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Genomic hypomethylation 
in cell‑free DNA predicts responses 
to checkpoint blockade in lung 
and breast cancer
Kyeonghui Kim 1,7, Hyemin Kim 2,7, Inkyung Shin 3,7, Seung‑Jae Noh 3,7, Jeong Yeon Kim 1, 
Koung Jin Suh 5, Yoo‑Na Kim 4, Jung‑Yun Lee 4, Dae‑Yeon Cho 3, Se Hyun Kim 5*, 
Jee Hyun Kim 5*, Se‑Hoon Lee 2,6* & Jung Kyoon Choi 1,3*

Genomic hypomethylation has recently been identified as a determinant of therapeutic responses to 
immune checkpoint blockade (ICB). However, it remains unclear whether this approach can be applied 
to cell‑free DNA (cfDNA) and whether it can address the issue of low tumor purity encountered in 
tissue‑based methylation profiling. In this study, we developed an assay named iMethyl, designed 
to estimate the genomic hypomethylation status from cfDNA. This was achieved through deep 
targeted sequencing of young LINE‑1 elements with > 400,000 reads per sample. iMethyl was applied 
to a total of 653 ICB samples encompassing lung cancer (cfDNA n = 167; tissue n = 137; cfDNA early 
during treatment n = 40), breast cancer (cfDNA n = 91; tissue n = 50; PBMC n = 50; cfDNA at progression 
n = 44), and ovarian cancer (tissue n = 74). iMethyl‑liquid predicted ICB responses accurately regardless 
of the tumor purity of tissue samples. iMethyl‑liquid was also able to monitor therapeutic responses 
early during treatment (3 or 6 weeks after initiation of ICB) and detect progressive hypomethylation 
accompanying tumor progression. iMethyl‑tissue had better predictive power than tumor mutation 
burden and PD‑L1 expression. In conclusion, our iMethyl‑liquid method allows for reliable noninvasive 
prediction, early evaluation, and monitoring of clinical responses to ICB therapy.

Immune checkpoint blockade (ICB) therapy has proven to be effective in multiple cancer types and is widely 
being used clinically. However, only a subset of patients receiving ICB therapy experience a durable clinical 
benefit. There is therefore an imperative need for biomarkers that can predict its therapeutic responses. Vari-
ous biomarkers have been proposed as determinants of treatment efficacy including tumor mutation burden 
(TMB)1–3, expression of inhibitory targets such as PD-L14–6, and defects in particular  pathways7, but with limited 
accuracy and clinical utility.

Cell-free DNA (cfDNA) refers to extracellular fragments of DNA found in plasma and body fluid. With 
advances in sequencing technology, capturing genetic or epigenetic features from plasma cfDNA at a high 
resolution is emerging as an alternative to tissue biopsies. cfDNA is easily obtainable whereas tissue sampling 
often requires invasive measures such as surgery. Moreover, cfDNA may be unaffected by confounding factors 
such as tumor purity that obfuscate the interpretation of tumor biopsies. Efforts are being made to apply cfDNA 
in cancer immunotherapy; cfDNA  load8–11,  TMB11–13, and copy number  instability14–16 have been identified as 
markers for the monitoring or prediction of clinical responses to ICB treatment. However, no attempts have been 
made to use cfDNA methylation in cancer immunotherapy.
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In our previous  work17, we have shown that genomic methylation loss, especially in late-replicating  domains18, 
is coupled with immune evasion of tumors due to the silencing of genes involved in antigen processing and pres-
entation, major histocompatibility complex, and cytokine-cytokine receptor interaction by inducing promoter 
hypermethylation. Therefore, genomic hypomethylation estimated by array probes mapping to evolutionarily 
young subfamilies of LINE-1 elements (L1HS and L1PA) was able to predict the clinical benefit of ICB therapy 
more accurately than TMB in multiple lung cancer and melanoma  cohorts17.

In this work, we hypothesized that LINE-1 methylation levels could be captured from cfDNA for the predic-
tion of ICB responses. Based on this assumption, we developed an assay named iMethyl (immune-Methyl) based 
on high-depth targeted sequencing of the genomic regions corresponding to the 10 LINE-1 array probes that 
had been validated in our previous  work17. To test its utility for noninvasive prognosis in immunotherapy, we 
applied iMethyl to a total of 653 ICB samples encompassing lung cancer (cfDNA n = 167; tissue n = 137; cfDNA 
early during treatment n = 40), breast cancer (cfDNA n = 91; tissue n = 50; PBMC n = 50; cfDNA at progression 
n = 44), and ovarian cancer (tissue n = 74). In particular, we sought to find the advantage of applying iMethyl to 
cfDNA (iMethyl-liquid) over applying it to tissue specimen (iMethyl-tissue). We also tested iMethyl-liquid as a 
tool for monitoring disease progression during ICB therapy. Our results collectively suggest that iMethyl-liquid is 
a robust and accurate method for noninvasive prediction and monitoring of clinical responses to ICB treatment.

Results
Development of iMethyl and comparison with array data
Progressive methylation loss occurs due to the failure of methylation maintenance machinery to remethylate 
newly synthesized stands during DNA  replication19. This genomic demethylation process is especially observed 
in late-replicating partial methylation domains (PMDs) of rapidly dividing cancer  genomes18. To quantitatively 
capture this process, we measured the CpG methylation levels of the open sea probes across the whole genome 
and those that lie within PMDs from array data for tissue samples in lung cancer. This whole-genome or PMD-
based measurement of genomic hypomethylation was well represented by the average methylation level of the 
young LINE-1 probes used in our previous  work17 (Supplementary Fig. 1A). Importantly, these LINE-1 probes 
could differentiate clinical responses to ICB therapy better than the whole-genome or PMD-based measurements 
(Supplementary Fig. 1B).

Here, we sought to develop an assay based on the targeted sequencing of the loci corresponding to these array 
probes (Supplementary Tables 1, 2). The probe sequences were estimated to map approximately 2000 locations 
across the human  genome17. Thus, to achieve a 0.5% resolution of methylation measurement across a broad 
range of these different LINE-1 copies, we aimed at > 400,000 reads over all target loci combined for each sample.

