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On the complexity of quantum link 
prediction in complex networks
João P. Moutinho 1,2*, Duarte Magano 1,2 & Bruno Coutinho 2

Link prediction methods use patterns in known network data to infer which connections may be 
missing. Previous work has shown that continuous-time quantum walks can be used to represent 
path-based link prediction, which we further study here to develop a more optimized quantum 
algorithm. Using a sampling framework for link prediction, we analyze the query access to the 
input network required to produce a certain number of prediction samples. Considering both well-
known classical path-based algorithms using powers of the adjacency matrix as well as our proposed 
quantum algorithm for path-based link prediction, we argue that there is a polynomial quantum 
advantage on the dependence on N, the number of nodes in the network. We further argue that the 
complexity of our algorithm, although sub-linear in N, is limited by the complexity of performing a 
quantum simulation of the network’s adjacency matrix, which may prove to be an important problem 
in the development of quantum algorithms for network science in general.

Complex networks provide a common framework to study different complex systems1. Representing agents as 
nodes and interactions as links is a general enough description to fit many real systems, such as protein–protein 
interaction networks, social networks, transportation networks, electrical grids, and many others. Over the years, 
network science has lead to the realisation that these different systems share many common structural properties, 
and it is often possible to gain system-specific insights through general network-based problems and tools2–6. 
In the study of human disease, for example, the sub-field of Network Medicine has emerged from the success 
of network-based tools in problems such as the prediction of drug-combinations and cancer-driver genes7–9.

One network problem with multidisciplinary applications is that of link prediction, which aims to infer new 
or unobserved links from a network based on its current or known topology10–13. In biological networks, link 
prediction has important applications in the identification of unknown protein–protein interactions14, or aiding 
in the mapping of large scale neural networks15,16, which better our understanding of human biology. In online 
social and commerce networks it can be used to suggest new friendships between users10,12 or make product 
recommendations, increasing customer retention17–19.

Link prediction is often a computationally intensive task. To make informed predictions, methods evaluate 
a certain score function over the whole set of potentially missing links to identify the few that stand out as the 
best predictions13. Recently, it has been suggested that the usage of quantum computers may help speed-up link 
prediction by sampling new links from a quantum walk evolution encoding the score values20. This result was 
one of the first examples of a quantum algorithm developed based on network science insights, with applications 
ranging from social network analysis to network medicine problems. The importance of quantum computing 
applied to network medicine and link prediction was further discussed in21 and22, respectively. Previous works 
in quantum walk algorithms have also tackled important network problems such as graph transversal23,24 and 
marked node search25–27.

In this work we further study the problem of link prediction and the path-based approach using Continuous-
Time Quantum Walks (CTQW). First, we describe a sampling-based framework for link prediction, allowing 
us to make more precise resource comparisons between classical and quantum sampling-based algorithms. 
Previous results in classical algorithms have suggested that sampling-based algorithms may be advantageous for 
network-problems, including link prediction28–30, which we can directly compare to. For this purpose, we use 
the standard benchmark of query complexity under a common input model.

Second, we provide an improved version of the quantum algorithm for link prediction initially put forward 
in Ref.20 which allows links to be sampled globally from the network. Our proposed quantum algorithm produces 
link prediction samples with comparable precision to the studied classical algorithms by querying the input 
Õ(kmax) times per sample where kmax is the largest node degree in the network. In contrast, the classical algo-
rithms studied typically require the full input to be queried for any number of samples, which naturally scales 
as Õ(N) , the number of nodes in the network. Using a scale-free model for complex networks1 the growth of the 
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largest degree in the network can be described as kmax ∼ O
(

N
1

1−γ

)

 , with γ > 2 . Thus, we argue that our quantum 
algorithm for link prediction achieves a polynomial speedup over the classical case in the input query complexity 
for a fixed number of samples.

Furthermore, we argue that the quantum complexity of our link prediction algorithm is limited by the com-
plexity of performing a quantum simulation of the network’s adjacency matrix. Finding an efficient quantum 
simulation algorithm for complex networks will have strong implications in the development of efficient quantum 
algorithms for network science problems in general. A first step towards this goal was recently demonstrated in 
Ref.31, where an efficient quantum simulation algorithm was developed for sparse networks with a few densely 
connected nodes.

We organize our work as follows: in “Preliminaries” section we provide all definitions and necessary back-
ground for our work. In “Classical sampling algorithms” section we discuss relevant classical sampling-based 
link prediction algorithms and study their complexity. In “Quantum link prediction” section we provide our 
improved quantum algorithm for link prediction and study its complexity. In “Discussion and conclusions” 
section we further discuss our results, conclusions, and future work.

Preliminaries
Notation
We consider data organized in a simple, undirected and unweighted graph G(V , E) , where V is the set of nodes 
with size N = |V | and E is the set of links, with size |E|. For each node v ∈ V  we denote Ŵ(v) as the set of nodes 
neighbouring v, and Ŵl(v) as the l-th neighbour of v. The degree of v is defined as kv = |Ŵ(v)| , and the average 
degree over the network is defined as kav = 2|E|/N . The adjacency matrix A ∈ R

N×N is such that Aij = Aji = 1 
if (i, j) ∈ E , and 0 otherwise.

