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Investigating the prognostic 
value of mTORC1 signaling 
in bladder cancer via bioinformatics 
evaluation
Xin Yu 1,4, Wenge Li 2,4, Shengrong Sun 1* & Juanjuan Li 1,3*

Bladder cancer, a prevalent and heterogeneous malignancy, necessitates the discovery of pertinent 
biomarkers to enable personalized treatment. The mammalian target of rapamycin complex 1 
(mTORC1), a pivotal regulator of cellular growth, metabolism, and immune response, exhibits 
activation in a subset of bladder cancer tumors. In this study, we explore the prognostic significance 
of mTORC1 signaling in bladder cancer through the utilization of bioinformatics analysis. Our 
investigation incorporates transcriptomic, somatic mutation, and clinical data, examining the 
mTORC1 score of each sample, as well as the enrichment of differentially expressed genes (DEGs), 
differentiation characteristics, immunological infiltration, and metabolic activity. Our findings reveal 
that elevated mTORC1 levels serve as an adverse prognostic indicator for bladder cancer patients, 
exhibiting a significant association with Basal-type bladder cancer. Patients with heightened mTORC1 
activation display heightened levels of pro-carcinogenic metabolism. Additionally, these individuals 
demonstrate enhanced response to immunotherapy. Finally, we develop an mTORC1-related 
signature capable of predicting the prognosis of bladder cancer patients.The signature offers novel 
mTORC1-related biomarkers and provides fresh insights into the involvement of mTORC1 in the 
pathogenesis of bladder cancer.

Abbreviations
mTORC1  Mammalian target of rapamycin complex 1
Raptor  Regulatory-associated protein of mTOR
mLST8  Mammalian lethal with Sec13 protein 8
PRAS40  Proline-rich Akt substrate of 40 kDa
DEPTOR  DEP-domain-containing mTOR-interacting protein
S6K1  S6 kinase 1
4EBP1  4E-binding protein 1
RNA-seq  RNA sequencing
FPKM  Fragments per kilobase of exon per million mapped fragments
TCGA   The Cancer Genome Atlas
TPM  Transcripts per million
MAF  Mutation annotation format
scRNA-seq  Single-cell RNA-seq
GSVA  Gene set variation analysis
MsigDB  Molecular signatures database
DEGs  Differentially expressed genes
FC  Fold change
GO  Gene ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
GSEA  Gene set enrichment analysis

OPEN

1Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, 
Wuhan 430060, Hubei Province, People’s Republic of China. 2Department of Oncology, Shanghai Artemed 
Hospital, Shanghai, People’s Republic of China. 3Department of General Surgery, Taikang Tongji (Wuhan) Hospital, 
322 Sixin North Road, Wuhan 430050, Hubei Province, People’s Republic of China. 4These authors contributed 
equally: Xin Yu and Wenge Li. *email: sun137@sina.com; snowy1150219@sina.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-49366-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22066  | https://doi.org/10.1038/s41598-023-49366-w

www.nature.com/scientificreports/

IC50  Half-maximal inhibitory concentration
mTORC1RS  MTORC1-related signature
OS  Overall survival
KM  Kaplan–Meier
EMT  Epithelial-mesenchymal transition
TIME  Tumor immune microenvironment
EGFR  Epidermal growth factor receptor

Bladder cancer is a prevalent malignancy that poses a significant challenge regarding cancer-related morbidity 
and mortality  worldwide1. Despite improvements in treatment options, the disease remains difficult to manage 
due to its high recurrence and metastasis rates and heterogeneity. Hence, it is essential to identify pertinent 
biomarkers that have a predictive significance for treatment response and clinical consequences in an attempt 
to develop personalized therapeutic  approaches2.

The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved serine/threonine kinase, 
which exerts crucial effects on regulating multiple fundamental cellular processes. These cellular processes 
include but are not limited to cell growth, proliferation, metabolism, and autophagy, which are critical for the 
proper functioning of  cells3,4. mTORC1 acts as an essential regulator of cellular energy and nutrient balance, serv-
ing as a vital sensor of intracellular nutrient and energy status. By integrating and interpreting signals from vari-
ous sources, including growth factors, amino acids, glucose, and oxygen, mTORC1 orchestrates critical cellular 
processes such as cell growth, proliferation, maintenance of homeostasis, and cell  death5–8. It is composed of sev-
eral essential components that work in coordination to regulate the activity of the complex. The core component 
of the complex is the mTOR kinase, which is responsible for the phosphorylation of downstream targets. Other 
critical components include the regulatory-associated protein of mTOR (Raptor), which contributes to recruiting 
substrates to mTORC1, and mammalian lethal with Sec13 protein 8 (mLST8), which is involved in stabilizing 
the complex structure. Additionally, the complex contains a proline-rich Akt substrate of 40 kDa (PRAS40), a 
negative regulator that inhibits mTORC1 activity until it is phosphorylated by Akt, and DEP-domain-containing 
mTOR-interacting protein (DEPTOR), another negative regulator that binds to mTORC1 to inhibit its  activity6.