To validate its usage as a standalone assay using our lung cancer ICB cohort (Supplementary Table 3), iMethyl 
was first performed for tissue samples (n = 137, Supplementary Table 4) and compared with the array LINE-1 data 
(n = 60, Supplementary Table 5). Unlike the array platform, our sequencing-based assay could capture cytosine 
methylation signals from both CpG and CpA sites for the three non-CpG probes: P8, P9, and P10 (Fig. 1a and 
Supplementary Fig. 2). The principal component analysis highlighted the differences between the iMethyl and 
array data mainly caused by the three probes and P5 (Fig. 1b). These differences resulted in different probe-wise 
clustering of the matched samples (n = 36, Supplementary Fig. 3).

iMethyl‑tissue outperforms other measures in predicting ICB responses
We investigated iMethyl’s ability to discriminate therapeutic responses to ICB after excluding samples without 
clinical information. The average methylation level of the 10 probes was lower in the non-responders of our 
lung cancer cohort (Fig. 1c), supporting the contribution of genomic methylation loss to the immune evasion of 
 tumors17. Our survival analysis also illustrates that samples with low methylation levels have a worse prognosis 
(Fig. 1d). Importantly, the iMethyl measures outperformed the array-based readouts of the LINE-1 probes in 
both analyses (Fig. 1c,d).

We then sought to validate iMethyl as a predictive marker for ICB therapy by using our breast cancer cohort 
(Supplementary Table 6) and ovarian cancer cohort (Supplementary Table 7). iMethyl was performed for breast 
cancer tissues (n = 50, Supplementary Table 8) and ovarian cancer tissues (n = 74, Supplementary Table 9). Whole-
exome sequencing and immunohistochemistry were also performed to obtain previous predictive measures such 
as TMB, neoantigen load (NeoAg), and PD-L1 expression.

For a more robust statistical analysis, we implemented a bootstrapping technique by resampling patients in 
each cohort 1000 times, performing the survival analysis for each resample, and comparing the distribution of 
the P values from the 1000 survival analyses. According to the distribution of the P values, iMethyl-tissue out-
performed TMB, NeoAg, and PD-L1 expression in discriminating clinical responses across all cohorts (Fig. 1e–g 
upper). We further evaluated iMethyl-tissue’s performance in predicting therapeutic responses to ICB by the area 
under the curve (AUC) of the receiver operating characteristic (ROC) metric (Fig. 1e–g lower). Taken together, 
at the tissue level, the 10 iMethyl probes could adequately represent genomic methylation loss as well as serve as 
an accurate biomarker for predicting ICB responses.

iMethyl‑liquid uncouples the confounding effects of tumor purity from tissue methylomes
To test whether iMethyl-liquid can represent tumor tissue methylomes, we performed iMethyl with cfDNA 
(n = 167, Supplementary Table 10) samples in our lung cancer cohort (Supplementary Table 3), and with cfDNA 
(n = 91, Supplementary Table 11), PBMC (n = 50, Supplementary Table 12), and tissue (n = 50, Supplementary 
Table 8) samples in our breast cancer cohort (Supplementary Table 6). The LINE-1 methylation values from the 
different sources showed distinctive distributions, with cfDNA ranging higher than tissue and lower than PBMC 
(Fig. 2a). Whereas iMethyl-PBMC indicated invariably high LINE-1 methylation in most samples, iMethyl-liquid 
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Figure 1.  Comparison of iMethyl with array and other ICB markers in tissue samples. (a) Distribution of beta values per probe by 
array versus iMethyl in the tissue samples of our lung cancer cohort. For iMethyl on non-CpG probes (P8, P9, and P10), methylation 
signals from only CpG sequences are plotted. The differences between array and iMethyl were compared by the Wilcoxon signed-
rank test (P value of **** < 1 ×  10–4, *** < 1 ×  10–3, ** < 1 ×  10–2). (b) Principal component analysis of the beta values of the array and 
iMethyl probes. (c) Comparison of the average methylation values of the array and iMethyl probes between the non-responders 
and responders of our lung cancer cohort. (d) Survival analysis between the methylation-high and -low group based on the average 
methylation values of the array and iMethyl probes in our lung cancer cohort. (e–g) Prediction power for the clinical outcome of 
ICB therapy comparing iMethyl, TMB, neoantigen load (NeoAg), and PD-L1 expression in our (e) lung cancer, (f) breast cancer, and 
(g) ovarian cancer cohort by bootstrap analysis (upper) and by evaluating the accuracy (lower). For each cohort, the performance of 
the predictors in bootstrap analysis was estimated by 1000 times of bootstrapping of individual patient samples. In each sampling, 
the P value from the survival analysis was obtained. The 1000 P values for the different predictors were compared by the Wilcoxon 
signed-rank test (P value of **** < 1 ×  10–4, *** < 1 ×  10–3, ** < 1 ×  10–2). The prediction accuracy was calculated by receiver operating 
characteristic-area under the curve (ROC-AUC) for each predictor.
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represented a similar degree of intertumoral diversity as iMethyl-tissue (Fig. 2a,b). In contrast to iMethyl-PBMC, 
iMethyl-liquid showed significant correlations with iMethyl-tissue (Supplementary Fig. 4), resulting in similar 
clustering patterns (Supplementary Fig. 5) across the matched samples.
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Figure 2.  Evaluation of iMethyl-liquid using matched tissue and PBMC samples. (a) Distribution of beta values 
per probe by matched iMethyl-tissue, -liquid, and -PBMC for our breast cancer samples. The differences were 
compared by the Wilcoxon signed-rank test (P value of **** < 1 ×  10–4, *** < 1 ×  10–3, ** < 1 ×  10–2). (b) Principal 
component analysis of the beta values of iMethyl from three specimen sources. (c,d) Influence of tumor purity 
on the average methylation level from iMethyl-tissue in our (c) breast cancer cohort and (d) lung cancer 
cohort examined by the correlation analysis (left) and by comparing the estimate of tumor purity between 
the methylation-high and -low group (right). ICB non-responders with high iMethyl-tissue and low tumor 
purity are marked (c) with their patient ID or (d) by the red box. (e) Influence of tumor purity on the average 
methylation level from iMethyl-liquid in our breast cancer cohort. ICB non-responders with high iMethyl-tissue 
and low tumor purity are marked with their patient ID. (f) Tumor purity of the four tissue-high and cfDNA-low 
non-responder samples in comparison with the remaining samples of our breast cancer cohort.
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Tumor purity is a critical issue in cancer genomics and  epigenomics20,21. Cellular heterogeneity of a tissue 
specimen can often blur tumor characteristics. cfDNA, on the other hand, can provide a more unbiased esti-
mation in proportion to tumor burden. To investigate the confounding effects of tumor purity, we utilized the 
whole-exome sequencing data of our lung and breast cancer cohorts. Expectedly, the tissue methylation levels 
were overestimated in samples with low tumor purity in both cancer types (Fig. 2c,d); there were multiple cases 
of ICB non-responders that would be misclassified by iMethyl-tissue because of its overestimation (blue dots 
marked with their patient ID or enclosed by the red box). In sharp contrast, iMethyl-liquid was not affected 
by tumor purity (Fig. 2e). Indeed, four of the five non-responders with high iMethyl-tissue and low purity had 
iMethyl-liquid lower than the cohort average (Fig. 2e) and also than expected by iMethyl-tissue (Supplementary 
Fig. 6). Therefore, for certain samples with low purity, resistance to ICB therapy coupled with cancer-specific 
genomic methylation loss can only be predicted by cfDNA analysis (Fig. 2f).

