise facilitate prophylactic measures or 
therapeutic intervention to mitigate symptomatic  onset13.

Herein, we explored immune- and gut microbiome-associated pathways in individuals recovering from SARS-
CoV-2 infection in the post-acute stage to better characterize the development of PASC. We aimed to identify 
PASC susceptibility biomarkers as candidate PASC predictors and/or potential therapeutic targets. To molecularly 
resolve PASC, individuals recovering from COVID-19 were invited to participate in a 6-week longitudinal cohort 
study via weekly self-reporting their symptoms and providing blood samples. Plasma was subjected to enzyme-
linked immunosorbent assays (ELISA) and Luminex technology to measure antibody response and inflamma-
tory/metabolic biomarkers, while peripheral blood mononuclear cells (PBMC) were stained and FACS-sorted for 
immune cell profiling. Microbial DNA, extracted from a single stool sample obtained at the baseline timepoint 
(at study entry), was subjected to 16S-based sequencing using the Ion Torrent platform. Data was integrated and 
analyzed by Integrated Pathway Analysis (IPA) to identify potential PASC biological pathways, with candidate 
biomarkers cross-validated using regression analysis to assess their predictive potential.

In this cohort, we confirmed that obesity associated with increased frequency of PASC. Obesity-associated 
PASC consisted of a molecular profile of persistently elevated inflammatory responses, corresponding to reduced 
humoral activity and subsequent loss of viral neutralization. These features also associated with reduced microbial 
diversity, suggesting gut dysbiosis. Specifically, IPA identified the high mobility group box 1 (HMGB1) protein 
as a top pathway implicated by the data independent of body mass index (BMI), although HMGB1 response 
was perturbed in obesity. Stepwise pathway analysis of our data highlighted the role of the HMGB1 pathway in 
regulating the microbiome-immune axis in obesity-related PASC. Step-wise regression was used to determine 
the mechanism order beginning with obesity-associated modulation of the gut microbiome and its downstream 
effects on HMGB1 and viral neutralization. Significantly, baseline plasma levels of HMGB1 were predictive of 
neutralization capacity over the course of recovery, with high increased level with PASC symptoms. Importantly, 
our data demonstrate HMGB1 as a candidate biomarker for PASC with implications for developing prophylactic 
and therapeutic interventions.

Results
Recruitment and study cohort
We enrolled 48 COVID-19-recovered subjects residing in Oʻahu, Hawaiʻi between June and September 2020, 
excluding those with multiple follow-up absences. At the time of enrollment, no participants were vaccinated 
and most had recovered from mild symptoms, except for two obese participants who required hospitalization. 
The total cohort demographics are provided in Table 1. To explore the impact of obesity on PASC, we stratified 
participants into normal (BMI equal to or less than 24.9), overweight (BMI between 25 and 29.9), and obese 
(BMI equal to or greater than 30) groups, and assessed differences between these categories.

The time from acute infection period to study recruitment (day at entry) ranged from 10 to 101 + days 
(Supplemental Fig. 1) and average time was comparable across BMI groups, suggesting recovery time was not 
a covariate of obesity in this study. Ethnic composition varied across BMI groups as specified in Table 1. Age 
differences were observed across BMI groups, driven by the younger age of obese participants and the older 
age of overweight individuals. However, further compartmentalization of age into four categories reduced the 
statistical significance. Numbers of male and female participants varied across BMI categories although non-
significantly. Regression modeling was conducted to assess the impact of age, sex, and ethnicity on BMI status 
in our cohort. Our model default parameters were set to male sex and Asian ethnicity. These potential covariates 
were not significant influences on BMI, suggesting these variables would not confound further downstream 
analyses (Supplemental Table 1).

Preliminary immune analyses were performed by profiling immune cell composition. Upon monoclonal 
antibody staining and sorting of PBMCs, marginally higher percentages of monocytes and lower percentages of 
B cells were observed in obesity, albeit non-significantly.

We assessed the presence of features associated with metabolic syndrome including blood pressure, type II 
diabetes status (determined by blood levels of A1c), and plasma levels of C-reactive protein (CRP) and leptin. 
CRP is a biomarker of systemic  inflammation14 and circulating leptin is proportional to the amount of adipose 
 tissue15, allowing both biomarkers to dually serve as molecular indicators of obesity. The incidence of hyperten-
sion and diabetic status increased with higher BMI, although group differences were non-significant. CRP and 
leptin were measured by ELISA using a CRP Human Instant ELISA™ Kit and Leptin Human Instant ELISA™ kit. 
We observed differences in CRP and leptin concentrations among groups, with elevated levels in the overweight 
and obese BMI groups compared to the normal BMI group.

Integration of obesity markers into our regression model revealed CRP was a covariate of BMI, independ-
ent of age, sex, and ethnicity. However, when the regression model was regenerated with CRP as the depend-
ent variable, CRP levels were not related to age, sex, and ethnicity. This comprehensive analysis distinguished 
obesity as the key factor driving differences in our cohort and confirms the suitability of the cohort for studying 
obesity-related PASC.

Data collection
Figure 1 shows a schematic diagram of the data acquisition and study protocol. Study inclusion required proof 
of previous SARS-CoV-2 infection by RT-PCR testing, noninfectious status by a negative RT-PCR result at study 
entry, and a positive immunoglobulin G (IgG) and/or immunoglobulin M (IgM) antibody test at the first study 
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visit. Participants completed a comprehensive health questionnaire regarding their overall health and potential 
comorbidities. Symptom reports were collected at each visit. Participant samples were collected weekly for a 
duration of 6 weeks; providing one stool sample for microbial sequencing after the first week of study entry, and 
blood samples every week, for separation into plasma and PBMCs.

Obesity‑related PASC is characterized by delayed symptom recovery and associate with 
attenuated humoral response
The relationship between BMI and the average prevalence of PASC symptomology reported by each group is 
shown in Fig. 2a. At the first study visit, approximately 75% of overweight and obese participants reported symp-
toms, compared to less than 40% of those with a normal BMI. Symptomology decreased over time for all groups, 

Table 1.  The table presents demographic information for recovered COVID-19 individuals, further stratified 
by BMI groups. Categorical variables were tested using Fisher’s exact test and continuous variables were tested 
using Kruskal–Wallis one-way analysis of variance. †NHPI Native Hawaiians and Pacific Islanders.