We use the standard “big O” notation for asymptotic upper bounds. Given two functions f and g from R 
to R we say that f = O(g) if there exists a constant C such that for any x greater than a threshold x0 we have 
f (x) < Cg(x) . We further use the Õ notation when omitting poly-logarithmic dependencies.

Link prediction
Link prediction is the general problem of inferring new or unobserved links from data organized in a networked 
structure. That is, given an adjacency matrix A of a complex network, we wish to select which unconnected pairs 
of nodes (i, j), i.e., pairs where Aij = 0 and i  = j , are the most likely to form a new link. The underlying assump-
tion here is that there is enough information about the organizing principles of G , or that this information can 
be correctly identified in its structural patterns, to make this inference with good precision. By quantifying this 
structural information, link prediction methods assign a prediction score pij to every unconnected pair such 
that the probability of a prediction being correct is proportional to pij . However, most of the information about 
the score distribution is ultimately discarded, as the goal is to identify which links have the highest score. As 
such, it may be useful to design algorithms that can efficiently sample links according to their score distribution 
without outputting the full distribution.

We note also that we are considering no extra structure on the input besides the information contained in 
the adjacency matrix, i.e., which links are connected, Aij = 1 , or which are not connected, Aij = 0 . Other defi-
nitions of link prediction may consider extra structure on the input by separating links between measured or 
unmeasured. A measured link is a link which is known to be connected or disconnected, and an unmeasured link 
is unknown. In that scenario, the objective of link prediction is to evaluate the set of unmeasured links to infer 
which should be 1 or 0. In this work we consider the first scenario, where all unconnected links are assumed to be 
potentially missing, as that is the information available in most datasets. Nevertheless, our work can be directly 
extended to the second scenario by restricting the class of links which constitute a useful prediction from the 
set of unconnected links to the set of unmeasured links.

Link prediction is a widely studied problem in network science, and several approaches exist including 
machine learning techniques32,33, stochastic block models34 or global perturbation methods35. A recent and com-
prehensive review on the topic can be found in Ref.13. In this work we focus on a popular class of link prediction 
methods where the predictions are made based on specific path structures between nodes10,13,14,16,36–40, which 
have been shown to be competitive with other approaches in prediction precision13,36,39,41.

Path‑based link prediction
The overall mathematical structure of different path-based link prediction methods varies widely, but a common 
feature is the quantification of each prediction score pij through the number of paths of a specific length between 
i and j. For a given adjacency matrix A, each entry (i, j) of Ak represents the number of paths of length k between 
i and j. Initial results in path-based link prediction suggested that methods based on paths of length two are a 
simple way to quantify similarity between nodes10,37,

where P is the matrix of prediction scores pij . These methods are often associated with social networks, but have 
been applied to all types of networks with varying results. More recently it was shown that link prediction meth-
ods scoring links based on direct similarity do not perform well in protein–protein interaction networks due to 
the fact that proteins often connect based on neighbour similarity principles14, i.e., proteins connect to proteins 
that have neighbours that are similar to themselves. The authors in14 suggested that any link prediction method 
based on direct similarity can be extended to a neighbour similarity method by taking Pneighbour = A.Pdirect . For 
the simple case of scoring links based on length two paths this implies that

(1)P ∼ A2,
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With this simple extension the authors proposed a link prediction method that was substantially better in the 
prediction of protein–protein interactions.

Other works have described direct similarity and neighbour similarity methods based on paths of even length 
and odd length. In40 a linear optimization method was proposed to predict links based on a linear combination of 
odd powers of A. The quantum algorithm initially proposed in20 uses the real and imaginary part of e−iAt to rep-
resent even and odd based predictions. In these works, and also in an extensive review of path-based methods36, 
path-based link prediction has been tested in a wide range of complex networks and several examples have been 
identified where either direct similarity or neighbour similarity methods tend to perform better.

Our focus in this work will be to further explore the quantum walk representation of direct and neighbour 
similarity for link prediction, as initially proposed in Ref.20, providing a more efficient algorithm to implement 
it, and compare it to the simplest classical representations given by A2 and A3 in terms of query complexity. To 
do so, we will use a link prediction sampling framework, described next.

Sampling path‑based predictions
As discussed, the link prediction problem assumes that there is some information contained in the topological 
structure of the graph that can be used to infer which links are missing from the network, e.g. the number of 
paths of different length between nodes, computed through powers of A. Let us consider a general prediction 
method with an associated prediction matrix P obtained as a function of the adjacency matrix, P = f (A) , which 
quantifies structural information that is useful for link prediction. Note that P does not represent the ground-
truth of the missing links, it represents only the scores pij the method uses to infer which links are more likely 
to appear. Typically, P is computed explicitly, and the scores are used to rank the predictions from best to worst. 
Instead, we wish to study algorithms that take as input the adjacency matrix A of a given network and output 
samples of links (i, j) following the distribution of scores pij for a given f(A). We write the probability of sampling 
a link (i, j) following f(A) as

with ‖.‖q being the Lp,q matrix norm for p = q , ensuring 
∑

ij P[(i, j)] = 1 . As we will see, the normalization is 
method dependent. The classical algorithms we consider sample from f (A) = A2 and f (A) = A3 normalized 
by the L1,1 norm28,29, and the quantum algorithm we present samples from a distribution normalized by the L2,2 
norm.

