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Statistical analysis of synonymous 
and stop codons in pseudo‑random 
and real sequences as a function 
of GC content
Valentin Wesp 1, Günter Theißen 2 & Stefan Schuster 1*

Knowledge of the frequencies of synonymous triplets in protein‑coding and non‑coding DNA stretches 
can be used in gene finding. These frequencies depend on the GC content of the genome or parts 
of it. An example of interest is provided by stop codons. This is relevant for the definition of Open 
Reading Frames. A generic case is provided by pseudo‑random sequences, especially when they code 
for complex proteins or when they are non‑coding and not subject to selection pressure. Here, we 
calculate, for such sequences and for all 25 known genetic codes, the frequency of each amino acid 
and stop codon based on their set of codons and as a function of GC content. The amino acids can be 
classified into five groups according to the GC content where their expected frequency reaches its 
maximum. We determine the overall Shannon information based on groups of synonymous codons 
and show that it becomes maximum at a percent GC of 43.3% (for the standard code). This is in 
line with the observation that in most fungi, plants, and animals, this genomic parameter is in the 
range from 35 to 50%. By analysing natural sequences, we show that there is a clear bias for triplets 
corresponding to stop codons near the 5′‑ and 3′‑splice sites in the introns of various clades.

A frequently used method in gene finding is based on determining codon frequencies and comparing them with 
frequencies in known coding and non-coding  sequences1–3. For example, in protein-coding sequences, stop 
codons (a.k.a. translation termination codons) occur less often than expected just by chance. A generic case is 
provided by sequences without any bias. These can be considered as pseudo-random sequences, especially in 
the cases where they code for highly complex  proteins4.

Different definitions of sequence complexity have been  proposed5,6. Here, we use this term in its intuitive 
meaning, implying that complex sequences involve a high variability in composition (triplets or amino acids) 
and only few repeats (see also Discussion). Examples of proteins with high sequence complexity are enzymes and 
regulatory proteins, in contrast to structural proteins or ALU repeats, which often involve or consist of regions of 
biased composition containing simple sequence repeats, which lead to low  complexity7–10. Since the GC content 
differs considerably among species, it is worthwhile analyzing pseudo-random sequences under the side con-
straint that the percent GC is fixed and may differ from 50%. Obviously, the codon frequency depends on this 
parameter. For example, it was argued that the high GC content of grass genomes and the structure of the triplets 
encoding for alanine, GCN, may contribute to its frequent  occurrence10. Moreover, a positive linear correlation 
between the GC contents in coding sequences and in the genomic region containing these sequences was  found11.

Many organisms show differences in the frequency of occurrence of synonymous codons, a phenomenon 
called codon  bias12. This bias can vary not only from organism to organism, but also from gene to gene within 
the same  organism13. Here, we consider the case where the codon bias is only determined by the GC content. 
In particular, this implies the assumption that the GC skew and AT skew are zero. For example, isoleucine is 
encoded by AUA, AUU and AUC. If percent GC is low, then AUA and AUU occur more often than AUC. In 
contrast, a gene- or organism specific bias towards AUA or AUU is neglected here. It has indeed been found in 
human and mouse genes that the higher the GC content is, the higher is the usage of C. This is mainly seen in 
the third codon position (wobble base) and to some extent in the first  position11. However, since we here study 
pseudo-random sequences, we neglect the different effects on codon positions.
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Interestingly, also many non-coding sequences such as intergenic regions and constitutively spliced introns 
can be considered to be pseudo-random if they are subject to low selection pressure. In this context, it is worth 
mentioning that several lines of evidence suggest that novel genes (or their precursors, sometimes called proto-
genes) can emerge also from non-coding  regions14–16. Since start and end signals for transcription as well as 
splice sites are rather short, they are expected to occur frequently even in random  sequences14. This facilitates 
de novo emergence of genes. Tautz and  coworkers15 expressed clones with synthetically generated random 
sequences (as equimolar mixes of A, C, G and T) in Escherichia coli and showed that transcribed and translated 
random sequences could indeed have a high potential to become functional. In view of all the above-mentioned 
observations, we consider it useful to analyse highly complex sequences, which we assume to be quasi-random.