Total cohort

BMI group

P-valueNormal Overweight Obese

Participants (N; %) 48 14 (29%) 12 (25%) 22 (46%)

Days since infection (mean ± SE) 44.24 ± 5.12 54.25 ± 9.89 46.83 ± 9.58 37.05 ± 7.64 0.13

Unknown 3 2 0 1

Sex (N; %) 0.3

 Female 28 (58%) 10 (71%) 5 (42%) 13 (59%)

 Male 20 (42%) 4 (29%) 7 (58%) 9 (41%)

Age (mean ± SE) 41.61 ± 3.37 44.93 ± 6.89 54.82 ± 5.47 31.53 ± 4.01 0.021

Age categories (N; %) 0.15

 0–18 8 (17%) 3 (21%) 0 (0%) 5 (23%)

 18–35 11 (23%) 2 (14%) 2 (17%) 7 (32%)

 35–50 12 (25%) 4 (29%) 3 (25%) 5 (23%)

 50–100 13 (27%) 5 (36%) 6 (50%) 2 (9.1%)

 Unknown 4 (8%) 0 (0%) 1 (8.3%) 3 (14%)

BMI (mean ± SE) 30.06 ± 1.13 21.15 ± 0.80 27.71 ± 0.42 37.00 ± 1.05 < 0.001

A1c (mean ± SE) 5.24 ± 0.23 4.74 ± 0.09 5.33 ± 0.66 5.50 ± 0.33 0.093

A1c categories (N; %) 0.2

 Nondiabetic 43 (90%) 14 (100%) 11 (92%) 18 (82%)

 Prediabetic 0 (0%) 0 (0%) 0 (0%) 0 (0%)

 Diabetic 5 (10%) 0 (0%) 1 (8%) 4 (18%)

Blood pressure (N; %) 0.2

 Low 4 (8.3%) 0 (0%) 1 (8.3%) 4 (14%)

 Normal 12 (25%) 7 (50%) 1 (8.3%) 4 (18%)

 Elevated 4 (8.3%) 1 (7%) 1 (8.3%) 2 (9%)

 Stage 1 hypertension 27 (56.3%) 6 (43%) 8 (67%) 13 (59%)

 Stage 2 hypertension 1 (2.1%) 0 (0%) 1 (8.3%) 0 (0%)

Ethnicity (N; %) 0.015

 Asian 8 (17%) 5 (36%) 2 (17%) 1 (4.5%)

  NHPI† 18 (38%) 4 (29%) 2 (17%) 12 (54.5%)

 White 11 (23%) 3 (21%) 6 (50%) 2 (9%)

 Other 5 (10%) 2 (14%) 1 (8%) 2 (9%)

 Unknown 6 (12%) 0 (0%) 1 (8%) 5 (23%)

Obesity biomarkers

 Leptin (ng/ml) 18.26 ± 2.28 10.56 ± 1.54 15.44 ± 3.05 24.96 ± 4.28 0.018

Unknown 3 1 0 2

CRP (ng/ml) 65.40 ± 11.33 9.64 ± 2.87 74.48 ± 26.76 97.39 ± 16.57  < 0.001

Unknown 1 0 0 1

Cellular phenotype

 Monocyte (%) 14.02 ± 1.80 8.70 ± 1.31 12.11 ± 1.10 17.55 ± 3.34 0.2

 B cell (%) 3.27 ± 0.44 4.90 ± 1.05 3.51 ± 1.15 2.38 ± 0.31 0.068

 T cell (%) 37.56 ± 3.16 42.14 ± 6.19 37.80 ± 6.14 35.27 ± 4.70 0.7

 NK cell (%) 5.60 ± 0.71 5.02 ± 1.33 4.67 ± 1.34 6.36 ± 1.07 0.5

 Unknown 10 5 2 3
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eventually converging to similar levels by the final follow-up. Employing a longitudinal regression analysis frame-
work, we found that normal weight participants exhibited a negligible estimated decline in symptom frequencies 
(coefficient = − 0.05). In contrast, overweight and obese participants exhibited a significant estimated decrease 
in symptom frequencies (coefficient = − 2.14, p = 0.004) and (coefficient = − 1.27, p = 0.003), respectively (Sup-
plemental Fig. 2). Together, these data show distinctive symptomatic profiles, suggesting delayed recovery that 
was more pronounced in participants with higher BMI.

To understand the underlying factors contributing to delayed recovery, we first examined the correlation 
between antibody abundance and PASC symptoms within different BMI groups. Differences in generalized 
immunity were assessed by quantifying a crucial serum antibody, IgG, which plays a pivotal role in pathogen 
protection. Employing an anti-SARS-CoV-2 IgG ELISA test, relative changes in IgG levels were evaluated through 
log normalization of baseline IgG levels over the 6-week timeperiod. IgG concentrations of each participant were 
monitored weekly to calculate the average IgG fold-change with respect to BMI group. Differences in relative IgG 
fold-change among BMI groups were tested at each consecutive week (Fig. 2b). We observed a gradual decline 
in the abundance of anti-SARS-CoV-2 IgG in both overweight and obese groups when compared to participants 
of normal BMI. Specifically, the obese group exhibited significantly less IgG levels on day 28 (p < 0.01) and day 
35 (p < 0.01) compared to IgG levels of normal BMI. Similarly, the overweight group exhibited significantly less 
IgG production on day 35 (p < 0.05) when compared to IgG levels of normal BMI. Together, the reduction of 
circulating IgG in participants with higher BMI suggests an attenuated maintenance of antibody production that 
is associated with delayed symptomatic recovery.

Analyte immunoassays for Human Coronavirus Ig were conducted to assess BMI-dependent humoral 
response specific to SARS-CoV-2 viral infection through evaluation of nucleocapsid, spike trimer, S1 subunit, 
and RBD antibody abundance (Supplemental Fig. 3a–d). Individuals of normal BMI maintained consistent 
levels of all four antibodies from baseline to final follow-up timepoints. Conversely, obese individuals exhib-
ited a significant reduction from baseline to final follow-up in levels of nucleocapsid (p < 0.001), spike trimer 
(p < 0.05), S1 subunit (p < 0.05), and RBD (p < 0.01) antibodies. Overweight participants experienced a significant 
decrease in spike trimer antibody concentration (p < 0.05) from baseline to final follow-up, while maintaining 
stable levels for the other three antibodies. These data further highlight that inadequate maintenance of humoral 
responses are associated with increased BMI and correlate with the delayed recovery experienced by overweight 
and obese participants.