One important thing to note is that the typical forms of f(A) used not only contain information about miss-
ing links, but also about existing ones. For example, when counting the number of paths of length 3 between 
all pairs of nodes, the entries (A3)ij encode this information irrespectively of Aij being 0 or 1. However, for the 
purpose of link prediction, the only useful predictions are those for which Aij = 0 and i  = j , i.e., predictions 
corresponding to new links between distinct nodes. This is an important detail of the link prediction problem, 
as it will condition the results obtained from any algorithm sampling from f(A) directly.

For any link prediction method, we may now define the probability of sampling a bad link, i.e., a link that is 
useless for link prediction,

The list of indices matching the condition (Aij = 1 ∨ i = j) can be represented by the entries of the matrix A+ I , 
which are either 0 or 1. Thus, pB|f  can be computed by summing the probability of sampling each of these entries,

Similarly, we can use the all-ones matrix J to represent the entries that are useful or good for link prediction 
through the matrix

Thus, the probability of a good sample is

For any algorithm sampling entries based on a link-prediction method with an underlying f(A), we can expect 
that O

(

1/pG|f
)

 samples will be required before an actual useful link prediction is observed. For the remainder 
of the text, we omit the f subscript in pG , as it will be clear from context which method is being referenced. 
The number of samples needed to observe a correct link prediction is harder to characterize, as that is not only 
dependent on the structure of f(A), but also on how well f(A) represents the ground-truth behind the missing 
links in the network, which will influence the precision of the method.

(2)P ∼ A3.

(3)P[(i, j)|f ] =
|f (A)ij|q

�f (A)�qq
,

(4)pB|f ≡ P[((i, j)|f ) ∧ (Aij = 1 ∨ i = j)].

(5)pB|f =
N
∑

i,j

(A+ I)ij
|f (A)ij|q

�f (A)�qq
.

(6)G = J − (A+ I).

(7)pG|f =
N
∑

i,j

Gij
|f (A)ij|q

�f (A)�qq
.
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Input model
We base our comparison between classical and quantum algorithms for link prediction on both having query 
access to a common input model, which we now describe. We consider the general graph model (GGM)42,43, 
which allows query access to the graph G = (V , E) through the following operations:

(1)	 Degree query given v ∈ V  , returns the degree kv;
(2)	 Neighbour query given v ∈ V  and an integer l, returns the l-th neighbour of v if l ≤ kv , and ∗ otherwise;
(3)	 vertex-pair query given u, v ∈ V  , returns the adjacency matrix entry Auv;

This general model is a combination of the bounded-degree model44, defined by the first and second operations, 
and the dense graph model, defined by the third operation45. This type of input access model was initially used 
for complexity studies in graph property testing algorithms, and later adapted to quantum computation litera-
ture as it provides a framework where classical and quantum resources can be directly compared through the 
total number of queries to the input. In quantum computation literature these models are often referred to as 
the adjacency list model and adjacency matrix model, respectively46. A quantum extension of the general graph 
model can be described by defining three unitary operators Odeg , Onei and Opair

47 such that

Our work depends on having coherent access to these oracles, such that information can be queried in a superpo-
sition, which is a standard assumption in the theoretical development of quantum algorithms. The development 
of QRAMs to allow such access is an active research field, and some hardware proposals have been put forward48. 
Nevertheless, their practical realization still faces significant challenges.

Finally, we consider that each of the described queries, either classical or quantum, counts as O(1) in the query 
complexity. A classical query learns a piece of information about the input, which can be stored in a classical 
register and does not need to be repeated. As such, there is a trivial upper bound on the query complexity for 
classical algorithms: any graph problem can be solved classically with at most O(|E|) queries, i.e., by accessing the 
whole input. This says nothing about the extra number of operations required. Besides queries to the input, we 
also comment on the extra number of operations required in classical algorithms and the extra number of simple 
gates required in the quantum algorithm. Nevertheless, we focus our comparison on the query complexities.

Classical sampling algorithms
A
2 and A3 sampling algorithms

As discussed in Sect. 2.3 some of the most basic but popular path-based link prediction methods are based on 
computing A2 and A3 to quantify the number of paths of length 2 and 3, respectively, between pairs of nodes. 
Here, we study classical algorithms to sample entries from f (A) = A2 and f (A) = A3 . Algorithms 1 and 2 
accomplish exactly that, previously presented in Refs.28 and29, and discussed in the Supplementary Material. 
Our contribution here is simply their inclusion in our link prediction sampling framework and the study of their 
query complexity. These algorithms require an initial probability distribution to be processed and are then able 
to produce samples of links (i, j) with probability

for n = 2 and 3.