Several decades ago, Temple  Smith17 (especially well-known for the Smith-Waterman algorithm) calculated, 
for the standard genetic code (SGCode), the frequency of each amino acid based on its set of codons and as a 
function of GC content and determined the inherent Shannon  information18,19 for this amino acid frequency 
distribution. Furthermore, he calculated the GC content at which the Shannon information has its maximum. 
Hasegawa and  Yano20 extended this work by considering stationary second-order Markov chains. Mir et al.3 
introduced a geometric model for the evaluation of several genome statistics in bacteria, like ORF number and 
length distribution, in dependence on codon usage and GC content. For the special case of stop codons, we have 
presented a statistical analysis of codon distribution in dependence on GC content  previously2.

Here, we perform the above-mentioned statistical  analyses2,4,17 in more detail and extend them by consider-
ing 25 genetic codes. Although the SGCode and its codon assignments are predominantly used in almost all life 
 forms21,22, variations exist, for example, in some archaea, eubacteria (especially those with small genomes), yeasts 
as well as mitochondria and several types of  plastids23,24. As of August 2022, the National Center for Biotechnol-
ogy Information (NCBI) catalogued 24 alternative  codes25.

In particular, we determine several features in dependence on GC content, because that parameter differs 
from 50% in many genomes and the evolution of de novo genes depends on that  parameter16. Our analysis is 
aimed at two main applications: calculating the variability of proteins (expressed by Shannon’s information) and 
determining the frequency of translation termination codons. We show where the frequency functions reach their 
maxima, that is, for which GC content a given amino acid would occur most often in pseudo-random sequences. 
We also calculate how much information is contained in such sequences for each genetic code in dependence on 
GC content using Shannon’s entropy equation. In doing so, we consider the different codon numbers of the dif-
ferent amino acids and the stop codon. Therefore, the information content differs from what would be obtained 
by just considering the distribution of nucleotides. Additionally, we analyse the GC contents of the genomes of 
archaea, eubacteria, fungi, plants, protozoa, invertebrates, vertebrates, and viruses and compare them with the 
calculated GC content at maximum information.

The second, related goal of our paper concerns the distribution of stop codons. As mentioned above, in 
protein-coding sequences, those triplets occur less often than expected by chance. Thus, in the SGCode, for a 
GC content of 50%, a termination codon will appear less often than at every 64/3 ≈ 21st  triplet2,3. Accordingly, 
de novo genes should emerge more frequently in genomic regions with elevated GC content because these tend 
to involve fewer AT-rich stop  codons16. For our analysis, it is important that this average distance depends not 
only on GC content, but also on the genetic code used. The thraustochytrium mitochondrial code, for example, 
includes an additional stop codon, UUA, so that at 50% GC content every 16th codon would encode termination 
purely by chance. In the alternative flatworm mitochondrial code, there is only the “amber” triplet UAG, which 
would occur purely by chance at every 64th triplet. In the first part of our study, in which we analyse pseudo-
random sequences, we neglect the property of stop codons to occur less often in protein-coding sequences than 
expected by chance.

Stop signals are relevant in the definition of ORFs. In their most basic definition, ORFs are nucleotide 
sequences that are enclosed by a start and a stop codon, whose lengths are divisible by three and that do not 
have any other stop codons in  between3,28,29. While this definition is sufficient as a first step for gene finding 
in  prokaryotes2,3, it often fails to be applicable in eukaryotes due to the presence of  introns28,30. Most introns 
contain sequences that would be stop codons if in a coding region and/or cause shifts between reading frames. 
Henceforth, we use the term stop signal in the general case where it is not yet clear whether or not the sequence 
is coding a protein sequence.

A further problem with the traditional ORF definition is the occurrence of alternative start  codons28,31. A third 
problem is that the 5′ and 3′ untranslated regions are part of the gene and transcript while not being included in 
the start-to-stop  stretch32. For all of these reasons, an alternative ORF definition is often used, especially in gene 
finding software, saying that an ORF is delimited by two consecutive stop  codons4,28,33. Extending our analysis 
from pseudo-random sequences to natural genomes, we will here investigate, by empirical analysis, the stop signal 
distribution in introns of hundreds of genomes from several kingdoms of life. We compare those results to the 
predicted distribution for a given GC content. This is relevant for the question as to how far a predicted ORF 
according to the alternative definition extends into an intron, although mainly exonic sequences are searched 
for in gene finding.

Methods and data
Genetic codes
The mapping tables of the 25 known genetic codes are taken from the NCBI genetic code  databank25.