To explore the mechanism underlying reduced antibody maintenance and delayed COVID-19 recovery, we 
profiled viral neutralization capacity for all BMI groups by measuring relative levels of plasma-bound SARS-
CoV-2 antibodies. We utilized a surrogate virus neutralization ELISA that mimics blocking of the receptor 
binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and angiotensin-converting enzyme 2 (ACE2) 
human cell surface receptor. Neutralization capacity was compared across BMI groups by evaluating the relative 
fold-change in neutralization capacity over the study period. We plotted the average fold-change per week for 
each BMI group, testing for differences at each time point (Fig. 2c). Overall, normal BMI participants exhib-
ited greater neutralization capacity than overweight and obese participants. Specifically, overweight individuals 
experienced significantly less neutralization capacity on day 14 (p < 0.05) and day 21 (p < 0.05), while obese 
participants experienced less neutralization capacity on day 14 (p < 0.01), day 21 (p < 0.01) and day 28 (p < 0.05) 
when compared to individuals of normal BMI. Longitudinal regression analyses revealed that obese participants 
had a significant decline in estimated neutralization capacity over time (coefficient = − 0.05, p = 0.003). Although 

Figure 1.  This figure presents a timeline and checklist for data acquisition in the study. The timeline shows the 
7 key stages of the study, with each stage represented by a different color. The checklist provides an overview of 
the data points that were acquired and the methods used.
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normal and overweight BMI groups also exhibited an estimated decline in neutralization capacity this reduc-
tion was non-significant in both (coefficient = − 0.08, p = 0.109) and (coefficient = − 0.01, p = 0.56), respectively. 
Coupled with our findings above, the data suggests obesity-related PASC, experienced as delayed recovery from 
COVID-19 symptoms, is related to reduced antibody maintenance and decreased viral neutralization capacity.

To further examine the etiology of PASC, we noted that leukocyte populations have been shown to be per-
turbed, including the depletion of B  cells2, which were marginally reduced in our overweight and obese groups. 
We thus examined B-cell activating factor (BAFF), a member of the TNF ligand superfamily recognized for its 
involvement in promoting B-cell survival and  maturation16. Previous research has linked BAFF dysregulation in 
 obesity17 suggesting it as a potential mechanism contributing to the diminished humoral response. We measured 
plasma levels of BAFF using the BAFF Human Instant ELISA™ Kit. Figure 2d shows the fold-change in BAFF 
concentration, comparing baseline to final follow-up BAFF levels for each BMI group. All BMI groups experi-
enced a reduction in BAFF levels, indicated by a mean fold-change less than 1. However, overweight and obese 
participants experienced a more significant loss of BAFF levels when compared with normal BMI (p < 0.001) and 
(p < 0.001), respectively. Altogether, obesity-related PASC is distinguished by notable decreases in BAFF levels, 
consistent with the reduced B cell population we observed in obesity, contributing to the attenuated humoral 
response that is linked to delayed COVID-19 recovery.

HMGB1 pathway is enriched in PASC and augmented in obesity‑related PASC
To further molecularly characterize PASC and identify potential biomarkers, we adopted an agnostic approach 
to assess immunological changes by BMI group using a 65plex Luminex assay on baseline plasma samples. 
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Figure 2.  Decreased humoral response in obesity coincides with symptomology of post-acute sequalae of 
SARS-CoV-2. (a) Regression model of percentage of symptomatic participants as a variable of time per BMI 
group. (b) Ex-vivo assessment of Immunoglobin G in plasma plotted as IgG fold-change (mean and SEM) for 
BMI groups, two-way ANOVA with Tukey’s post hoc test. (c) Ex-vivo assay of viral neutralization capacity on 
plasma samples plotted as fold-change (mean and SEM), Sidak’s multiple comparison test. (d) Fold-change 
of B cell activating factor concentration from baseline to final follow-up for each BMI group, Sidak’s multiple 
comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001.
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These data were integrated and analyzed for each BMI group separately using Ingenuity Pathway Analysis (IPA) 
software to predict enriched pathways relevant to the PASC phenotype for each BMI group. The top 10 enriched 
pathways reported by IPA and reflective of BMI categories are displayed in Table 2. Most enriched pathways were 
shared among BMI groups, suggesting individuals experienced similar pathophysiology during SARS-CoV-2 
recovery that was independent of BMI.

We further investigated the extracellular high-mobility group box 1 (HMGB1) pathway due to previous 
reports implicating this protein as a prospective biomarker and therapeutic target of COVID-19  severity12. 
HMGB1 is a central mediator of inflammation, generating the secretion of proinflammatory cytokines from 
dying and/or activated innate immune  cells11,18. HMGB1 regulates both sterile and inflammatory  responses19 
by signaling through the receptor for advanced glycation end products (RAGE, a pattern recognition receptor)20 
and toll-like receptors (TLR2 and TLR4), Using a colorimetric ELISA kit, we profiled HMGB1 protein levels at 
baseline and final follow-up to calculate fold-change in the plasma level of this protein over recovery (Fig. 3). 
HMGB1 levels remained consistent among normal BMI participants, while it significantly increased among 
overweight (p < 0.05) and obese BMI participants (p < 0.05). Upregulated HMGB1 levels among individuals with 
higher BMI suggests that perturbation of HMGB1 signaling is involved in PASC.

Table 2.  Top canonical pathways highlighted by IPA. The table describes the overlap of enriched features 
according to BMI group. A positive (+) indicates the pathway is enriched for all individuals in the 
corresponding BMI group, while negative (-) indicates this pathway was not enriched in individuals of 
respective BMI groups.

IPA canonical pathways Normal BMI Overweight BMI Obese BMI

Pathogen induced cytokine storm signaling + + +

IL-17 signaling + + +

Airway pathology in chronic obstructive pulmonary disease + + +

Macrophage classical activation signaling pathway + + +

Granulocyte adhesion and diapedesis + + +

Role of cytokines in mediating communication between immune cells + + +

Multiple sclerosis signaling pathway + + +

Wound healing signaling pathway + + +

HMGB1 signaling + + +

Agranulocyte adhesion and diapedesis +  -  -

Differential regulation of cytokine production in macrophages and T helper cells by IL-17A and 
IL-17F  - + +