(8)Odeg|v, 0� = |v, kv�,

(9)Onei|v, l, 0� = |v, l,Ŵl(v)�,

(10)Opair|u, v, 0� = |u, v,Auv�.

(11)P[(i, j), A, n] =
|(An)ij|
�An�1,1
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Algorithm 1.   A2 Sampling, adapted from28.

Algorithm 2.   A3 Sampling, adapted from29.

Complexity analysis
To compute the initial distributions pv and puv , Algorithm 1 queries the degree of each node v ∈ V  in lines 1-3, 
having query complexity O(N), and 2 queries the degree and neighbours of each node v ∈ V  in lines 1-5, having 
query complexity O(|E|). For each query one additional operation is used to compute the entries of pv and puv , 
and thus each algorithm requires an additional O(N) and O(|E|) operations, respectively.

Once the distributions pv and puv are computed, Algorithms 1 and 2 can produce multiple samples of links 
(i, j) , as described in lines 6–13 and 8–15, respectively. First, algorithm 1 samples a node v with probability pv in 
line 7, and Algorithm 2 samples a link (u, v) with probability puv in line 9. This requires a processing of pv and 
puv into a cumulative array, requiring O(N) and O(|E|) operations, respectively, and then an additional O(logN) 
and O(log |E|) operations to bisect the array and draw each sample, as discussed in the Supplementary Material. 
No additional queries to the input are required.

Finally, having sampled v or (u, v) , a link (i, j) is sampled by randomly selecting nodes from the neighbour-
hood of v in lines 8–9 of Algorithm 1, or from the neighbourhood of (u, v) in lines 10–11 of Algorithm 2, and 
then checking if (i, j) is a useful sample in lines 10–12 and 12–14, respectively. We note also that this final step 
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takes no additional queries to the input in Algorithm 2, as the whole graph has already been queried during the 
processing of puv . However, for Algorithm 1, the only information queried so far is the degree of each node. 
Each sample requires two extra neighbourhood queries to learn i and j, and one extra vertex-pair query to learn 
if (i, j) ∈ E . This will lead to approximately O(1/pG) queries per useful sample, or an extra O(ns/pG) queries in 
total, assuming small enough ns . The higher the ns the higher the chance of drawing repeated samples, which 
require no extra queries, and eventually converging to the maximum number of queries O(|E|).

In summary, drawing ns samples of useful links (i, j) , i.e., with Aij = 0 and i  = j , following Algorithm 1 costs

queries to the input, and takes an extra

operations. Drawing ns samples of useful links (i, j) following Algorithm 2 costs

queries to the input and takes an extra

operations.
The main takeaway here is that classical algorithms access the input a number of times that scales linearly 

with the input size N. We make this simplified statement as in complex networks the difference between O(N) 
and O(|E|) = O(Nkav) is often small due to the low average connectivity kav ≪ N1. While this cost is mostly due 
to the need to pre-compute pv and puv before drawing samples, even if pv and puv were given in the input model 
a similar query cost would be required to prepare the cumulative arrays for efficient bisection.

Our main objective now will be to show that a quantum algorithm can produce path-based link prediction 
samples using a quantum walk model with a number of input queries that is sub-linear in N.

Quantum link prediction
An improved algorithm for link prediction
Recently, in Ref.20, a link prediction method was proposed using continuous-time quantum walks to encode 
predictions based on both even-length and odd-length paths. In the original work the algorithm proposed to 
implement this method characterizes the predictions associated with each node j separately, thus requiring N 
repetitions to characterize predictions over the whole network, necessarily leading to an O(N) factor in the 
complexity.

Here we provide an improved quantum link prediction algorithm by designing it in such a way that links can 
be sampled globally from the network, without the need to fix an initial node. To do so, we consider a total of 
2 log2 N + 1 qubits: a register n with log2 N qubits to represent each basis state |j� corresponding to a localized 
state at a node j in the network, an extra register of qubits n′ with the same size as the register of node qubits n, 
and one ancilla register a with a single qubit. We proceed now with the description of the circuit, exemplified in 
Fig. 1. All qubits are initialized in the |0� state,

(12)O

(

N +
ns

pG

)

(13)O

(

N +
ns

pG
logN

)

(14)O(|E|)

(15)O

(

|E| +
ns

pG
log |E|

)

Register Output

Figure 1.   QLP Circuit. Example circuit to perform link prediction on a network with up to N = 8 nodes. The 
total number of gates for a network with size N is log2 N + 2 Hadamard gates and log2 N CNOT gates, plus the 
cost of implementing U(t), described as (e−iAt)n conditional on a = |0� and (e+iAt)n conditional on a = |1�.
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after which Hadamard gates are applied to both the ancilla qubit and the register n leading to,

By applying a CNOT gate between each qubit in n and the respective duplicate in n′ , we effectively prepare the 
state