As illustrated by these samples, tissue methylation may have limited accuracy compared with cfDNA methyla-
tion unless tumor purity is completely accounted for. Indeed, in breast cancer, iMethyl-liquid showed statistical 
power in stratifying prognoses (P = 0.0015) after excluding one sample without clinical information whereas 
iMethyl-tissue failed to yield reliable clinical prediction (P = 0.48) (Fig. 3a left). Our bootstrap analysis con-
firmed the superior performance of iMethyl-liquid over iMethyl-tissue (Fig. 3a right). The same patterns were 
recapitulated when using only the matched samples (Supplementary Fig. 7) and also with the lung cancer data 
(Fig. 3b). We then calculated ROC-AUC metric to compare cfDNA methylation with tissue methylation. As a 
result, iMethyl-liquid outperformed iMethyl-tissue in both breast and lung cancer (Fig. 3c). Taken together, 
iMethyl-liquid yields more accurate interpretation of tumor methylomes and thus a more accurate prediction 
of ICB responses, thanks to its independence of tumor purity.

Implementation of probe weighting improves iMethyl performance
To improve the performance of iMethyl as an ICB efficacy predictor, we tested applying the weighted average of 
the iMethyl probes. For iMethyl-tissue, we trained probe weights for optimization of predicting lung cancer ICB 
responses and applied the optimal weights to the 10 probe signals of breast cancer and ovarian cancer samples. 
Although the weight training was performed using completely independent samples, this process improved 
predictive power compared to averaging without weighting (gray versus violet in Fig. 1f–g). The improvements 
made by applying the weights across cancer types were also evident in survival analyses (Supplementary Fig. 8). 
iMethyl-tissue was also improved by training probe weights on iMethyl-liquid of the same cancer type in both 
ICB cohorts (Supplementary Fig. 9).

Finally, we concentrated on how the performance of iMethyl-liquid can be improved by probe weighting. 
Compared to no weighting (Fig. 4a), iMethyl-liquid weighted by iMethyl-liquid of a different cancer type (Fig. 4b) 
or by iMethyl-tissue of the same cancer type (Fig. 4c) showed increased performance in discriminating the better 
survival of high methylation tumors in response to ICB. In both ICB cohorts, our bootstrapping analyses involv-
ing 5,000 trials of resampling also showed improvements by cross-weighting across cancer types or specimen 
sources as well as by self-weighting (Fig. 4d,e).

In addition, we compared the distribution of the actual methylation values with or without weighting between 
ICB responders and non-responders. Significantly lower methylation was observed for non-responders without 
any weighting (Supplementary Fig. 10A); however, the methylation values weighted by iMethyl-liquid of a dif-
ferent cancer type (Supplementary Fig. 10B) or those weighted by iMethyl-tissue of the same cancer type (Sup-
plementary Fig. 10C) showed a larger discrepancy between responders and non-responders in both ICB cohorts.

These results are significant because the weighting was trained on independent samples. Not only the weight-
ing across cancer types (Fig. 4b) but also across sample sources in lung cancer (Fig. 4c upper) was based on 
different samples. Although cfDNA samples were weighted by a subset of matching tissue samples in our breast 
cancer cohort (Supplementary Table 6), iMethyl-liquid and iMethyl-tissue were performed for different samples 
of our lung cancer cohort (Supplementary Table 3). This implies that iMethyl-liquid can be further empowered by 
this cross-weighting approach while maintaining robustness to overfitting. For example, iMethyl-tissue data from 
pre-existing tissues of the same cohort can be utilized to refine the prediction of new samples by iMethyl-liquid.

Monitoring of disease progression during ICB therapy by iMethyl‑liquid
Another merit of cfDNA analysis is its noninvasive monitoring of disease progression. To illustrate the benefits 
from this capability, we used patient samples with progressive disease (n = 44) in our breast cancer cohort (Sup-
plementary Table 6). For these samples, iMethyl-liquid was performed at the point of disease progression (Sup-
plementary Table 13) for comparison with matched iMethyl-liquid at the baseline (Supplementary Table 11). 
A differential methylation analysis of the matched samples showed significant methylation loss at most of the 
LINE-1 probes, especially P2, P3, P5, P8, and P9, but except for P4, P6, and P10, during tumor progression 
(Fig. 5a). P2 and P8 showed the largest number of samples with a decrease in methylation and the lowest number 
of samples with an increase in methylation (Fig. 5b). The average methylation level of P2, P3, P5, P8, and P9, 
that is, the probes with the most significant changes (Fig. 5a), decreased overall at disease progression in most 
of the samples (Fig. 5c).