Frequencies of amino acids and stop signal in pseudo‑random sequences
We determine the frequency of each amino acid according to the equations presented by  Smith17, Pohl et al.2 
and Mir et al.3. Since we consider pseudo-random sequences, our calculations are independent of the reading 
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frame. According to Chargaff ’s second parity rule, the frequencies of the complementary bases in each strand 
are (almost) equally distributed, that is, P(A) ≈ P(U) and P(G) ≈ P(C)34–36. Therefore, the frequency of each base 
is dependent on the GC content – denoted here by g:

For pseudo-random sequences, statistical independence of the nucleotide positions can be assumed. Thus, 
the probability of a codon can be calculated by multiplying the frequency of each base in the triplet. For example, 
the frequency of the “amber” triplet UAG is as follows:

The expected frequency of an amino acid is calculated by summing up the probability of each codon by which 
it is encoded. In the analysis of pseudo-random sequences, we neglect that stop codons usually occur less often 
in protein-coding sequences than expected by chance. Thus, for the SGCode, the expected frequency of the stop 
signal is as  follows2:

This is done analogously for all canonical amino acids and genetic codes by calculating the frequencies for 
all GC contents (Supplement S4).

Each codon-to-amino-acid assignment is usually unique. In our calculations, we take into account that in 
some alternative codes, codon assignment is non-unique for some canonical amino acids or translation stop. For 
example, in the ascidian mitochondrial code, the codons AGA and AGG can code for glycine, arginine or serine. 
In the mitochondrial genome of Halocynthia roretzi, which uses that code, the tRNA with the anticodon UCU 
encodes glycine when the first uracil is a 5-carboxymethylaminomethyl-uridine  (cmnm5U)26,27.

In this case, the codon frequency is evenly split between the respective signals for simplicity’s sake. For the 
example mentioned above, AGA and AGG are assigned by 1/3 to each of the amino acids glycine, arginine, and 
serine. All cases of non-unique assignments are outlined in the Supplement S5.

Shannon’s entropy of genetic codes
Finally, we calculate the inherent information content of each code given the frequencies of each amino acid and 
the stop signal as a function of GC content using Shannon’s entropy  equation18:

where n is the number of all signals and pi is the frequency of amino acid i or the stop signal in pseudo-random 
sequences based on its codon number. In addition, for each genetic code, we numerically calculate at which GC 
content the maximum entropy is reached. This is in accordance with an optimality principle saying that complex 
proteins should have as much variability as possible (measured by Shannon’s information).

Impact on ORF definition
The probability of the absence of a stop codon in a stretch of c triplets for a given GC content is calculated, starting 
from any given  point2 (see  also37). Thus, the probability of a sequence involving c triplets and at least one stop 
signal for a given GC content is as follows (for the SGCode):

where PSGCode,Stop
(

g
)

 is given by Eq. (4).
To obtain the minimum required triplet length for a given sequence probability with at least one stop codon, 

we solve Eq. (6) for c:

We perform the same calculations for all other genetic codes and for all proteinogenic amino acids (Supple-
ment S6).
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RefSeq database (https:// ftp. ncbi. nlm. nih. gov/ genom es/ refseq/, 19/12/2022) are retrieved using a custom Python 
script (v3.10). All species names and RefSeq IDs are given in Supplement S7.

Genome GC content
The GC contents of the above-mentioned genomes are determined using the Bio.SeqUtils library of the Biopython 
package (v1.79). If the genome file of an organism contains more than one sequence (scaffolds, chromosomes, 
etc.), the average GC content over all sequences is taken.

Intron stop signal distribution
By data mining in the above-mentioned genomes, we examine the relative frequency of stop signals per triplet in 
all three frames of all introns near both splice sites (for intron with length n → 5′-splice site: positions at 1 to 3, 2 
to 4 and 3 to 5; 3′-splice site: positions at n − 4 to n − 2, n − 3 to n − 1 and n − 2 to n) as well as in the in-between 
(non-splice site) intron sequence. For the 5′- and 3′-splice sites of each intron, the stop signal frequencies are 
calculated by counting the number of stop codons in the three frames divided by the overall number of introns 
for this organism. For the intermediate sequences, the number of initial nucleotide positions is determined for 
each reading frame in all introns. For example, for two hypothetical introns with length five and seven, we can 
write {0, 1, 2, 0, 1} and {0, 1, 2, 0, 1, 2, 0}, where the numbers indicate the three reading frames. Now we can 
ignore the last two positions in each intron because they cannot form triplets. Next, we count the number of 
stop signals over all introns, for each frame separately. These counts are divided by the overall number of triplets 
(over all introns together) in the respective frame. In the above examples, that number equals three for frame 
zero (one coming from the first intron and two from the second), three for frame one and two for frame two.