Normal Overweight Obese
0.0

0.5

1.0

1.5

2.0

H
M

G
B

1 
fo

ld
-c

ha
ng

e

Figure 3.  HMGB1 signaling is augmented in individuals with high BMI. HMGB1 fold-change from baseline to 
final follow-up stratified by BMI group, Sidak’s multiple comparisons test. *p < 0.05.
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Obesity‑related PASC is associated with maintenance of hyper‑inflammatory biomarkers
We hypothesized the increase in HMGB1 levels observed in higher BMI groups exacerbated chronic inflamma-
tion present in obesity due to increased adiposity. Adipose tissue, an endocrine organ, releases inflammatory 
cytokines, chemokines, and adipokines such as leptin that was elevated in overweight and obese individuals in 
our  cohort21,22. Chronic inflammation fosters the proliferation of innate immune cell lineages leading to lym-
phocyte depletion and subsequent  lymphopenia23,24. We investigated the presence of hyper-inflammation as an 
additional potential mechanism contributing to reduced humoral response and delayed recovery observed in 
obesity-related PASC. Differential abundance analysis of the 65plex Luminex assay revealed varying baseline 
concentrations of MCP-1, IL-12p70, HGF, Eotaxin-3, MIP3A, FGF2, and IL-6 in participants depending on BMI 
(Fig. 4a). Moreover, Principal Component Analysis (PCA) of this subset of immunological markers revealed 
patterns of BMI-clustering (Fig. 4b). A custom Luminex panel for 9 hyper-inflammatory cytokines was per-
formed on final follow-up samples to assess inflammatory response by BMI group. PCA plots were generated 
using the change in concentration levels from baseline to final follow-up (Fig. 5a). When comparing responses 
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across BMI categories, the tightly clustered normal BMI group demonstrated that individuals experienced a 
uniform response, with reduced concentrations of similar magnitude for all inflammatory biomarkers, a trend 
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not observed among the overweight and obese BMI groups. We further characterized these cytokine dynamics 
from baseline to final follow-up according to BMI categories, which revealed BMI-dependent responses for 
FGF2, MCP-1, IL-6 and IFN-γ (Fig. 5b–e). Individuals of normal BMI exhibited a reduction in biomarker FGF2 
(p < 0.05), MCP-1 (p < 0.01), IL-6 (p < 0.05), and IFN-γ (p < 0.01) concentrations. Overweight individuals had 
reduced IFN-γ (p < 0.05) levels, while obese individuals had persistent levels for all inflammatory biomarkers. 
These data suggest maintenance of hyper-inflammatory markers among individuals with higher BMI, which is 
associated with obesity-related PASC.

Gut microbial dysbiosis correlates with PASC
Overactivated inflammatory pathways linked to gut microbial dysbiosis have previously been implicated in PASC. 
Thus, we examined the degree to which microbial dysbiosis might account for the immune dysregulation we 
observed in our cohort by 16S-based metagenomics profiling. Supplemental Fig. 4 shows the relative abundance 
of phyla within the cohort and the phylum distributions between the BMI groups. ANOVA indicated altered 
composition across the BMI groups (p < 0.05), where the obese group exhibited reduced abundance of unclas-
sified species. Given the lesser extent of unclassified species in obesity, we further examined the total species 
diversity using the Simpson index and evaluated relative diversity according to BMI group. Generally, higher 
diversity is related to robust immunity upon infection and overall better health  outcomes25,26. Consistently, we 
observed that alpha diversity was significantly lower in the obese BMI group when compared to that of normal 
BMI (p < 0.01) (Fig. 6a). To explore the association among microbial diversity and obesity-PASC, individuals were 
regrouped based on the lower and upper 50% alpha diversity cut-offs. The average frequency of symptoms was 
recalculated for each diversity group and plotted longitudinally. The higher diversity group primarily consisted 
of normal and overweight individuals, accounting for 83% of this group. Conversely, the lower diversity group 
was predominantly composed of obese individuals, making up 75% of its composition. Initially, individuals in 
the upper diversity group displayed less frequent PASC symptomology (Fig. 6b), suggesting that higher BMI 
associates with reduced microbial diversity and is linked to the PASC phenotype. We conducted longitudinal 
regression analyses employing pairwise comparisons within both diversity groups to comprehensively examine 
the relationship between symptom recovery and BMI. Within the lower diversity group, we observed distinct 
coefficient estimates associated with different BMI categories. Specifically, for individuals with normal BMI, the 
coefficient estimate was − 0.71, for overweight BMI, this coefficient was − 6.43, and for obese BMI this coef-
ficient was − 1.65. Notably, statistical significance was observed in this group for the relationships involving 
overweight BMI (p < 0.05) and obese BMI (p < 0.01). Conversely, within the upper diversity group, our analysis 
revealed distinct coefficient estimates as well. For those with normal BMI, the coefficient estimate was 0.13, for 
overweight BMI the coefficient was − 1.11, and for obese BMI the coefficient was 0.54. However, none of these 
relationships were statistically significant.

To relate microbial diversity to immunity in obesity-related PASC, we assessed normalized IgG levels to plot 
the relative fold-change for each diversity group by comparing the average change in IgG at each timepoint. We 
observed that lower microbial diversity corresponded with a decline in IgG maintenance over time. In the low 
diversity group, the loss of IgG maintenance ultimately resulted in significantly reduced IgG at day 14 (p < 0.05), 
day 21 (p < 0.05), day 28 (p < 0.05), and day 35 (p < 0.05) when compared to IgG levels among those individuals 
in the upper microbial diversity group (Fig. 6c). We also employed longitudinal regression analyses that involved 
pairwise comparisons within both diversity groups to gauge the relationship between microbial diversity and IgG 
maintenance. The lower diversity group exhibited a slight negative coefficient estimate of -0.07 while the upper 
diversity group had a positive coefficient of 0.11. However, neither of these findings reached statistical significance 
(Supplemental Fig. 5). Given these opposing trends, however, we calculated the fold-change in neutralization 
capacity from baseline to follow-up according to diversity group (Fig. 6d). Interestingly, we observed a steeper 
decline in the viral neutralization capacity among individuals in the low diversity group when compared to 
individuals with higher microbial diversity. Combined with the findings above, these results imply that elevated 
BMI can modulate the composition of the gut microbiome by influencing microbial diversity. These changes 
coupled with the observed attenuated antibody production and viral neutralization may altogether contribute 
to the slower recovery experienced more frequently, but not exclusively, by obese individuals.