When progression of the disease occurs, a clinical decision is often required regarding whether to continue 
the ongoing therapy or consider another therapeutic option. Therefore, we tested whether iMethyl-liquid retains 
its capability of predicting the ultimate outcome of ICB treatment at the point of disease progression. When 
matched with the survival data, the predictive power of iMethyl-liquid based on the average of the 10 probes 
was displayed at the progression point (P = 0.016) as well as at the baseline (P = 0.043) (Fig. 5d). Our bootstrap 
analysis confirmed a slightly better performance of iMethyl-liquid at tumor progression than at the baseline 
(Fig. 5e). Although P2, P3, P5, P8, and P9 showed the most significant changes during tumor progression, the 
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Figure 3.  Comparison of iMethyl-liquid and iMethyl-tissue in predicting ICB efficacy. (a,b) Survival analysis 
(left) and bootstrap analysis (right) using our (a) breast cancer and (b) lung cancer cohort samples. The survival 
analysis was performed for the methyl-high and -low group to compare iMethyl-liquid and iMethyl-tissue. For 
the bootstrap analysis, performance was estimated by 1000 trials of resampling of individual patient samples. 
In each sampling, the P value from the survival analysis was obtained. The resulting 1000 P values for iMethyl-
liquid and iMethyl-tissue were compared by the Wilcoxon signed-rank test (P value of **** < 1 ×  10–4). (c) 
Measurement of iMethyl-liquid and iMethyl-tissue performance in predicting ICB responses by ROC-AUC.
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Figure 4.  Enhanced prediction power of iMethyl-liquid by probe weighting. (a–c) Survival analysis between 
the methylation-high and -low group based on the average methylation values from iMethyl-liquid of our lung 
cancer samples (upper) and breast cancer samples (lower) with (a) no weighting, (b) weighting by iMethyl-
liquid of a different cancer type, and (c) weighting by iMethyl-tissue of the same cancer type. (d–e) Prediction 
power for the clinical outcome of ICB therapy comparing different weighting schemes for (d) lung cancer 
iMethyl-liquid and (e) breast cancer iMethyl-liquid. Performance was estimated by 5000 trials of bootstrapping 
of individual patient samples. In each sampling, the P value from the survival analysis was obtained. The 
resulting 5000 P values for different weighting schemes were compared by the Wilcoxon signed-rank test (P 
value of **** < 1 ×  10–4).



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22482  | https://doi.org/10.1038/s41598-023-49639-4

www.nature.com/scientificreports/

24 21 12 3 0
20 13 5 0 0

+

+
+++++++ +

+

+ + + +

+

+

+ ++ +

p = 0.016

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Probe

D
iff

er
en

tia
l b

et
a 

va
lu

e

0.50

0.25

0.00

0.25

0.50

+ + methyl low

0

10

20

30

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Probe

N
um

be
r o

f s
am

pl
es

Decrease Increasea b

d

Baseline Progression
Sampling time

-lo
g1

0 
(P

 v
al

ue
)

e Timing Baseline Progression

*Breast iMethyl-liquid baseline
(n=44)

Breast iMethyl-liquid progression
(n =44)

Breast iMethyl-liquid at baseline vs progression (n=44)

* ** ** ** * **** ***

28
31

26 25
29 29 29

33
29

24

16
13

18 19
15 15 15

11
15

20

methyl high

c

Baseline Progression
Sampling time

Av
er

ag
e 

m
et

hy
la

tio
n 

va
lu

e

Timing Baseline Progression

Av
er

ag
e 

m
et

hy
la

tio
n 

va
lu

e

Timing Baseline Progression

0

2

4

6

8

0.00

0.25

0.50

0.75

ID
−0

48
ID

−0
59

ID
−0

14
ID

−0
55

ID
−0

52
ID

−0
01

ID
−0

65
ID

−0
63

ID
−0

06
ID

−0
18

ID
−0

05
ID

−0
03

ID
−0

29
ID

−0
10

ID
−0

24
ID

−0
81

ID
−0

25
ID

−0
68

ID
−0

57
ID

−0
33

ID
−0

20
ID

−0
51

ID
−0

32
ID

−0
53

ID
−0

19
ID

−0
17

ID
−0

27
ID

−0
80

ID
−0

64
ID

−0
58

ID
−0

26
ID

−0
49

ID
−0

28
ID

−0
46

ID
−0

12
ID

−0
70

ID
−0

56
ID

−0
79

ID
−0

45
ID

−0
61

ID
−0

04
ID

−0
74

ID
−0

08
ID

−0
15

Sample

0.00071

0.5

0.6

0.7

0.8

0.9

+

+

+
+ ++++

+

+ + + +
+

+ + +
+ +

+

p = 0.043

22 19 10 2 0
22 15 7 1 0

0.00

0.25

0.50

0.75

1.00

Time

Su
rv

iva
l p

ro
ba

bi
lit

y

methyl low

 methyl high

Time

Number at risk

0 200 400 600 800

0 200 400 600 800

0.00

0.25

0.50

0.75

1.00

Time

Su
rv

iva
l p

ro
ba

bi
lit

y

methyl low

 methyl high

Time

Number at risk

0 200 400 600 800

0 200 400 600 800

Figure 5.  Comparison of baseline and post-progression iMethyl-liquid. (a) Differential beta values between 
matched baseline and progression iMethyl-liquid for our breast cancer samples (n = 44). The differential beta 
values were tested to determine if they were less than zero by the one-sample t-test (P value of **** < 1 ×  10–4, 
*** < 1 ×  10–3, ** < 1 ×  10–2, * < 5 ×  10–2). (b) Number of samples whose methylation level at each probe increased 
or decreased at the point of tumor progression. (c) Average methylation value of the 5 selected probes, namely, 
P2, P3, P5, P8, and P9, compared between the baseline and progression point per sample (left) and for all 
samples (right). (d) Survival analysis between the methylation-high and -low group based on the average 
methylation values of all 10 probes from iMethyl-liquid at the baseline (left) and progression (right) point. (e) 
Prediction power for the clinical outcome of ICB therapy comparing the baseline and progression iMethyl-
liquid. Performance was estimated by 1000 trials of bootstrapping of individual patient samples. In each 
sampling, the P value from the survival analysis was obtained. The resulting 1000 P values for the baseline and 
progression iMethyl-liquid were compared by the Wilcoxon signed-rank test (P = 0.021).
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iMethyl-liquid estimate based on the average of these 5 selected probes lost predictive power as compared to 
that based on the average of all the 10 probes (Fig. 5d versus Supplementary Fig. 11A). Our bootstrap analysis 
confirmed that using the average of all the probes predicts patient survival better (Supplementary Fig. 11B). 
Although the 5 probes may reflect changes in tumor burden, the features of genomic hypomethylation associated 
with immune evasion and immunotherapeutic resistance may be better captured by the absolute methylation 
levels of all probes combined together.