When activated by signals from growth factors or nutrients, mTORC1 triggers the synthesis of proteins in cells 
by activating a few downstream molecules like S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 
4E-binding protein 1 (4EBP1) through phosphorylation. This process contributes to regulating cell growth and 
 metabolism9. mTORC1 also modulates the tumor microenvironment by regulating angiogenesis, inflamma-
tion, and immune response, which in turn promotes tumor progression and  metastasis3,4,9. In bladder cancer, 
mTORC1 signaling is activated in a subset of tumors and is associated with poor  prognosis10. Despite extensive 
research on the role of mTORC1 in cancer, its precise functional contribution to bladder cancer remains unclear.

This research aims to examine the physical and genetic attributes of bladder cancer with mTORC1 signaling 
and assess how this may affect the patient’s overall health and the surrounding immune system. Additionally, we 
aim to develop and validate a prognostic signature based on mTORC1 signaling pathway activity, which could 
serve as a valuable tool for individualized bladder cancer management.

Materials and methods
Data processing
The study’s framework design is illustrated in Fig. 1. We acquired RNA sequencing (RNA-seq) information from 
408 patients with bladder cancer by obtaining fragments per kilobase of exon per million mapped fragments 
(FPKM) values and matching them with clinical data from The Cancer Genome Atlas (TCGA) through the Xena 
data portal of UCSC. After retrieving the RNA-seq data, the FPKM values were depicted as the transcripts per 
million (TPM). To analyze somatic mutation data, we utilized the R package  TCGAbiolinks11 to obtain the data 
in the Mutation Annotation Format (MAF), which was further analyzed by using the R package maftools. For 
the single-cell RNA-seq (scRNA-seq) analysis, a dataset of bladder cancer  (GSE135337912) was utilized, which 
contained scRNA-seq data. Furthermore, the R package  IMvigor210CoreBiologies13 was used to obtain compre-
hensive expression data and clinical information for 348 bladder cancer patients who underwent atezolizumab 
treatment.

Computation of enrichment scores of gene signatures
Utilizing transcriptomic data, we employed a nonparametric and unsupervised method called Gene Set Variation 
Analysis (GSVA) to predict the activity of specific  pathways14. We obtained the gene signature for mTORC1 sign-
aling from the essential gene set collection in the Molecular Signatures Database (MsigDB) through their online 
platform (https:// www. gsea- msigdb. org/ gsea/ downl oads. jsp). We collected various gene signatures for bladder 
cancer research, including molecular subtype-specific  signatures15, metabolism gene sets from KEGG database 
 collections16 in MsigDB, and drug-specific gene signatures from the study of Hu et al.17. Some of these signa-
tures are associated with pathways that are inhibited by the immune system, while others are linked to targeted 
therapies that have been developed for specific genetic mutations. Additionally, there are gene signatures that 
predict how well a patient may respond to radiotherapy. All gene sets can be found in Supplementary Table S1.

Screening and functional annotation of differentially expressed genes (DEGs)
Limma R package was applied to identify DEGs that were either upregulated or downregulated with p < 0.05 
and a fold change (FC) > 3/2 as screening criteria. We then utilized the R package ClusterProfiler to perform 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and hallmark gene set enrichment 

https://www.gsea-msigdb.org/gsea/downloads.jsp
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analysis. Additionally, we performed gene set enrichment analysis (GSEA) using the same R package to examine 
gene sets that were significantly enriched.

Identification of bladder cancer subtypes based on molecular characteristics
We utilized the ConsensusMIBC R package to classify bladder cancer into different molecular subtypes based 
on various molecular subtype systems such as TCGA, MDA, Baylor, CIT, Lund, and UNC subtypes.