To be able to define the three intron regions sufficiently (near 5′-splice site, near 3′-splice site and intermediate 
sequence), all introns with lengths less than 100 nt are removed for this analysis (Table 1).

Results
In the Results section, we focus on the amino acid (and stop codon) frequencies of the SGCode. The results for 
the 24 alternative codes are shown in Supplement S1.

Amino acid and stop codon frequencies for the standard genetic code
While Pohl et al.2 only calculated the frequency of stop codons (as a function of GC),  Smith17 did so for all amino 
acids. However, he had only shown the calculation for phenylalanine explicitly. Here, we show the calculations, 
by way of example, for the amino acids serine and lysine in the SGCode:

The equations for the remaining amino acids for the SGCode can be found in Table 2. Note that four formulas 
are cubic functions, which is understandable because the frequencies of three nucleotides are multiplied. How-
ever, the remaining formulas are quadratic functions because two cubic terms cancel each other (see Eq. (9)). 
Importantly, all amino acids for which the functions are quadratic are encoded by an even number of codons.

It is of interest to see where these functions reach their maxima. In the SGCode, the maximum is reached at 
five different positions for different amino acids, notably at GC contents of 0%, 33.33%, 50%, 66.67% and 100% 
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Table 1.  Number of organisms and introns for each clade as available from the NCBI Genome RefSeq 
database*. *Downloaded from ftp.ncbi.nlm.nih.gov/genomes/refseq/ (19/12/2022). Here, we only count 
introns with a minimum length of 100 bases and do not consider archaeal, bacterial, and viral introns.

Clade #Species #Introns

Archaea 1,027 –

Eubacteria 461 –

Protozoa 94 771,653

Fungi 481 1,605,788

Plants 157 6,873,069

Invertebrates 316 24,464,214

(Non-mammalian) Vertebrates 296 60,714,298

Mammals 189 38,186,671

Viruses 11,542 –

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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(Fig. 1). The maxima in the interior of the admissible interval, notably at 33.33% and 66.67%, correspond to 
methionine and tryptophan, respectively. Both amino acids only have one codon. This means, for example, that 
in a random sequence, methionine (and, thus, the start codon) occurs with the highest frequency of 1.85% for 
a GC of 33.33% (in contrast to 1/64 ≈ 1.56% at a GC content of 50%).

Table 2.  Frequency equations for each amino acid (including stop signal) in random sequences for the 
SGCode, their maximum frequency, and GC content where that is reached.

Amino acid Frequency equation Max GC content Max frequency

Asn, Lys, Phe, Tyr (1−g)
2

8
0.0 0.125

Leu 1−g2

8
0.0 0.125

Stop (1−g)
2
(1+g)
8

0.0 0.125

Ile (1−g)
2
(2−g)
8

0.0 0.25

Met g(1−g)
2

8
0.33 0.0185

Asp, Cys, Gln, Glu, His g(1−g)
8

0.5 0.03125

Thr, Val g(1−g)
4

0.5 0.0625

Ser 3g(1−g)
8

0.5 0.09375

Trp g2(1−g)
8

0.67 0.0185

Ala, Gly, Pro g2

4
1.0 0.25

Arg g(1+g)
8

1.0 0.25

Figure 1.  Frequencies of all amino acids (including stop signal) as encoded by the SGCode in random 
sequences as a function of GC content between 0 and 100%. For better visibility, the 20 amino acids and stop 
signal were grouped into four sets. The dashed lines mark the maximum achieved frequency for each group of 
synonymous codons.
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At 0% GC content, obviously, only those amino acids encoded by at least one codon only involving A and/
or U, that is, asparagine, isoleucine, leucine, lysine, phenylalanine, tyrosine, and the stop signal can occur. Their 
frequency then is 12.5%, except for isoleucine with 25%. Isoleucine is the only amino acid encoded by three 
different codons: the purely AU-codons AUA and AUU as well as AUC.