These results demonstrate the utility of iMethyl-liquid in noninvasive monitoring of ICB responses based 
on the detection of progressive hypomethylation especially based on particular LINE-1 probes. Moreover, this 
approach may help with clinical decision-making according to the genomic hypomethylation status of samples 
at the point of disease progression.

Early evaluation of ICB responses by iMethyl‑liquid
As iMethyl-liquid showed its capability to monitor changes in the status of genomic methylation accompanying 
tumor progression, we next asked whether it could be also used to evaluate therapeutic responses early during 
treatment (EDT). To this end, we selected 20 responders and 20 non-responders from our lung cancer cohort 
(Supplementary Table 3) and generated iMethyl-liquid data for these samples at 3 weeks and 6 weeks after 
commencing treatment (Supplementary Table 14). In particular, we selected the samples such that the baseline 
(pretreatment) iMethyl-liquid readouts were similar between the responders and non-responders.

As done with the breast iMethyl-liquid data (Fig. 5a), the differential methylation levels between pretreat-
ment and EDT were computed for each probe (Supplementary Fig. 12). The per-probe methylation changes 
compared between the responders and non-responders indicated an overall correlation between the favorable 
ICB response and the increase of the iMethyl-liquid level (Supplementary Fig. 12). Notably, this correlation was 
more pronounced at the probes that showed significant methylation changes during breast cancer progression, 
except for P5 (Supplementary Fig. 12 and Fig. 6a). It remains to be tested whether the contradictory results for 
P5 differential methylation can be attributed to the tumor type difference (i.e. breast cancer versus lung cancer). 
In any case, the average methylation levels of the remaining 4 probes, namely, P2, P3, P8, and P9, were lower in 
the non-responders (Fig. 6a). Importantly, the differential methylation values between pretreatment and EDT 
showed progressive hypomethylation in the non-responder samples whereas progressive hypermethylation in 
the responder samples (Fig. 6b).

To evaluate the predictive power of iMethyl-liquid after commencing ICB treatment, we compared EDT 
to pretreatment by calculating ROC-AUC metric. Notably, the EDT measures had more reliable accuracies in 
predicting clinical responses than the baseline measures (Fig. 6c). As discussed in the previous section, genomic 
hypomethylation estimated by the average of all the probes may serve as a better predictor of ICB responses 
although differential methylation at only a subset of the probes seems to reflect changes in tumor burden. There-
fore, we measured the average iMethyl-liquid signal of all the 10 probes at the baseline and at 3 or 6 weeks after 
the initiation of ICB treatment. The baseline measures were similar between the responding and non-responding 
groups because that was how the samples were selected (Fig. 6d left). In contrast, the differences between the 
responders and non-responders were significantly pronounced in the EDT samples (Fig. 6d middle and right).

These results illustrate the feasibility of measuring differential iMethyl-liquid for a noninvasive early evalua-
tion of therapeutic responses to ICB. In addition, thanks to this feature of iMethyl-liquid reflecting tumor burden 
changes, a more accurate prediction of the ultimate clinical outcome may be made early during treatment than 
by using pretreatment samples alone.

Discussion
In our previous  work17, we showed that genomic methylation aberration is an important marker of resistance 
to antitumor immunity in treatment-naïve samples as well as ICB-treated tumors. On the basis of large-scale 
TCGA and multiple ICB cohort data, we showed that rapidly dividing cells escape antitumor immune responses 
in association with genomic demethylation coupled with the silencing of critical genes involved in the response 
of tumors to host immune activity. Our data was based on genomic hypomethylation estimated by signals from 
array probes mapped to young subfamilies of LINE-1 elements (L1HS and L1PA)17.

In the present work, we made improvements by first employing amplicon sequencing for genomic loci corre-
sponding to these LINE-1 probes. When applied to the tumor tissues of our ICB cohorts, the assay named iMethyl 
resulted in 486,000 ~ 930,000 sequencing reads per sample. As a result, iMethyl had better predictive power than 
not only tumor mutation burden and PD-L1 expression but also genomic hypomethylation estimated by the array 
readouts. iMethyl particularly solves the issue of missing CpG methylation signals from non-CpG array probes.

However, tissue data suffers from low tumor purity. For example, low tumor purity causes inaccurate TMB 
 estimates22. DNA methylation measurements are also compromised by non-malignant cells such as adjacent 
normal and infiltrating immune cells resident in tumor tissues. In fact, DNA methylation is often used to assess 
the degree of tumor purity based on the extent to which genomic hypomethylation in tumor cells is diluted by 
non-malignant cells with normal methylation  status20,21,23–26. Such cellular heterogeneity should be accounted 
for by adjusting cell  composition27–30 to remove artefactual intertumoral variations in methylation.