Pathway analysis shows baseline HMGB1 levels predict viral neutralization capacity
Although previous studies describe independent links between obesity, inflammation, the gut microbiome, 
and HMGB1, none show that these systems together influence PASC. In this study, we attempted to empirically 
identify a biological pathway to explain the obesity-associated attenuation of viral neutralization capacity we 
observed using a stepwise data-derived pathway analysis approach depicted by the workflow in Fig. 7. First, 
each variable was independently correlated to BMI, revealing associations between baseline viral neutraliza-
tion capacity (p < 0.05), HMGB1 at final follow-up (p < 0.05), and various microbial abundances at the genus 
level (p < 0.05, Supplemental Table 3). The strongest association with BMI, microbial abundance, was therefore 
chosen as the first step in the pathway. While BMI-related genera did not directly influence neutralization, the 
Bifidobacteriaceae genus most strongly associated with baseline HMGB1 levels and was therefore chosen as the 
next step of the pathway. Baseline HMGB1 was used to predict final HMGB1 and viral neutralization capacity 
at both time points, using a multivariate statistical approach known as path analysis.

We further applied step-wise pathway analysis, conducted in the order identified by our data above, and 
discovered that BMI indirectly affects neutralization capacity (Fig. 8). Specifically, a one-unit increase in BMI 
associated with a 0.002% reduction in the relative abundance of the Bifidobacterium genus (p = 0.005), while a 
1% reduction in Bifidobacteriaceae was associated with a 3% (p = 0.003) increase in HMGB1 concentration at 
baseline. Similarly, a one unit increase in baseline HMGB1 significantly associated with (1) 0.48% diminished 
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baseline viral neutralization capacity (p < 0.001), (2) maintainance of elevated HMGB1 levels at the final follow-
up by 0.38% (p < 0.001), and (3) a predicted loss of 0.44% of viral neutralization capacity at the final follow-up 
(p = 0.005). Following the delineation of our pathway, we conducted mediation analysis to investigate whether 
our step-wise variable relationships were mediated by a third variable. Three sets of simultaneous regression 
analyses, accounting for residual effects, were conducted to determine if incorporation of a third variable signifi-
cantly influenced the path (Supplemental Table 4). No mediation effects were observed in the pathway relating 
BMI to viral neutralization capacity.

Discussion
The HMGB1 pathway influences the microbiome‑immune axis, culminating in PASC
Obesity is known to increase PASC risk in COVID-19  patients10. To resolve the molecular basis of PASC in the 
context of obesity in our cohort, we first confirmed that delayed viral recovery (demonstrated by post-COVID-19 
symptom frequency) associated with higher BMI. We then identified a molecular phenotype comprised of 
persistent systemic inflammation, loss of maintenance of humoral responses, and reduced diversity of the gut 
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Figure 6.  Reduced alpha diversity in obesity associates with symptomology of post-acute sequalae of SARS-
CoV-2. (a) Simpson indices plotted according to BMI group, Kruskal–Wallis multiple comparisons test. (b) 
Regression model of percentage of symptomatic participants as a variable of time grouped into high and low 
diversity groups using upper and lower 50% cut-off. (c) Ex-vivo assessment of IgG in plasma plotted as fold-
change (mean and SEM) for low and high diversity, one-way ANOVA with Tukey’s post hoc test. (d) Ex-vivo 
assay of viral neutralization capacity on plasma samples grouped by low and high diversity groups, plotted 
as fold-change from baseline to final follow-up (mean with SEM), Sidak’s multiple comparison test. *p < 0.05, 
**p < 0.01.
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microbiome. Step-wise pathway analysis showed that initial HMGB1 levels predicted neutralization capacity at 
baseline and after 6 weeks during convalescence.

Our molecular analysis revealed numerous biological pathways linked to PASC, revealing obesity-related 
reduced gut microbial diversity correlated with heightened inflammation (Fig. 9). Compared to those of nor-
mal BMI, the lower degree of α-diversity in the gut microbiome of overweight and obese individuals was asso-
ciated with FGF2 expression and upregulated IL-17 (Fig. 5b and Table 2, respectively), known to promote 
repair of damaged epithelial  cells27. Under this condition, persistent inflammatory signaling of MCP-1, IFN-γ, 
and IL-6 (derived reduced alpha diversity) further primes monocytes for pro-inflammatory activity. This initi-
ates a proinflammatory feedback loop, upregulating HMGB1 excretion to further activate local and peripheral 
monocytes and macrophages. Prolonged inflammation inhibits BAFF expression (by inducing B cell apoptosis), 
thereby reducing antibody production and viral neutralization capacity upon SARS-CoV-2 viral exposure, and 
ultimately leads to prolonging acute COVID-19 symptoms (PASC). This PASC-promoting molecular cascade 
is particularly susceptible to obesity-mediated dysregulation. Our study highlights the confluence of obesity-
associated microbiome dysfunction and immune responses in PASC, in which preexisting dysfunction contrib-
utes to a more dramatic inflammatory response to viral infection (thus reducing the effectiveness of the immune 
system). Our model (Fig. 9) suggests that this effect is exacerbated by upregulated HMGB1 due to various possible 
mechanisms, some of which we identified through pathway analysis.

In our cohort, obese individuals showed reduced microbial alpha diversity which has been linked to COVID-
19 severity and PASC, irrespective of  BMI33,35,36. While reduced microbial alpha diversity has been widely 
observed in  obesity28, we also observed such dysbiosis, although less frequently, in non-obese individuals. This 
may be exacerbated by infection with SARS-CoV-2. In vivo mouse studies have shown that SARS-CoV-2 expo-
sure alters gut microbial composition to reduce diversity, in unison with morphological changes that promote 
mucus and reduce the production of antimicrobial  compounds29. In particular Bifidobacterium abundance has 
been extensively linked to human health due to its production of health-promoting short-chain fatty acids and 
protection against  infection30, and we identified that reduced abundance of this genus most strongly influenced 
the obesity-related PASC phenotype, leading to reduced viral neutralization.

This study is not the first to link Bifidobacterium with SARS-CoV-2 infection. For example, loss of Bifidobac-
terium abundance has been linked to both COVID-19  severity31 and PASC existing 6-months post-infection4. 
However, we are the first to identify HMGB1 as a mediator of this association, as characterized in other contexts, 
e.g., where inoculation with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) decreased HMGB1 
levels and partly ameliorated inflammatory responses following infection with the Salmonella Typhimurium 
strain  LT232. While our step-wise pathway analysis suggests that Bifidobacterium modulates HMGB1 reciprocally, 
HMGB1 may also indirectly modulate Bifidobacterium abundance in PASC  pathology33.