Aspartic acid, cysteine, glutamic acid, glutamine, histidine, serine, threonine, and valine reach their maximum 
at 50% GC content. Threonine and valine then have a frequency of 6.25% (encoded by four codons) and serine 
has 9.375% (encoded by six codons) while the remaining amino acids (encoded by two codons) have 3.125%. 
Finally, at 100% GC content, only alanine, arginine, glycine, and proline can occur, notably with a frequency of 
25%. They are all encoded by four codons (two of which are pure GC codons), except arginine, which is encoded 
by six.

For the 24 other genetic codes considered, apart from the maxima of expected frequencies at 0%, 33.33%, 
50%, 66.67% and 100% GC (see above), eight alternative maxima arise for the amino acids cysteine, glutamine, 
leucine, serine and tryptophan. For example, cysteine and glutamine reach their maxima at 42.26% GC content 
in the euplotid nuclear and ciliate-dasycladacean-hexamita nuclear codes, respectively. Moreover, GC values where 
maxima are situated, include 18.35%, 45.14%, 46.48%, 47.74%, 53.52%, 54.86%, and 57.74%. Interestingly, every 
amino acid in the ascidian mitochondrial, invertebrate mitochondrial, rhabdopleuridae mitochondrial, vertebrate 
mitochondrial, and yeast mitochondrial codes is encoded by at least two codons and all maxima are reached at 
0%, 50% or 100% GC (for more detail, see Supplement).

For gene finding and for the stop-to-stop ORF definition, the frequency of stop codons is of interest. As 
mentioned above, at 50% GC content, on average every 64/3 ≈  21st codon in a random sequence would be a ter-
mination codon just by chance alone. However, the distance fluctuates around this average value according to a 
monotonic decreasing exponential distribution with respect to the  distance4. The curve of the function given in 
Eq. (7) is shown in Fig. 2. For GC contents tending to 100%, stop signals occur less and less often. Mathematically, 
the cubic polynomial in the denominator in Eq. (7) then tends to zero, so that the argument of the logarithm 
tends to one and the reciprocal of the logarithm diverges. Thus, the curve grows very steeply near 100% GC.

We can calculate the minimum sequence length so that at least one stop codon occurs with a probability of 
95%. At 50% GC content and with the SGCode, a length of 63 triplets (or 189 nt) is obtained (Fig. 2). Since the 
average length of introns in the human genome, for example, equals about 1806 triplets (5419 nt)38,39 and is, thus, 
much longer than 63 triplets, introns practically always contain a stop signal in any reading frame.

For the alternative codes, the values at a GC content of 50% are given in Supplement S1. The lowest length 
of 47 triplets is calculated for the thraustochytrium mitochondrial and vertebrate mitochondrial genetic codes. 
These are the only two codes where the stop signal is encoded by an additional triplet (compared to the SGCode), 
namely UUA, which reduces the required length. This is in contrast to the karyorelict nuclear genetic code where 
the stop signal is only encoded by the “opal” triplet UGA, which can also be transcribed into tryptophan. In this 
case, the highest length of 382 triplets is obtained. Besides those two, four additional lengths are calculated (see 
Supplement S1).

Maximum potential information at around 43% GC
Using the expected amino acid (including stop signal) frequencies of the various genetic codes as input for Shan-
non’s entropy, we determined their potential information content and at what GC content the codes reach their 
maximum entropies (Fig. 3). The optimal GC content for the SGCode is 43.3%. The entropy value then amounts 
to 4.24 bits, which is near the maximum possible value of  log2(20) ≈ 4.32 bits achieved upon equal distribution 

Figure 2.  Number of triplets in a random sequence so as to contain at least one stop codon with a probability 
of 95% using the SGCode as a function of GC content. The horizontal and vertical dashed lines indicate the 
number of triplets for GC contents of 14.8% (28 triplets) as found in the protozoon Leishmania braziliensis, 50% 
(63 triplets) as found in E. coli and 70.3% (159 triplets) in the slime mold Fonticula alba.
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of amino acids. For the alternative codes, the values are given in Supplement S2. The lowest GC content implying 
maximum information is for the yeast mitochondrial code with 38.11% (the only code for which the optimum 
is reached at a GC below 40%), while the highest is for the alternative flatworm mitochondrial genetic code with 
45.61%. Note that at 100% GC for all genetic codes, the Shannon entropy equals two bits because only the four 
amino acids alanine, arginine, glycine, and proline can be encoded then and are equally distributed. On the other 
hand, at 0% GC content, the entropies are between 2.25 bits (for the alternative flatworm mitochondrial genetic 
code) and 3 bits (for the ascidian mitochondrial, invertebrate mitochondrial, vertebrate mitochondrial and yeast 
mitochondrial genetic codes).