Due to its minimal invasiveness and sample acquirement feasibility, cfDNA-based cancer screening is rapidly 
replacing tumor biopsies in the clinical setting. However, its application for cancer immunotherapy is in its early 
stages, despite cfDNA  load8–11,  TMB11,12, and copy number  instability14–16 having been identified as the predictors 
of ICB responses. In this work, we utilized the properties of genomic methylation in cfDNA for the first time in 
the field of cancer immunotherapy. Our assay based on ultra-deep sequencing allowed for the accurate estimation 
of methylation levels from cfDNA. We show that tumor purity problems can be overcome by measuring LINE-1 
methylation from cfDNA. Furthermore, we demonstrate the feasibility of our method as a tool for evaluating ICB 
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Figure 6.  Differential iMethyl-liquid between pretreatment and EDT in association with clinical responses. 
(a) Differential beta values between matched pretreatment and EDT iMethyl-liquid in our lung cancer samples 
(20 responders and 20 non-responders) at P2, P3, P8, and P9 probes for pretreatment versus 3 weeks after 
initiating treatment (left) and for pretreatment versus 6 weeks after initiating treatment (right). The differences 
between non-responder and responder samples for each probe were compared by the Wilcoxon signed-rank 
test. (b) Differential average methylation value of the 4 probes compared between pretreatment and EDT 
per sample for the non-responders (left) and responder samples (right). Samples were ordered according to 
the differential methylation level within each time group. Horizontal dotted lines indicate the mean of the 
differential methylation levels for each time group. (c) Measurement of pretreatment and EDT performance in 
predicting ICB responses by ROC-AUC. (d) Average methylation value of all 10 probes compared between the 
responders and non-responders at the baseline point (left), 3 weeks after initiation of ICB (middle), and 6 weeks 
after initiation of ICB (right).
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responses at early time points and monitoring disease progression during treatment. The robustness, accuracy, 
and reliability of our method as well as the previous predictors based on cfDNA should be validated in larger 
cohorts to be practically used in the clinical setting. Nonetheless, we hope that our method paves the way for 
reliable noninvasive prediction, early evaluation, and monitoring of clinical responses to ICB therapy.

Methods
Lung cancer ICB cohort
Advanced non-small cell lung carcinoma patients who were treated with anti-PD-1/PD-L1 monotherapy at Sam-
sung Medical Center, Seoul, Republic of Korea were enrolled for this study. The present study has been reviewed 
and approved by the Institutional Review Board (IRB) of the Samsung Medical Center (IRB no. 2013-10-112, 
2018-03-130, and 2018-04-048), and was conducted in accordance with the principles of the Declaration of 
Helsinki. All subjects provided their written informed consent, and there were no participants below 16 years. 
The following medical information was obtained: age, sex, stage, Eastern Cooperative Oncology Group (ECOG) 
performance status, pathology, comorbidity, smoking, treatment regimen, clinical response, and survival data. 
Lung tumor tissues were collected from the enrolled patients through bronchoscopy with or without endo-
bronchial ultrasound or percutaneous needle biopsy. The tissues were then snap-frozen for storage at − 80 °C 
until use or stored as Formalin-Fixed Paraffin-Embedded (FFPE) blocks. Peripheral blood at the baseline was 
collected into commercially available EDTA-treated tubes. Plasma was separated from the entire blood by a 
density gradient centrifugation using the Ficoll-Paque™ PLUS (GE healthcare, Chicago, IL, USA), and plasma 
aliquots were stored at − 80 °C.

Breast cancer ICB cohort
The KORNELIA trial was a multicenter, parallel-design, open-label phase 2 trial conducted in 10 academic 
hospitals in Republic of  Korea31. Ninety HER2-negative breast cancer samples were obtained from patients who 
were treated with nivolumab (anti-PD-1 antibody) until disease progression or unacceptable toxicity. Specifically, 
they comprised 45 HR + HER2-negative breast cancer (HR + HER2-BC) and 45 triple-negative breast cancer 
(TNBC) samples. The study has been reviewed and approved by the IRB of participating institutions, including 
Seoul National University Bundang Hospital (IRB no. B-1811-505-004), and was conducted in accordance with 
the principles of the Declaration of Helsinki. All subjects provided their written informed consent, and there 
were no participants below 16 years. The following medical information was obtained: age, sex, stage, ECOG 
performance status, pathology, comorbidity, smoking, treatment regimen, clinical response, and survival data. 
Baseline tumor biopsy from metastatic or recurrent lesions was required, and archival tumor samples were taken 
within 24 months before enrollment was allowed. Peripheral blood samples were collected at the baseline and 
at the time of progressive disease. The PD-L1 expression status was evaluated using SP263 antibody (Ventana 
Medical Systems) and scored as positive if tumor infiltrating immune cells were more than 1% stained. Peripheral 
blood at the baseline was collected into commercially available EDTA-treated tubes. Plasma was separated from 
the entire blood by a density gradient centrifugation using the Ficoll-Paque™ PLUS (GE healthcare, Chicago, IL, 
USA), and plasma aliquots were stored at − 80 °C.

Ovarian cancer ICB cohort
A total of 74 patients with gynecological cancer who received immunotherapy at Yonsei Cancer Center, Seoul, 
Republic of Korea from December 2018 to January 2022 were enrolled in this study. Specifically, the cohort 
includes patients with ovarian cancer who received pembrolizumab or nivolumab monotherapy, or who received 
durvalumab with or without tremelimumab. Additionally, patients with cervical cancer who received tislelizumab 
or pembrolizumab were included. The study was approved by the institutional review board of Severance Hos-
pital (IRB no. #4-2018-0342, #4-2018-0928). All subjects provided written informed consent, and there were 
no participants below 16 years. Clinical information including treatment regimen, duration of therapy, clinical 
response, and survival data was obtained.

Evaluation of clinical response
The clinical response was evaluated by the Response Evaluation Criteria in Solid Tumors (RECIST v1.1)32. The 
response to immunotherapy was classified into durable clinical benefit (DCB/responder) or non-durable ben-
efit (NDB/non-responder). Complete response (CR), partial response (PR), or stable disease (SD) that lasted 
more than 6 months was considered as a DCB/responder. Progressive disease (PD) or SD that lasted less than 
6 months was considered as an NDB/non-responder. Progression-free survival was calculated from the start 
date of treatment to the date of progression or death. Patients were censored at the date of the last follow-up for 
progression-free survival if they were alive without progression.

iMethyl assay based on amplicon sequencing
Cell-free DNA was extracted from plasma using the QIAamp MinElute ccfDNA Kit (Qiagen) according to the 
manufacturer’s instructions. The extracted DNA was treated with bisulfite using the EZ DNA Methylation-Gold 
Kit (Zymo Research) according to the manufacturer’s instruction. Multiplexed PCR was performed by designing 
primers to target the 10 LINE-1probes. The sequences of the primer sets are provided in Supplementary Table 2. 
For multiplexed PCR, the primers for the target probes were divided into two groups: P3, P5, P8, P9, and P10 in 
one group, and P1, P2, P4, P6, and P7 in the other group. Multiplex PCR was performed for each probe group 
using the EpiTect MethyLight PCR Kit (Qiagen) in the following conditions: 5 min at 95 °C followed by 23–29 
cycles of 95 °C for 15 s and 60 °C for 2 min. The 5’ ends of all PCR primers were phosphorylated. The PCR 



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22482  | https://doi.org/10.1038/s41598-023-49639-4

www.nature.com/scientificreports/

products in the two groups were mixed and were purified using the Agencourt AMPure XP PCR purification 
system (Beckman Coulter).