In our study, COVID-19 recovering individuals with different degrees of microbial dysbiosis exhibited persis-
tent inflammatory signaling of FGF2, MCP-1, IL-6, and IFN-γ. Microbial dysbiosis is accompanied by elevated 
lipopolysaccharides that promote inflammation, in part, by directly activating HMGB1 in resident immune and 
epithelial  cells34. We observed this phenomenon in the marginal expansion of peripheral blood monocytes in 
patients with high BMI, a characteristic of  obesity35. Moreover, these monocytes are known to be chronically 
activated. In addition to proinflammatory signaling, inflammatory monocytes can serve as reservoirs for viral 
replication and store increased viral  titers36. For example, Patterson et al. recently discovered that individuals 

Figure 7.  Workflow for identifying step-wise pathway analysis.
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with severe COVID-19 and PASC, 15 months post-infection, had persistent SARS-CoV-2 S1 protein in non-
classical  monocytes37.

Figure 8.  Data derived step-wise pathway analysis. Increased BMI influences post-acute sequelae of SARS-
CoV-2 by reducing Bifidobacteriacea abundance. Modulation of the gut microbiome propagates overexpression 
of HMGB1 at baseline. This results in: (1) diminished viral neutralization capacity at baseline, (2) diminished 
neutralization capacity at final follow-up, and (3) elevated HMGB1 at final follow-up.
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Under obesogenic conditions, elevated HMGB1 has been reported in adipose tissue acting as an alarm that 
leads to further HMGB1  induction12,18,38. HMGB1 signals through RAGE receptors, shown to be deleterious 
to the renin-angiotensin system by sustaining inflammation and oxidative stress involved in COVID-19 infec-
tion and multiorgan  injury39 and possibly contributes to multi-organ PASC involvement. Moreover, ACE2, the 
SARS-CoV-2 entry receptor, is upregulated by HMGB1, creating a docking station and cache for the SARS-CoV-2 
virus. When increased adiposity, HMGB1 overexpression, and SARS-CoV-2 reservoirs coexist, inflammation is 
persistently amplified. When accompanied by systemic inflammation, additional signaling from SARS-CoV-2 
overburdens these processes and delays viral recovery. In that regard, Faizo et al. observed significantly reduced 
rates and titers of vaccine-induced spike-neutralizing antibodies in obese  individuals40, while other recent studies 
showed that loss of neutralizing antibodies in obese COVID-19 patients with circulating autoimmune antibodies 

Figure 9.  Proposed pathway for obesity-driven post-acute sequalae of SARS-CoV-2. Obese individuals 
experience microbiome dysbiosis, typically accompanied by intestinal inflammation. This triggers FGF2 
production and IL-17, both known cooperate to promote repair of damaged epithelial cells in the intestine. 
Local intestinal inflammation primes individuals for pro-inflammatory responses, leading to a proinflammatory 
feedback loop from activated monocytes releasing HMGB1. This inflammatory signaling impedes BAFF 
maintenance and B cell propagation. In this reduced humoral state, SARS-CoV-2 viral infection evades the 
immune system experienced as reduced neutralization capacity. Compounded by a dysregulated microbiome, 
sustained inflammation and reduced humoral activity leads to prolonged symptoms and longer recovery.
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positively correlated with CRP levels and COVID-19  hospitalizations41,42. Although we did not expand upon the 
accumulation of autoantibodies in our cohort, these studies along with our data further indicate that deficiencies 
in adaptive immunity are inflammation-mediated and impacted by adiposity.

Altogether, our findings show that increased HMGB1 pathway signaling in obesity impairs adaptive immune 
response to SARS-CoV-2, contributing to the development of PASC with persistent chronic effects. Our findings 
suggest HMGB1 as a potential predictor of PASC risk and candidate for disease mitigation. However, our study 
was inherently limited by the small sample size, primarily due to attrition during the study period. This limitation 
constrained our ability to fully control for potential cofounders, including age and sex, as effectively as larger 
studies might have allowed. While our study cohort was powered to examine molecular mechanisms of PASC 
within the context of BMI stratification, it may not represent the full spectrum of PASC. Despite this limitation, 
our findings provide a valuable perspective on potential underlying mechanisms and provides a foundation for 
quantitative diagnosis. Future research with larger sample sizes and enhanced control for possible confounders 
is essential to validate and expand upon our findings.

Materials and methods
Human study participants
The protocol for this study was approved by the University of Hawaiʻi Office of Research Compliance 2019-00376 
and performed in accordance to said guidelines. Informed consent was obtained from all participants and/or 
their legal guardians. Recruitment was advertised through flyers posted at the University of Hawaiʻi at Mānoa 
and media outlets. Data were collected from Oʻahu residents who tested positive for COVID-19 at any time 
during the recruitment period, but not longer than three months prior to the first data collection. Participants 
were eligible for the study if they provided proof of a previous positive nasopharyngeal RT-PCR test but were 
currently non-infectious as deemed by a negative RT-PCR result. Initially, 71 participants were enrolled between 
June 1, 2020 and September 25, 2020. Following enrollment, confirmation of a previous SARS-CoV-2 infection 
was determined by specific IgG/IgM rapid antibody testing, at the first visit, by a finger blood prick. A positive 
result for SARS-CoV-2 IgG or IgM antibodies was necessary to advance the into the study; five participants 
were excluded due to negative antibodies. During the first visit, participants completed a health questionnaire, 
provided demographic data, and received a stool collection kit. To ensure privacy, all participants, and their 
respective survey responses were anonymized using a unique numerical ID. Participants were asked to return 
weekly for five additional follow-up visits. During the second follow-up, subjects submitted a stool sample and 
recorded their height and weight, for BMI calculation by dividing weight in kilograms by the square of height in 
meters. At each of the five follow-up visits, participants provided a blood sample and reported symptoms such as 
fever, cough, difficulty breathing, fatigue, muscle or body aches, headache, new loss of taste or smell, sore throat, 
congestion or runny nose, nausea, and diarrhea. Symptom percentages for each follow-up visit were calculated by 
summing the number of participants experiencing any number of symptoms, in that week, divided by the total 
number of participants having no symptoms during that week. Symptoms were deemed resolved if no longer 
reported during any of the follow-up visits. Individuals who missed more than two appointments were excluded 
from the study. A total of 48 participants were included in the final analysis. All participants received monetary 
incentives after each weekly appointment.

IgG/IgM antibody detection test
Rapid patient screening for SARS-CoV-2 specific antibody tests was performed using RayBio® Coronavirus 
(SARS-CoV-2) IgM/IgG test kits (Colloidal Gold Method) (RayBiotech, Peachtree Corners, GA, USA, cat #CG-
CoV-IgM, CG-CoV-IgG) to confirm COVID-19 detection in whole blood from a finger prick.