GC contents of fungi, plants and metazoa cluster around 40%
Looking at the distribution of genomic GC contents across the clades, it can be seen that in complex organisms, 
notably fungi, plants, invertebrates, and vertebrates, the genomic GC contents are mainly in the range from 35 to 
50% (Fig. 4). Especially in non-mammalian and mammalian vertebrates, around 44.6% and 65.6% of genomes, 
respectively, have a GC content between 40 and 45% which coincides with the maximum obtained information 
content in the SGCode. In contrast, GC contents in the genomes of less complex organisms, notably archaea, 
eubacteria, protozoa, and viruses, are distributed across a GC range from 10 to 70%. Extreme cases are the pro-
tozoon Leishmania braziliensis with a GC content of 14.8% and the slime mold Fonticula alba with a GC content 
of 70.3%. Less than 50% of lower genomes have GC contents between 35 and 50% except for viral genomes.

5′ and 3′‑splice sites are biased for stop signals
In view of the stop-to-stop definition of ORFs, we looked at the stop signal frequencies in introns of fungi, plants, 
protozoa, invertebrates, and vertebrates. All six groups of organisms show very similar results (Fig. 5). There 
seems to be a clear bias in introns near the 5′- and 3′-splice sites (i.e., acceptor and donor splice sites, respec-
tively) for the occurrence of a stop signal. In the genomes of invertebrates, non-mammalian, and mammalian 
vertebrates over 60% of introns contain a stop signal in nucleotide positions 2–4 downstream of the 5′-splice 
sites (i.e., at the next triplet position in frame 1). In introns of fungi, plants and protozoa, such triplets are also 
enriched at the same position but with lower frequencies. Near 3′-splice sites in introns of plants, invertebrates, 
non-mammalian, and mammalian vertebrates, stop signals appear in frame 2 with frequencies between 20 and 

Figure 3.  Entropies of 25 genetic codes for their given codon assignments and GC contents between 0 and 
100% as calculated by Shannon’s entropy Eq. (5). The dash-dotted line indicates the GC content (43.3%) at 
which the SGCode reaches its entropy maximum (4.24 bits). The abbreviations are as follows: AFM, Alternative 
Flatworm Mitochondrial; AY, Alternative Yeast; AM, Ascidian Mitochondrial; BAPP, Bacterial-Archaeal-Plant 
Plastid; BN, Blastocrithidia Nuclear; CDSG, Candidate Division SR1 and Gracilibacteria; CMUT, Cephalodiscidae 
Mitochondrial UAA-Tyr; CM, Chlorophycean Mitochondrial; CDHN, Ciliate-Dasycladacean-Hexamita Nuclear; 
CN, Condylostoma Nuclear; EFM, Echinoderm-Flatworm Mitochondrial; EN, Euplotid Nuclear; IM, Invertebrate 
Mitochondrial; KN, Karyorelict Nuclear; MN, Mesodinium Nuclear; MPCMMS, Mold-Protozoan-Coelenterate 
Mitochondrial and Mycoplasma Spiroplasma; PTN, Pachsyolen Tannophilus Nuclear; PN, Peritrich Nuclear; RM, 
Rhabdopleuridae Mitochondrial; SOM, Scenedesmus Obliquus Mitochondrial; SGCode, Standard Genetic Code; 
TM, Thraustochytrium Mitochondrial; TrM, Trematode Mitochondrial; VM, Vertebrate Mitochondrial; YM, Yeast 
Mitochondrial.
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30%. Frequencies are considerably higher in protozoan and fungal introns, notably 39.4% and 38.8%, respectively. 
This finding corroborates the suitability of the ORF definition in terms of stop-to-stop.

For the in-between sequences, the stop signal frequencies determined by data mining range from around 
4% to around 6% per triplet. The calculated probabilities given the average GC content over all intermediate 
sequences and the SGCode range from 5.2% (mammals) to 7.5% (invertebrates).

Discussion
Here, we have calculated the frequencies of all groups of synonymous codons in pseudo-random sequences in 
dependence on GC content. We neglected any codon bias apart from that resulting from the varying GC content. 
Following earlier  approaches4,17, we use pseudo-random sequences as a proxy for highly complex DNA sequences 
such as encoding enzymes or regulatory proteins (coding) or introns (non-coding). It should be noted, however, 
that a random sequence need not have maximum complexity (i.e., Kolmogorov complexity)40. A long random 
sequence can contain a repeat like AAAA, while this cannot occur in the maximally complex sequence because 
it can be compressed to 4A.