Evaluation of immune cell infiltration
To analyze the immune microenvironment of bladder cancer, we utilized CIBERSORT, a tool that evaluates the 
proportions of 22 distinct immune cell types that infiltrate into the tumors in each sample. We also obtained 
cancer immunity cycle gene sets from a previous study conducted by Xu et al.18 and calculated the gene set 
enrichment score using GSVA. This allowed us to measure the activity of genes involved in the different stages 
of the cancer immunity cycle in each sample.

Chemotherapy response prediction
We estimated the half-maximal inhibitory concentration (IC50) of common chemotherapeutic agents using 
the "pRRophetic" R package. Additionally, we screened the drug-target genes using the Drugbank  database19.

Figure 1.  The framework design of the study.
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Construction of the mTORC1-related signature (mTORC1RS) and the mTORC1RS-related 
nomogram
The mTORC1RS was developed using data from the TCGA-BLCA study. Genes with differential expression levels 
in low and high mTORC1 signaling groups were identified using univariate Cox regression analysis to determine 
genes associated with overall survival (OS). The candidate genes were further analyzed using LASSO regression 
to select the most relevant ones for building the mTORC1RS model. LASSO regression was then employed to 
select the most important genes. Thereafter, the multiple regression model and the regression coefficients of 
the survival-associated genes were determined by multivariate Cox regression analysis. The mTORC1RS was 
developed using a mathematical formula, which is as follows: Risk score = Σn1 coefi*xi. Using the expression 
levels of the identified genes, we computed the individual patient score for risk based on a specific formula. The 
risk score was utilized to classify patients into high-risk or low-risk groups using the mTORC1RS. The median 
risk score was used as a threshold to divide patients into two groups, with those above the threshold classified 
as high-risk and those below classified as low-risk.

To find possible independent indicators of prognosis, multivariate Cox analysis was performed on both the 
mTORC1RS grouping and clinical variables. After that, a nomogram related to mTORC1RS was constructed 
utilizing the regplot software, with age, stage, and mTORC1RS group as parameters. This nomogram can provide 
an estimation of survival probability for bladder cancer patients based on their age, cancer stage, and mTOR-
C1RS group.

scRNA-seq data analysis
We used the Seurat R package to perform unsupervised clustering of individual cells based on the read count 
matrix as input. Data quality control, cell clustering, and annotation were executed based on the scRNA-seq 
data as previously  described20. For intercellular communication network-related analysis, the iTalk R package 
was employed.

Statistical analysis
To investigate the relationships between different variables, Pearson correlation analysis was employed. For 
continuous variables that conform to a normal distribution, a t-test was conducted to compare them among 
binary groups. The Kruskal–Wallis test was conducted to evaluate differences among more than two groups. 
To determine whether there were statistically significant differences between the subgroups in each dataset, the 
log-rank test was utilized, and Kaplan–Meier (KM) method was used to generate survival curves. All statistical 
analyses were conducted using SPSS 22.0,  SangerBox21, and R 4.0.0. The p values obtained were two-tailed, and 
values less than 0.05 were taken as evidence of statistical significance.

Results
mTORC1 signaling in bladder cancer
Initially, we assessed the mTORC1 signaling scores of both normal and bladder cancer samples. We analyzed 
the TCGA dataset and observed that the mTORC1 signaling score in normal tissues was considerably lower 
than that in breast cancer tissue samples (Fig. 2A). We analyzed the expression of 200 mTORC1 signaling genes 
and demonstrated that 54% (108/200) of genes displayed high expression level in bladder cancer samples, while 
17.5% (35/200) showed low expression levels (Supplementary Fig. S1). In addition, we investigated the association 
between clinical factors and mTORC1 signaling in bladder cancer patients. Our results indicated that mTORC1 
signaling was significantly overactivated in older patients (Fig. 2B). However, we did not observe any significant 
difference in mTORC1 signaling scores between patients of different stages and genders (Fig. 2C,D).

After calculating the mTORC1 signaling scores for all patients, they were divided into two groups, one with 
high scores and the other with low scores, using the median score (Supplementary Fig. S2). The high mTORC1 
group showed less favorable clinical outcomes compared to the low mTORC1 group, as revealed by the KM 
analysis (Fig. 2E). Additionally, the multivariate Cox regression analysis revealed that mTORC1 signaling was a 
significant independent predictor of prognosis in patients with bladder cancer (Fig. 2F).