The quantum walk is now performed on register n with an ancilla-controlled operator, while the register n′ 
remains unchanged. Consider then an operator U(t) performing this quantum walk for some time t,

where In′ is the identity operator on register n′ . Applying this operator to state 18 leads to

With a final Hadamard gate on register a the |0�a and |1�a subspaces interfere, leading to a sum of the exponential 
terms 12

(

e−iAt + eiAt
)

 acting on register n for qa = |0� , and a subtraction 12
(

e−iAt − eiAt
)

 acting on register n for 
qa = |1� , which we rewrite as the cosine and sine functions with the respective phase correction on the sine,

We note the significance of state 21, coming from the expansion of the cossine and sine in powers of A,

Thus, the state encodes in each subspace of the ancilla qubit a contribution of either even or odd powers of A, 
which represent link prediction scores for direct and neighbour similarities, respectively.

From state 21 links can be sampled by measuring all qubits in the computational basis, as we now describe. 
The first step is to measure the ancilla qubit, yielding |0�a or |1�a with probabilities

respectively. By subsequently measuring the registers n and n′ the state of these qubits will collapse to some 
|i�n|j�n′ basis state, corresponding to a sample of a link (i, j) . Samples corresponding to link predictions based 
on even or odd paths can be post-selected depending on register a being |0�a or |1�a , respectively. For both cases, 
the probability that some link (i, j) is sampled can be computed by projecting the |0�a or |1�a component of Eq. 21 
onto |i�n|j�n′ , leading to

The values of pevenij (t) and poddij (t) represent the even and odd path-based prediction scores that are coded into 
the quantum walk through the power series of the cosine and sine functions, as mentioned. These are the same 
prediction scores obtained in the original QLP method from20 with an extra 1/N normalizing factor.

(16)|0�a|0�n|0�n′ ,

(17)
1√
2
(|0� + |1�)a

(

1√
N

N
∑

w=1

|w�
)

n

|0�n′ .

(18)
1√
2
(|0� + |1�)a

1√
N

N
∑

w=1

|w�n|w�n′ .

(19)U(t) = |0��0|a
(

e−iAt
)

n
In′ + |1��1|a

(

e+iAt
)

n
In′ ,

(20)|ψ(t)� =
1√
2N

[

|0�a
N
∑

w=1

(

e
−iAt

)

n
|w�n|w�n′ + |1�a

N
∑

w=1

(

e
+iAt

)

n
|w�n|w�n′

]

.

(21)|ψ(t)� =|0�a

[

1√
N

N
∑

w=1

cos(At)n|w�n|w�n′
]

+ i|1�a

[

1√
N

N
∑

w=1

sin(At)n|w�n|w�n′
]

.

(22)cos(At) =
∞
∑

n=0

(−1)n

(2n)!
A2nt2n,

(23)sin(At) =
∞
∑

n=0

(−1)n

(2n+ 1)!
A2n+1t2n+1.

(24)peven(t) =
∥

∥

∥

∥

∥

1√
N

N
∑

w=1

cos(At)n|w�n|w�n′
∥

∥

∥

∥

∥

2

,

(25)podd(t) =
∥

∥

∥

∥

∥

1√
N

N
∑

w=1

sin(At)n|w�n|w�n′
∥

∥

∥

∥

∥

2

,

(26)pevenij (t) =
1

N
|�i| cos(At)|j�|2,

(27)poddij (t) =
1

N
|�i| sin(At)|j�|2.
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From this point forward we will use these probabilities represented by the entries of the cos(At) and sin(At) 
matrices,

Algorithm 3.   QLP Sampling.

In summary, the circuit in Fig. 1 starts from an equal superposition of all nodes in the graph as in Eq. 18, 
evolves it according to a controlled quantum walk leading to Eq. 21, and measures a basis state |0�a|i�n|j�n′ or 
|1�a|i�n|j�n′ corresponding to even or odd path-based sample of a link (i, j) , with probabilities given by the expres-
sions pevenij (t) and poddij (t) , respectively.

Simulations done in Ref.20 have already shown that a classical simulation of the quantum walk process, with 
the probability distributions being directly used as scores for link prediction, produces results with good pre-
diction precision when compared with other state-of-the-art classical path-based methods over a wide range 
of real complex networks. In the following sections we consider the improved QLP Algorithm presented here, 
summarized in Algorithm 3, and study how an actual quantum computing implementation would scale in terms 
of query access to the input to produce a fixed number of link prediction samples.