Blood processing
Blood was processed within 24 h of collection to separate plasma and PBMCs using PBMC isolation tubes 
(STEMCELL Technologies, Vancouver, BC, Canada). Plasma samples were kept at – 80 °C, and PBMCs at 
− 150 °C, until ready to assay.

Stool sample DNA/RNA extraction
DNA and RNA were extracted from stool samples using AllPrep® PowerFecal® DNA/RNA Kits (Qiagen. Inc., 
Valencia, CA, USA). From each sample, 1–2 μl of purified DNA and RNA were analyzed using a NanoDrop™ 
Microvolume Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) to assess sample quality, in 
addition to a Qubit™ Fluorometer (Thermo Fisher).

16S rRNA sequencing and analysis
An Ion Torrent 16S™ Metagenomics Kit (Thermo Fisher) was used to amplify 16S rRNA genes of all stool samples. 
Following the amplification conditions indicated in the manufacturer’s protocol, PCR was performed in two 
pools, each containing specific primer sets. After PCR amplification, equal volumes (20 µL) of PCR products from 
pools 1 and 2 of each sample were combined into a single PCR tube. Then, 40 µL of the combined PCR product 
was purified using the Agencourt Ampure XP kit, according to the manufacturer’s instructions (Beckman Coulter, 
Brea, CA, USA). DNA was quantified using the Qubit Fluorometer with the Qubit dsDNA BR Assay Kit (Thermo 
Fisher Scientific, Warrington, England), and the DNA library was prepared using the Ion Plus Fragment Library 
Kit (Thermo Fisher Scientific, Austin, TX, USA) and Ion Xpress Barcodes Adapters 1–80 Kit (Life Technologies, 
Carlsbad, CA, USA) according to the manufacturer’s protocol. Each library was diluted to a concentration of 
80 pM and equal volumes of each library were pooled. The Ion 510™ & Ion 520™ & Ion 530™ Kit (Thermo Fisher 
Scientific, Austin, TX, USA) was used to clonally amplify the pooled library of nanosized ionosphere particles by 
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emulsion PCR. Bead enrichment and chip loading were conducted using an Ion Chef Instrument. The parallel 
sequencing reaction was performed using the Ion S5 Next-Generation Sequencing system with Ion 530 chips.

After obtaining sequencing reads (Supplemental Table 2), we performed rarefaction at n = 10,000, on micro-
bial absolute abundance, to eliminate sample bias from uneven counts, further excluding six samples, to leave 
42 for further analysis. The results were analyzed using the Ion Reporter Software on the Ion 16S Metagenom-
ics Kit analysis module. In the scope of analysis, the reads were mapped to two reference 16S rRNA databases, 
Greengenes v13.5 and MicroSEQ ID v3.0, following the manufacturer’s instructions. Chimeric sequences were 
automatically identified and removed using Ion Reporter  software43,44. To cluster the sequences, operational 
taxonomic unit (OTU) analysis was performed using Ion Reporter Software, which runs Quantitative Insights 
into Microbial Ecology (QIIME). Alpha and beta diversity graphics created by QIIME software were exported 
from Ion Reporter Software. For alpha diversity analysis, the observed species and Shannon, Fisher, and Simpson 
indices were generated to analyze species diversity within samples.

Antibody detection ELISA
The SeroFlash™ SARS-CoV-2 IgG/IgM ELISA Fast Kit (Epigentek Inc., Farmingdale, NY, USA) was used to 
quantify SARS-CoV-2 spike protein IgM and IgG antibodies in plasma samples. For further confirmation and 
characterization, the Human Coronavirus Ig Total 11-Plex ProcartaPlex™ Panel (Thermo Fisher) was used for 
screening of four anti-SARS-CoV-2 antibodies (spike trimer, S1 subunit, receptor binding domain (RBD), and 
nucleocapsid), and six anti-coronavirus strains (SARS-CoV-1, MERS, CoV-NL63, CoV-KHU1, CoV-229E, and 
CoV-OC43). Fluorescent signals were analyzed using a Luminex 200 instrument (R&D Systems, Inc., Minne-
apolis, MN, USA), and data processed using Bio-Plex Manager™ software (Bio-Rad Laboratories, Inc., Hercules, 
CA, USA).

Inflammation factors concentration measurements
Inflammatory and metabolic biomarkers
Exploration of immunological biomarkers at the baseline timepoint was performed for plasma cytokine con-
centrations of G-CSF (CSF-3), GM-CSF, IFN alpha, IFN gamma, IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, 
IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-16, IL-17A (CTLA-8), IL-18, IL-20, IL-21, 
IL-22, IL-23, IL-27, IL-31, LIF, M-CSF, MIF, TNF alpha, TNF beta, TSLP; chemokines BLC (CXCL13), ENA-78 
(CXCL5), Eotaxin (CCL11), Eotaxin-2 (CCL24), Eotaxin-3 (CCL26), Fractalkine (CX3CL1), Gro-alpha (CXCL1), 
IP-10 (CXCL10), I-TAC (CXCL11), MCP-1 (CCL2), MCP-2 (CCL8), MCP-3 (CCL7), MDC (CCL22), MIG 
(CXCL9), MIP-1 alpha (CCL3), MIP-1 beta (CCL4), MIP-3 alpha (CCL20), SDF-1 alpha (CXCL12; growth fac-
tors FGF-2, HGF, MMP-1, NGF beta, SCF, VEGF-A and soluble receptors APRIL, BAFF, CD30, CD40L (CD154), 
IL-2R (CD25), TNF-RII, TRAIL (CD253) and TWEAK, using a human Immune Monitoring 65-Plex Human 
Procarta™ Plex Panel (ThermoFisher part no. EPX650-10065-901), according to the manufacturer’s instructions. 
A smaller custom panel was used to investigate immunological markers at time of final follow-up. This panel 
included IFN gamma, IL-1 beta, IL-6, IL-8, IL-10, MCP-1, TNF alpha, VEGF-A, and Insulin (ThermoFisher part 
no. PPX-09, Assay ID: MXEPTU6) and was performed according to the manufacturer’s instructions. For both 
assays, samples were centrifuged at 13,000×g for 2 min to pellet the aggregates, with a standard curve generated 
using the manufacturer’s antigen standards. Bead counts below 35 were insufficient for the analysis and were 
excluded from the analysis. Fluorescent signals were analyzed using a Luminex 200 instrument (R&D Systems, 
Inc., Minneapolis, MN, USA). The Bio-Plex Manager™ software (Bio-Rad Laboratories, Inc., Hercules, CA, USA) 
was used for data processing.