For the preparation of sequencing libraries, adaptors were ligated to the purified amplicons using the Quick 
Ligation Kit (NEB), and the ligation products were purified using the Agencourt AMPure XP system (Beckman 
Coulter). Finally, the library was amplified using the KAPA HiFi HotStart polymerase (KAPA Biosystems) with 
Illumina’s P5 and P7 sequencing primers in the following conditions: 2 min at 98 °C followed by 7 cycles of 
98 °C for 15 s and 64 °C for 1 min. The amplified libraries were purified with the Agencourt AMPure XP system 
(Beckman Coulter), quantified with the KAPA Library Quantification Kit (KAPA Biosystems), and prepared 
for sequencing according to the standard normalization method described in “NextSeq 500 and NExtSeq 550 
Sequencing Systems—Denature and Dilute Libraries Guide”. Paired-end sequencing of 150 cycles was performed 
using the NextSeq 550/550 Reagent Kit v2.5.

Whole‑exome sequencing
In this study, we conducted whole-exome sequencing for breast cancer and ovarian cancer, while the raw exome 
sequencing data for lung cancer was retrieved from Kim et al.’s  study33. Tumor samples were obtained before ICB 
treatment, and were then embedded in paraffin after formalin fixation or kept fresh. DNA was prepared using 
the AllPrep DNA/RNA Mini Kit (Qiagen, 80,204), AllPrep DNA/RNA Micro Kit (Qiagen, 80,284), or QIAamp 
DNA FFPE Tissue Kit (Qiagen, 56,404) for library preparation for whole exome sequencing. Library preparation 
was performed by using SureSelectXT Human All Exon V5 (Agilent, 5190–6209) according to the instructions. 
Briefly, 200–300 ng of tumor and normal genomic DNA was sheared, and 150–200 bp of the sheared DNA frag-
ments were further processed for end-repairing, phosphorylation, and ligation to adaptors. Ligated DNA was 
hybridized using whole-exome baits from SureSelectXT Human All Exon V5. The libraries were quantified by 
Qubit and 2200 Tapestation, and sequenced on an Illumina HiSeq 2500 platform with 2 × 100 bp paired ends. 
The target coverage for the normal samples and tumor samples was × 50 and x 100, respectively. The sequencing 
data was aligned to the hg19 reference genome using the Burrows-Wheeler Aligner mem module (v.0.7.17)34. The 
data was further filtered by marking and removing duplicate reads using Picard (http:// broad insti tute. github. io/ 
picard, v.2.26.10). The base quality score was recalibrated with the Genome Analysis Toolkit (GATK v.4.2.4.1)35. 
Tumor mutation burden (TMB) was calculated as the number of amino acid-changing somatic mutations called 
with MuTect2 with a matching panel of normal. To find neoantigen candidates, the mutations were annotated 
with the Ensembl Variant Effect Predictor (VEP), and the amino acid sequence neighboring the mutation was 
performed with pVACseq (v.4.0.10)36. The HLA typing was conducted with  OptiType37, and the prediction of 
MHC binding neoantigens was conducted with NetMHCpan (v.4.1)38. Neoantigen load (NeoAg) was obtained 
as the total number of the identified neoantigen candidates. Tumor purity was estimated with the exome data 
by using Sequenza (v3.0.0)39 and  ABSOLUTE20.

Methylation array profiling
The methylation array data was obtained from our previous work conducted by Jung et al.17. Array-based tissue 
methylation profiling was performed by following the instructions of the Infinium MethylationEPIC BeadChIP 
Kit (Illumina, WG-317-1002). Briefly, 500 ng genomic DNA (gDNA) was used for bisulfite conversion using the 
EZ DNA methylation kit (Zymo Research, D5001). The bisulfited gDNA was denatured and neutralized for ampli-
fication, and was further processed for fragmentation. After fragmentation, DNA was eluted and resuspended 
in a hybridization buffer, and then hybridized onto the BeadChip. The BeadChip was prepared for staining and 
extension after washing out the unhybridized DNA, and it was imaged using the Illumina iScan System. The raw 
intensity files were then preprocessed into beta values using the preprocessIllumina function in  minfi40. The PMD 
levels of our cohort samples were calculated based on the average of the EPIC probes for Solo-WCGW CpGs in 
common  PMDs18 (provided at https:// zwdzwd. github. io/ pmd). Redundant probes such as multi-hit probes were 
filtered by using the filter function of the ChAMP  package41.

iMethyl data processing
More than 650,000 raw read pairs per sample (~ 100 Mb raw output) were generated with a NextSeq550Dx 
machine in the 2 × 75 bp mode (150 cycles). Raw sequence reads were adaptor-trimmed with  cutadapt42 (v2.8, 
–minimum-length 30). Based on the human reference genome hg19, bisulfite-converted (C:G > T:A) template 
sequences were prepared with bismark_genome_preparation (bismark v0.22.3)43. Preprocessed reads were 
aligned into bisulfite-converted genomes by using  bismark43 with  bowtie244 (v2.3.5) as a genome aligner with 
the default options. Aligned reads were sorted using samtools (v1.9)34,45 and the reads with indels near target 
regions + /– 30 nt were removed. After the filtering and processing, the average read count per sample was 
499,533 (lung cancer iMethyl-liquid, n = 167), 658,009 (lung cancer iMethyl-tissue, n = 137), 436,315 (breast 
cancer iMethyl-liquid, n = 91), 486,209 (breast cancer iMethyl-tissue, n = 50), and 930,036 (ovarian cancer iMe-
thyl-liquid, n = 74).