Complexity analysis
Considering now Algorithm 3 using the circuit exemplified in Fig. 1, we describe the resources required in terms 
of query access to the input. To produce a sample (i, j) given a network with N nodes, other than the applica-
tion of U(t), the circuit in Fig. 1 uses log2 N + 2 Hadamard gates and log2 N CNOT gates. The main computa-
tional cost of the circuit is indeed the application of U(t), which can be described as two applications of e±iAt 
conditioned on the ancilla qubit. Having an efficient implementation of e−iAt in a quantum computer for some 
hermitian matrix A is the important problem of Quantum Simulation. It has been shown that for some classes 
of matrices it is possible to efficiently simulate A ∈ R

N×N with O(polylog(N)) queries to the input49,50. Until 
recently, the networks that were known to be efficiently simulatable were typically sparse, with all nodes having 
at most polylog(N) connections. Real networks, however, have complex structural properties, including densely 
connected hubs with poly(N) connections, community structures, small-world properties, and others. Finding a 
single efficiently simulatable model for complex networks in general may not be possible51. However, motivated 
by complex network analysis, a recent study31 has shown that by adding polylog(N) hub-nodes with O(N) con-
nections to an otherwise sparse network, the resulting adjacency matrix remains simulatable in O(polylog(N)) . 
This toy-model for hub-sparse networks captures the important property of densely connected nodes in complex 
networks, and may inspire further research into the area of complex network simulation.

(28)pevenij (t) =
1

N
| cos(At)ij|2,

(29)poddij (t) =
1

N
| sin(At)ij|2,

(30)peven(t) =
N
∑

ij

pevenij (t),

(31)podd(t) =
N
∑

ij

poddij (t),

(32)peven(t)+ podd(t) = 1
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Let us start by describing a general query cost of implementing e−iAt as requiring C queries to the input 
model in Sect. 2.5. Then, to produce ns samples of useful links from the QLP algorithm, irrespectively of those 
being based on even or odd paths, we will need to run the circuit in Fig. 1 O(ns/pG) times to guarantee samples 
are useful, leading to a total of

queries to the input. Here, the 1/pG factor conditioning the sample to be useful is multiplicative in the query 
complexity, as quantum algorithms to simulate e−iAt require the input to be queried in superposition. This 
information is ultimately lost when the final measurements produce each sample, meaning that for each desired 
sample the C queries required to simulate e−iAt must be repeated.

To continue our discussion, it is useful to select a specific simulation algorithm so that we can provide a more 
concrete estimate for the resources of QLP in a general setting. We can consider, for example, the quantum simu-
lation of d-sparse matrices, i.e., each row and column having at most d elements, which can always be applied 
to any complex network at the cost of dealing with d ∼ poly(N) . In Ref.50 an optimal quantum algorithm to 
simulate d-sparse matrices was proposed that scales as

in the number of queries, where t is the time of the evolution, ‖A‖max is the maximum entry of A in absolute value 
and ǫ is the allowed error. In the original work it is considered that d = O(polylog(N)) , and thus it is concluded 
that d-sparse matrices can be efficiently simulated. In our case, analysing QLP under the d-sparse model implies 
d = kmax , the maximum degree of the network, and �A�max = 1 . We may then write the query complexity of 
QLP using the d-sparse model and disregarding the polylogarithmic factor on the error as

As mentioned, one of the main structural properties of complex networks is the existence of large hubs. For 
complex networks described by a scale-free model the largest node degree in the network is estimated as

where γ characterizes the power-law that describes the degree distribution, k−γ . Typical values of γ for real 
networks are in the 2 < γ < 4 range1. Given Eq. 36, using the d-sparse model for the simulation of A repre-
senting a scale-free complex network limits QLP to be at most polynomially faster than classical algorithms 
in the dependence on N. Nevertheless, this is sufficient for the analysis in the remainder of this work, and the 
possibility of an exponential speedup remains open given any future developments on the efficient simulation 
of complex networks.

We have just described the resources required to produce ns useful link samples from A2 and A3 using classical 
algorithms, and from QLP, a quantum algorithm encoding a series of even or odd powers of A, summarized in 
Table 1. As mentioned, the query complexity of classical methods saturates at O(|E|), after which no more queries 
are required as the whole graph has been read to memory. To proceed with our analysis we are going to focus 
on the an application of QLP using the d-sparse model from Ref.50. Here the query complexity is multiplicative 
in several parameters: the number of desired useful samples ns , the number of samples per useful sample 1/pG , 
the time of the quantum walk t, and the maximum degree of the network kmax . We now wish to characterize the 
dependence on these parameters in order to comment on an achievable quantum speedup on the dependence 
on N, the size of the network.

1/pG is a constant overhead
To study the dependence of the query complexity of QLP on 1/pG we computed this probability over time for 
a range of real-world complex networks52–56 and synthetic networks. From Eqs. 7, 28 and 29, considering both 
even and odd-based samples, pG can be written as a time-dependent function on the time t of the quantum walk,

(33)O

(

ns

pG
C

)

.

(34)C = O
(

td�A�max + polylog(1/ǫ)
)

(35)Õ

(

ns

pG
kmaxt

)

.