Other biomarkers
To evaluate the general indications of inflammation, CRP plasma levels were measured using a Human CRP 
Instant ELISA Kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s instruc-
tions. The samples were diluted 1:500 with assay buffer before use. Samples that were above the standard curve 
were further diluted and assayed a second time. BAFF measurements were performed using the BAFF Human 
Instant™ ELISA Kit (catalog no. BMS2007INST Thermo Fisher), according to the manufacturer’s instructions. 
HMGB1 plasma levels were assessed using a colorimetric Elisa Kit (Part No. NBP2-62766, Novus Biologicals, 
Littleton, CO, USA), according to the manufacturer’s instructions, without sample dilution. All ELISA assays were 
performed using a SpectraMax ABS/ABS Plus Microplate Reader (Molecular Devices, San Jose, CA, USA). Leptin 
plasma concentrations were measured using a Leptin Human Instant™ ELISA kit (Thermo Fisher), according to 
the manufacturer’s instructions. Samples were diluted 1:25 with assay buffer before use.

PBMC phenotyping
Viably cryopreserved PBMCs of approximately 1.0 ×  107 from individuals, at weeks 2 and 6 of our protocol, 
were first thawed in AIM-V serum-free media (Thermo Fisher) supplemented with 1:50 DNase (Sigma-Aldrich, 
St. Louis, MO, USA), washed, and resuspended in wash buffer (PBS, 3% BSA, and 1 mM EDTA). Aliquots of 
1.25 ×  105 PBMCs were taken from each sample for flow cytometry-based cellular phenotyping assays, to deter-
mine cell type compositions. Cells were counted using a Countess Automated Cell Counter (Life Technologies, 
Carlsbad, CA, USA). Aliquots were stained with yellow amine fluorescent reactive dye (YARD; Thermo Fisher 
Scientific) and then with anti-CD16 Brilliant Violet 421 (Clone 3G8), anti-CD3 V500 (Clone UCHT1), anti-
CD14 Qdot®605 (Clone TüK4), anti-CD56 Pe-Cy7 (Clone B159), anti-CD19 PE-Cy7 (Clone SJ25C1), anti-CD20 
Pe-Cy7 (Clone 2H7), and anti-HLA-DR APC-H7 (Clone G46-6) to identify leukocyte subpopulation frequencies. 
Anti-CD16 was purchased from BioLegend, Inc. (San Diego, CA, USA). Anti-CD3, anti-CD56, anti-CD20, anti-
CD19, and anti-HLA-DR antibodies were obtained from BD Biosciences (San Jose, CA). Anti-mouse Ig/Negative 
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Control (FBS) Compensation Particle Set (BD Biosciences) was used for compensation analysis of fluorescent 
signals emitted by each fluorochrome from the multicolored cellular phenotyping panel employed. Anti-mouse 
Ig compensation beads were stained with fluorochrome-conjugated antibodies in separate wells. ArC™ Amine 
Reactive Compensation Bead Kit (ThermoFisher) reactive bead/negative beads were used to compensate for 
YARD (Live/Dead stain) fluorescent signals. Stained cells from PBMCs and compensation particles were analyzed 
using a 4-laser BD LSRFortessa flow cytometer (BD Biosciences). Data were analyzed using FlowJo software 
(Tree Star, Inc., Ashland, OR, USA). The frequency (%) of each cell type was determined using the event count 
(specific events/total events) with debris exclusion.

Statistical analysis
Comparative analyses of clinical, immunological, cell flow cytometry, and qPCR data were performed using 
ANOVA Mixed-effects analysis with Sidak’s multiple comparisons test correction. Non-parametric tests for 
clinical, immunological, and cell flow cytometry data were used primarily because the majority of data were 
non-normally distributed, as measured using the D’Agostino and Pearson tests for normality. Graphing and sta-
tistical analyses were performed using Prism 9, version 9.0c (GraphPad Software, La Jolla, CA, USA). Statistical 
significance was set at p < 0.05.

Longitudinal data was analyzed by performing BMI or diversity grouped pairwise comparisons without con-
trolling for any covariates. This approach adopted a participant-specific control strategy, utilizing each unique 
participant as their own control. By doing so, we aimed to minimize potential confounding effects stemming 
from unaccounted variables. The use of participant-specific controls helped to account for individual-level vari-
ability and fluctuations over time.

To predict associative outcomes, several stepwise multiple logistic regression models were tested for clinical 
features, immunological features, and qPCR results that were identified by Wilcoxon Rank-Sum tests followed 
by multiple testing corrections (FDR-adjusted p < 0.01). In the order identified by stepwise analysis, we applied 
a multivariate statistical approach known as path analysis to carry out the predictive analysis. Specifically, we 
utilized the lavaan R package for latent variable analysis, accommodating for independent variables in one equa-
tion that may be potential dependent variables in another.

The mediation analysis was conducted using the Lavaan R package, commonly used for structural equation 
modeling and  analysis45. Our analysis involved the estimation of three simultaneous sets of regression equations 
that model the direct effect, mediator effect, indirect effect, and total effect by accounting for residual errors.

A t-test was performed to assess the similarity between the overall (n = 48) and rarefied (n = 42) gut micro-
biome datasets. Correlation analysis was used to assess the association between the relative abundance of the 
gut microbiome and BMI. Moreover, path analysis was used to shape the research question of how differences 
in BMI impact PASC.

Ingenuity pathway analysis (IPA)
The differential expression of cytokines, chemokines, and growth factors was used as an input for the Ingenuity 
Pathway Analysis (IPA) (Qiagen, United States). The core analysis module in IPA was used to deduce differentially 
regulated canonical pathways, upstream regulators, diseases and biological functions, and novel gene networks 
based on Fisher’s exact test (p-value cutoff at 0.05).

SARS‐CoV‐2 surrogate virus neutralization test (sVNT)
The surrogate virus neutralization test (GenScript, NJ, USA) is a blocking ELISA that mimics the virus neutraliza-
tion process, detecting circulating neutralizing SARS‐CoV‐2 antibodies that block the interaction between the 
RBD and ACE2 on the cell surface receptor of the host. The test was isotype- and species-independent. Plasma 
samples were diluted 10 × with sample dilution buffer and assayed according to the GenScript protocol. The 
absorbance of the sample was inversely dependent on the titer of the anti-SARS-CoV-2 neutralizing antibodies.
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