In our calculations, we used Chargaff ’s second parity rule saying that the frequencies of G and C are equal 
in each strand, and so are those of A and T. However, this rule is not fulfilled in mitochondria, plastids, single-
stranded viral DNA genomes and (single- or double stranded) viral RNA  genomes41,42. Therefore, that parity rule 
may not be valid in all alternative genetic codes. For simplicity’s sake, we ignored this feature here.

Based on the calculated frequencies, we have determined the potential information entropies. In the Shannon 
formula, we have used overall frequencies of amino acids (summed over the synonymous codons). It is worth 
mentioning that the formula used by  Zeeberg11 differs in that a double sum over amino acids and over synony-
mous codons was used, which implies that the Shannon information is calculated on the basis of the frequencies 
of all codons. The mathematical difference is that the logarithm is calculated for the different amino acids in 
our approach (tracing back  to17) and for the different codons in the latter approach. Therefore, the maxima are 
reached at different GC contents. In our calculations, the entropies reach their maxima between GC contents 
of about 38% and 46%. The GC content of several mammals, birds and reptiles using the SGCode are indeed 
between 40 and 50%43. For example, the GC content of the human genome is 40.9%44 and, therefore, only about 
2% below the optimal value for the SGCode.

An interesting outcome is that the optimal GC contents do not differ considerably from each other for dif-
ferent genetic codes. Moreover, although the amino acids are not equally distributed, the maximum informa-
tion content is very close to the maximum possible value of 4.32 bits which would be achieved in the case of 
equipartition. Importantly, the region around the maximum entropy (at the amino acid level) of all genetic 
codes is relatively flat. For example, the calculated information in the SGCode for the plant Arabidopsis thaliana 

Figure 4.  Percentages of organisms for the clades archaea, bacteria, protozoa, fungi, plants, invertebrates, non-
mammalian vertebrates, mammalian vertebrates and viruses with given genomic GC contents binned in 5% 
intervals. For the numerical data, see Supplement S3.
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and the green alga Chlamydomonas reinhardtii with GC contents of 36% and 64%45, respectively, is still high, 
notably about 4.11 bits. A similar pattern can be seen for all the other genetic codes. Even at a GC content as low 
as 28%, none of the entropies of any genetic code fall below 4 bits. Due to the flat shape of the maxima, genetic 
codes allow some flexibility in the composition of the nucleotide structure of genomes while still providing a 
high information encoding.

In addition to sorting out GC contents from the literature, we extracted such values also from all the genomes 
in the NCBI Genome RefSeq database. Thus, we were able to show that in complex organisms, genomic GC 
contents cluster in the regions where the SGCode reaches its maximum information content, namely in range of 
35% to 50% GC content. These findings support the hypothesis put forward here that evolution has optimized 
the GC content to maximize variability of amino acid sequences.

However, it is unclear whether the GC content and the nucleotide structure of a genome have been mainly 
adapted during evolution to encode as much information as possible or some other mechanisms play key roles. 
It is worth noting that there are species with GC contents lower than 20% or greater than 70%. For example, 
the values in bacteria can range from as low as 17% (Carsonella ruddii) to as high as 74% (Anaeromyxobacter 
dehalogenans)46,47. Low GC contents can be explained by GC to AT transitions due to methylation of cytosine 

Figure 5.  Frequencies of stop signals in the first and last three triplets as well as the remaining sequence for 
all three frames derived from the introns of genomes of the six clades protozoa, fungi, plants, invertebrates, 
mammalian vertebrates and non-mammalian vertebrates (Table 1). ‘5′-flank’ (blue) indicates intron positions 
1 to 3, 2 to 4 and 3 to 5. ‘3′-flank’ (red) indicates intron positions n − 4 to n − 2, n − 3 to n − 1 and n − 2 to n. 
‘Rest seq’ (green) indicates the average stop signal frequency in the intermediate intron sequences between 
both flanks from positions 6 to n − 5. ‘F0’ − ‘F2’ indicate the frames. The dashed line indicates the probability 
calculated with Eq. (4) given the average GC content of each in-between sequence averaged over all sequences. 
For the numerical data, see Supplement S3.
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and subsequent deamination to thymine. This has been shown to be one of the most common mutations in both 
prokaryotes and  eukaryotes48–50. However, in many genes, this is counteracted by biased gene conversion leading, 
on average, to a higher GC content than in non-coding  regions51,52. In general, regions with high GC contents 
are associated with increased  transcription53.