(36)kmax = O
(

N
1

γ−1

)

Table 1.   Query complexity comparison. For QLP we consider both a general algorithm using C queries to 
implement e−iAt as well as the algorithm from Ref.50 for d-sparse matrices that implements e−iAt with Õ(kmaxt) 
queries

Method Queries

A2
O
(

N +
ns
pG

)

A3 O(|E|)

QLP (general)    Õ
(

ns
pG

C
)

QLP (d-sparse)     Õ
(

ns
pG

kmaxt
)
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with G the matrix of good prediction indices for a given complex network as defined in Eq. 6. In Fig. 2 we plot 
pG(t) for a range of real-world complex networks with different sizes and find that for all networks studied the 
value of pG(t) saturates in the 0.1 to 1.0 range as t increases. Through the scatter plots shown we find that pG(t) 
does not decrease with N and increases for small values of kav after which it remains approximately constant. 
Similar results were observed by repeating the same analysis in three different models of synthetic networks, as 
shown in Figs. 1 and 2 of the Supplementary Material. Here, we found that for all three models pG(t) remains 

(37)pG(t) =
1

N

N
∑

i,j

Gij

(

| cos(At)ij|2 + | sin(At)ij|2
)

,
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Figure 2.   Probability of sampling a useful link in QLP. Simulating QLP on a range of datasets from real-
world complex networks52–56 we computed the total probability of obtaining a useful sample, pG(t) . In the first 
plot, for all network sizes, the probability saturates in the 0.1 to 1.0 range for increasing t, indicating it does 
not decrease with N. This is more explicit in the scatter plot of pG vs N for different values of the time t of the 
quantum walk. In the third plot we note there is a tendency for the useful link probability to increase with the 
average connectivity of the network, at least for low values of kav . Overall, these results indicate the probability of 
sampling a useful link will typically be a constant overhead in the algorithm as N increases.
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exactly constant as N increases, being only dependent on variations of the average degree, with a similar behav-
iour to that observed in real-world networks.

Overall, these results indicate that the number of required samples before observing a useful sample, O(1/pG) , 
can be considered as a constant overhead in the query complexity of QLP as N increases. How large of an over-
head will depend on the network, as well the value chosen for t, as shown in Fig. 2. However, as we will see in 
the next section, t can typically be chosen such that O(t/pG) is a small overhead while maintaining competitive 
precision in the method.

t is a constant overhead
Next in our analysis is t, the time for which the quantum walk evolves over the network before each sample is 
obtained. This parameter influences both complexity and precision over three factors:

Factor 1 - If the value chosen is too small the quantum walk does not spread significantly over the network 
and thus the probability of obtaining samples that are useful for link prediction is low, increasing the overhead 
of O(1/pG) in the query complexity.

Factor 2 - At the same time, higher values of t imply that the quantum walk evolution must be simulated for 
longer, represented by the linear dependence with t in the query complexity.

Factor 3 - Finally, our goal is to do link prediction, and here t acts as a hyper-parameter in the model which 
determines the weight of each power of A in power series expansion of cos(At) and sin(At) , which in turn influ-
ence the precision of the method.

With these three factors in mind, we wish to characterize how QLP behaves with changes in t so that we can 
comment on its overall effect on the resources of the method. However, given the factors described, we can no 
longer focus our discussion solely on computational resources, but must also discuss precision. Given that we are 
considering classical algorithms based on A2 and A3 , and a quantum algorithm that approximates matrix powers 
through cos(At) and sin(At) , we need to guarantee that any claims we make on a resource advantage also admits 
a competitive precision. To analyse both resources and precision, we considered the following probabilities:

•	 pevenG (t) or poddG (t)—probability of obtaining a useful sample from either the cos(At) or sin(At) components 
of QLP.

•	 pevenC|G (t) or poddC|G(t)—probability of obtaining a correct sample from QLP given that the sample was useful 
and obtained from cos(At) or sin(At) , respectively.

•	 pA2C|G or pA3C|G — probability of obtaining a correct sample given that the sample was useful and obtained from 
the respective classical algorithms for A2 or A3.

We start by commenting on pevenG (t) and poddG (t) . These are the two contributions summing to the global prob-
ability of obtaining a useful sample from QLP pG(t) = pevenG (t)+ poddG (t) , as studied in the previous section,

Consider now a matrix A′ encoding the solution to the link prediction problem, i.e., A′
ij = 1 if (i, j) is a correct 

prediction of a missing link in A. Then, the probability that a sample is a correct prediction based on the even 
or odd components of QLP is given by

Finally, the probabilities of obtaining a correct sample given that the sample was useful serve as a measure of 
precision of the method. For the quantum method, these are represented by pevenC|G (t) and poddC|G(t).

Similarly, pA2C|G and pA3C|G can be computed for each network with a respective adjacency matrix A and a link 
prediction solution A′.

To characterize how QLP behaves with changes in t, we selected four example datasets where we compared 
the evolution of the listed probabilities over time for both even and odd-power results compared to the classical 
case of sampling from A2 and A3 . For each dataset we performed a 10-fold cross validation procedure, where for 
each of the ten iterations 10% of the links were randomly removed to build A′ , and the prediction methods 

(38)pevenG (t) =
1

N

N
∑

i,j

Gij| cos(At)ij|2,

(39)poddG (t) =
1

N

N
∑

i,j

Gij| sin(At)ij|2.

(40)pevenC (t) =
1

N

N
∑

i,j

A′
ij| cos(At)ij|2,

(41)poddC (t) =
1

N

N
∑
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ij| sin(At)ij|2.