The following steps were followed to calculate the beta value for each iMethyl probe. The reads aligned to 
the Watson- or Crick-strand were separated, and then a C-to-T transition from the Watson-strand and G-to-A 
transition from the Crick-strand was counted for each target probe using bam-readcount (v0.8.0)46 and our 
in-house script. The ratio of the methylated (C or G) base at each probe was calculated and corrected with the 
sample conversion rate.

Beta value
(

per probe
)

=
M

U+M
× sample_conversion_rate.

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://zwdzwd.github.io/pmd
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M: number of methylated bases at the target probe (C for Watson, G for Crick). U: number of methylated 
bases at the target probe (T for Watson, A for Crick).

To estimate the sample conversion rate, or the rate of base conversion by bisulfite treatment at the level of 
samples, 92 naïve cytosine (i.e. non-CpG site) positions across the probe sequences were utilized. The rates of 
bisulfite conversion (C-to-T or G-to-A) at the 92 positions were averaged to obtain the sample conversion rate. 
The average sample conversion rate in each cohort was 0.998 (lung cancer iMethyl-liquid), 0.995 (lung cancer 
iMethyl-tissue), 0.993 (breast cancer iMethyl-liquid), 0.993 (breast cancer iMethyl-tissue), and 0.989 (ovarian 
cancer iMethyl-tissue).

Among the 137 lung cancer samples subjected to iMethyl-tissue, 8 samples were missing beta values for P8, 
P9, and P10. To compensate for the missing values, we performed imputation. With the 129 samples whose 
methylation values were complete, we built three multiple linear regression models with each of the missing 
probes as the response variable and the 7 probes (P1-P7) as the explanatory variable. Using the models, the 
missing beta values were predicted by fitting them against the 7 probes (P1-P7). This analysis was performed 
using the lm function of the R package.

Cohort survival analysis
To test the power of iMethyl as an ICB response prediction marker, we performed the survival analysis in different 
conditions. The methylation-high and -low group was defined according to the mean value of each cohort. For a 
more robust analysis, we implemented bootstrapping by generating 1000 or 5000 resamples and conducting the 
survival analysis using each resample. If the methylation-high group showed better survival, which coincided 
with our hypothesis, the P value was used as-is. On the contrary, if the methylation-low group showed better 
survival, we used the negative P value to ensure that both cases were considered. Depending on data avail-
ability, the lung and breast cancer cohorts used overall survival data whereas the ovarian cancer cohort used 
progression free survival data. The survival analysis was performed based on the Kaplan–Meier curve using the 
survival (v3.1.12)47 and survminer (v0.4.9)48 packages in R. The survival graphs were illustrated with the ggplot2 
R package (v3.3.5)49. The survival analysis was performed based on the Kaplan–Meier curve, and the difference 
between the methyl-high and -low group was analyzed by the log-rank test. Wilcoxon signed-rank test was used 
to compare the statistical powers of predicting clinical outcomes of ICB therapy for iMethyl. P values less than 
0.05 were considered significant.

Evaluating the prediction accuracy
To assess the performance of iMethyl, we further evaluate the accuracy in predicting responses to ICB treat-
ment for each predictor. Among the 10 LINE-1 probes used for iMethyl measures and array-based readouts, we 
excluded the probe with the smallest standard deviation (S.D.) and probes with S.D. < 0.015 to select the distinc-
tive probes for classifying the samples. We then constructed a general linear model (GLM) with the selected 
probes and fitted the methylation values for evaluating the prediction accuracy. Specifically, for lung cancer, 
only CpG methylation values were used for the three non-CpG probes (P8, P9 and P10) in order to facilitate a 
comparison between iMethyl and array measures. Finally, the accuracy was calculated using ROC-AUC metric 
with pROC R package (v1.18.0)50.

Probe weighting
Probe weights were computed to maximize the predictive power of iMethyl for ICB responses. To obtain optimal 
weights, we generated simulated probe sets that consist of randomly chosen iMethyl probes. We prepared 10 
probe sets of different sizes (i.e. 10, 15, 20, 30, 50, 75, 100, 150, 200, and 300). The weights were assigned as the 
number of each probe in each simulated set divided by the size of the set. For example, if P1 was chosen 6 times 
in the simulated set size of 30, the weight assigned to P1 would be 0.2. For each simulated set, random sampling 
was conducted for 5000 iterations to achieve statistical robustness. Finally, the resulting 50,000 sets of weights 
(5000 iterations for each of the 10 simulated sets) were applied to the corresponding beta values for the stratifi-
cation of patient samples according to the average methylation level in the survival analysis. The set of weights 
with the best performance was selected.

Principal component analysis and hierarchical clustering
For the principal component analysis, we calculated eigenvectors and eigenvalues of the 10 probes using singu-
lar value decomposition in the scaled beta value matrix using the prcomp R  function51. Then, the PCA plot for 
the two first principal components with the largest variance was plotted with the factoextra R  package52. The 
hierarchical clustering was performed across the samples and probes, and the heatmaps were plotted using the 
pheatmap R package (v1.0.12)53.

Data availability
All iMethyl data produced in this work is provided in the Supplementary Tables. For lung cancer ICB cohort, Jung 
et al.’s methylation chip data was available at Gene Expression Omnibus under GSE119144 and Kim et al.’s raw 
exome sequencing data was retrieved with the accession number EGAS00001002556. The raw exome sequencing 
data of our other ICB cohorts have been submitted to the European Genome-phenome Archive (EGA) under 
accession number EGAS00001007490 (https:// wwwdev. ebi. ac. uk/ ega/ studi es/ EGAS0 00010 07490) for breast 
cancer and EGAS00001007489 (https:// wwwdev. ebi. ac. uk/ ega/ studi es/ EGAS0 00010 07489) for ovarian cancer.

https://wwwdev.ebi.ac.uk/ega/studies/EGAS00001007490
https://wwwdev.ebi.ac.uk/ega/studies/EGAS00001007489
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