A further cause for GC drift may be related to viral defence mechanisms. Bacteria are able to discriminate 
between their own and foreign DNA based on differences in GC  content54. It was also shown that bacteriophages 
try to mimic the GC contents of their host to evade this mechanism whereas the same could not be seen for non-
bacteria-infecting  viruses55. For example, the GC contents of vertebrate viruses can range from 33 to 70%56. At 
the same time, in our viral dataset, the majority of viruses have a GC content of 40–45% which also coincides 
with the GC content of most vertebrates.

An important point is that different amino acids imply different metabolic costs in their synthesis (in terms 
of ATP and carbon). These costs can be computed by metabolic network  analyses57,58. A compromise needs to be 
found between maximum variability and minimum costs. Interestingly, there is an analogy to thermodynamics in 
that the minimization of free energy also implies a trade-off between maximum entropy and minimum  energy59. 
This factor is implicitly included in our analysis by the different codon numbers of the amino acids. Amino acids 
such as tryptophan and tyrosine that are “costly” in terms of carbons and energy have lower codon numbers and, 
hence, occur less frequently in proteomes than “cheap” amino acids such as glycine and alanine. A correlation 
between metabolic costs of amino acids and codon bias was  found58. In particular, it can be hypothesized that 
the factors influencing the number of codons during the evolution of genetic  codes60,61, include metabolic costs 
of amino acids. It would be interesting in future studies to consider the costs more explicitly.

As a second application, we analysed the frequency of stop signals. Considering ORFs of a minimum length of 
100 triplets, Pohl et al.2 showed that, with a significance level of p = 0.05, random and non-random distributions of 
stop signals can be distinguished below a GC content of 61.8%. Here, we have calculated that in pseudo-random 
sequences, such triplets occur often enough at those GC contents so that any intron (in the typical length range) 
is very likely to involve at least one of them in any reading frame. This supports the ORF definition in terms of 
stop-to-stop28. As mentioned in the introduction, Pohl et al.2 used their method to search in prokaryotes since 
their genomes do not contain any introns and, therefore, splicing is not an issue. It is worth noting that, using 
the stop-to-stop definition, the method is also applicable to eukaryotic genomes.

To compare our statistical analysis concerning the occurrence of stop signals with real sequence data, we 
performed data mining and looked at the distribution in the intron sequences of six clades. Although splicing 
and subsequent frameshifts pose a problem, we are able to show that there is a bias towards stop signals encoding 
near the 5′-splice and 3′-splice sites. At the same time, the frequencies in the other frames and the intermediate 
sequences clearly show depletion of stop codons. This increases the applicability of the stop-to-stop definition 
of ORFs even more.

Our results are further supported by the fact that a very common splice site motif in introns is GT…AG62. The 
thymine in the 5′-splice site is often followed by an adenine or guanine which gives the canonical GTR  motif63. 
Since two of the three stop codons are TAA and TGA, two of the three required nucleotides are already provided 
by the 5′-splice site motif. Thus, there is a considerable probability that a stop signal is formed by the triplet 
starting at the second nucleotide of the intron sequence just by chance alone. At the 3′-splice site, the adenine is 
often preceded by a cytosine or thymidine, which gives the canonical YAG  motif64. Similar to the 5′-splice site 
motif, there is a considerable probability that the YAG motif forms the remaining stop codon TAG in the last 
three nucleotides of the intron sequence just by chance alone. Overall, this fact can potentially be used in gene 
finding to ‘hop’ from exon to exon by following consecutive stop codons, the first one upstream of an exon (i.e., 
at the end of the preceding intron or in the 5′UTR) and the next one at the beginning of the following intron or 
the canonical termination of the final exon.

An interesting extension of our analysis is to take into account that, in many species including humans, the 
GC content varies considerably along their genome. Moreover, simulating the dynamics of approaching the 
distribution of synonymous codons at given GC content is an interesting topic for future studies. In addition 
to gene finding, our results may be relevant for applications in synthetic biology. For example, when synthetic 
genomes are  constructed65,66, it is advantageous to optimize the GC content so as to maximize their inherent 
information (in the sense of variability) or to enrich specific amino acids of interest.
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