(42)pevenC|G (t) =
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, poddC|G(t) =
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computed on the remaining 90% . In Fig. 3 we compare pevenC|G (t) with pA2C|G , superposed to pevenG (t) , and poddC|G(t) 
with pA3C|G , superposed to poddG (t) . Each result shown is an average over the ten iterations of the cross-validation 
procedure.

To get an intuitive reading of Fig. 3, we start by noting that in all cases it is possible to pick a t � 1 such that 
pevenG (t) and poddG (t) are both greater than 0.1, i.e., the sampling overhead to obtain a useful sample is small. 
Looking now at the precision comparison given by the pC|G curves, we note that for these values of t, both useful 
samples of the even and odd component of QLP tend to have a higher chance of being correct than those obtained 
from the classical algorithms for A2 and A3 . This indicates that a value of t = O(1) can typically be chosen such 
that QLP has competitive performance over classical sampling algorithms for A2 and A3 while maintaining a 
small sampling overhead given by O(t/pG).

Discussion and conclusions
To summarize our work, we have discussed sampling algorithms for path-based link prediction accessing the 
input network through the model described in Sect. 2.5, and outputting samples of links (i, j) following the 
distribution of scores given by a function of A. In the classical case, we have considered known algorithms to 
sample from A2 and A3 and concluded that they access the input network with a total number of queries that is 
linear in the number of nodes N,

In the quantum case we have presented an improved version of the QLP algorithm from Ref.20 which can sam-
ple links globally from the network. The samples (i, j) are drawn from a score distribution following cos(At) or 
sin(At) , which through their power-series represent even and odd powers of A, respectively, weighted by the 
time t of the quantum walk. Considering the d-sparse model for the quantum simulation of e−iAt we estimated 
that QLP has a query complexity of

where ns is the total number of useful samples drawn, pG is the probability of obtaining a useful sample, kmax is 
the maximum degree of the network, and t is the time of the quantum walk. Through numerical simulations of 
QLP we concluded that it is possible to draw samples with competitive precision to those obtained from A2 and 
A3 with t/pG ∼ O(1) . As such, considering a direct comparison to the classical sampling algorithms following 
the score distributions from A2 and A3 , our final estimate for the complexity of QLP is

(43)A2 ∼ O

(

N +
ns

pG

)

, A3 ∼ O(Nkav)

(44)Õ

(

ns

pG
kmaxt

)

,

1.0

10-1

10-2

10-3

1.0

10-1

10-2

10-3

Pr
ob

ab
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time t

Messel FacebookCiteseerYeastBio

Figure 3.   Probability of sampling a correct link in QLP compared to A2 and A3 . We compare the precision 
of QLP with A2 and A3 by comparing the probability of sampling a correct prediction given that the sample 
was useful for four example networks. The results indicate that a value t = O(1) can be chosen such that 
pevenC|G (t) ≥ pA2C|G and poddC|G(t) ≥ pA3C|G while maintaining a small useful sample overhead given by 1/pG . The 
plots for pevenC|G (t) and poddC|G(t) start at t ≈ 0.1 to avoid the region of small pG where the divisions in Eq. 42 are 
numerically unstable. Further results for more networks are provided in Fig. 3 of the Supplementary Material.
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in the number of queries to the input. If we consider networks following a scale-free model with a power-law 
degree distribution given by k−γ , then

Typical complex networks have a power law in the 2 < γ ≤ 4 range, implying that the resources described in 
Eq. 45 are sub-linear in N and constitute a polynomial speedup over the classical algorithms for A2 and A3 , as 
long as

We emphasize that the results described here are based on the quantum simulation algorithm from Ref.50 for 
d-sparse matrices, which remains valid for any complex network at the cost of having d ∼ poly(N) . Nevertheless, 
QLP is independent of the method used to simulate the quantum walk, and the possibility of an exponential 
speedup remains open given the discussion in Sect. 4.2. Depending on the structural properties found within 
different types of complex networks, there may be more efficient quantum simulation algorithms. For networks 
following the hub-sparse model described in31, for example, the resources of QLP would scale as polylog(N), 
and this would be constitute an exponential speedup over a classical implementation of A2 or A3 sampling in 
these same networks.

In regards to future directions, there are few options to consider. As mentioned in the introduction, several 
different methods exist for link prediction, and here we focused on path-based methods which have been shown 
to perform reasonably well in a wide range of network types13,36,39,41. For path-based link prediction, although 
we used a quantum walk formulation, a quantum algorithm using a direct implementation of adjacency matrix 
powers could also be possible, for example, using the formalism of Quantum Singular Value Transformations57. 
Nevertheless, quantum algorithms for other link prediction approaches may also be developed with a potential 
for quantum advantage. One example would be to use quantum machine-learning techniques to adapt classical 
methods that learn an optimized prediction function33. In that case, an efficient quantum implementation of 
each predictor would be required.

Data availability
The datasets used in this study are available from the cited sources. The code used is available from the corre-
sponding author on reasonable request.
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