Identification of DEGs and their functional annotations
After identifying the DEGs, we found that 2044 genes were upregulated and 957 genes were downregulated in 
the high mTORC1 signaling group (Supplementary Fig. S3A, B). To further understand the biological functions 
of these DEGs, we conducted functional annotations using the KEGG analysis. Our results indicated that the 
upregulated DEGs were primarily associated with "Cytokine-cytokine receptor interaction," "Phagosome," and 
"Human T-cell leukemia virus 1 infection" pathways (Fig. 3A). After identifying the DEGs, we performed a GO 
analysis to explore the biological activities linked to the upregulated DEGs. The results revealed that these genes 
were significantly enriched in "Cytosol," "Response to stress," and "Vesicle" (Fig. 3B). Furthermore, a hallmark 
gene sets analysis was performed, which indicated that the "E2F Targets," "G2M Checkpoint," and "mTORC1 
signaling" pathways were enriched among the DEGs (Fig. 3C). In terms of the downregulated DEGs, the analysis 
of KEGG pathway indicated that these genes were mostly involved in "Metabolic pathways," "Thermogenesis," and 
"Chemical carcinogenesis" (Fig. 3D). The GO analysis revealed that the highly enriched pathways were related 
to the "Extracellular region," "Extracellular region part," and "Extracellular space" (Fig. 3E). Additionally, the 
hallmark gene sets analysis indicated that "Myogenesis," "Xenobiotic metabolism," and "Estrogen response late" 
were enriched in these downregulated DEGs (Fig. 3F).

To further investigate the association between mTORC1 signaling and bladder cancer, we conducted a GSEA 
and found that patients with elevated mTORC1 signaling had a higher enrichment of the KEGG pathways 
"Pathogenic Escherichia coli infection," "Pyrimidine metabolism," and "Glioma," as well as the hallmark gene sets 
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"mTORC1 signaling," "Unfolded protein response," and "UV response" (Fig. 3G,H). These findings suggest that 
mTORC1 signaling plays a significant role in bladder carcinogenesis by regulating metabolism and immunity.

Association between mTORC1 signaling and molecular characteristics
Bladder cancer is known to have distinct molecular subtypes that have different prognoses and responses to 
different treatments, including immunotherapy and  chemotherapy15,22. The study investigated the correlation 
between mTORC1 signaling and molecular subtypes of bladder cancer (Table 1). The analysis demonstrated that 
mTORC1 signaling was highly expressed in the basal-type bladder cancer subtype, as identified by six distinct 
computational models for predicting molecular subtypes. These findings suggest that targeting mTORC1 signal-
ing may be an encouraging therapeutic option for patients with basal-type bladder cancer. In addition, a detailed 
molecular analysis of patients with high mTORC1 signaling showed higher basal differentiation, epithelial-
mesenchymal transition (EMT), immune differentiation, myofibroblasts, interaction response, mitochondria, 
and keratinization scores compared to patients with low mTORC1 signaling. On the other hand, urinary differ-
entiation, Ta pathway, and luminal differentiation scores were lowered in patients with high mTORC1 signaling 
(Fig. 4A,B). These results suggest that mTORC1 signaling is associated with specific molecular characteristics 
in bladder cancer.

Correlations between mTORC1 signaling and metabolism pathways
The study also investigated the association between mTORC1 signaling and metabolic pathways. The analysis 
revealed that patients with high mTORC1 signaling had significantly elevated metabolic activity (Fig. 5). Among 
the 70 KEGG metabolic pathways examined, 44 were upregulated, while 20 were downregulated in patients with 
high mTORC1 signaling. Moreover, patients with high mTORC1 signaling displayed increased activation of 
glycolysis, the pentose phosphate pathway, and nucleotide metabolic processes. These metabolic pathways have 
been known to promote malignant tumor progression, suggesting that the activation of mTORC1 signaling may 
be involved in the metabolic reprogramming of bladder cancer  cells23. It was observed that patients with high 
mTORC1 signaling exhibited downregulation of linoleic acid metabolism and arachidonic acid metabolism, 
which have been previously reported to have anti-cancer  effects24,25. Moreover, pathways associated with drug 
metabolism, such as "Cytochrome P450-mediated metabolism of xenobiotics" and "Drug metabolism through 
cytochrome P450", were also inhibited in this group. These findings suggest that drugs targeting these pathways 
may have superior efficacy in patients with high mTORC1 signaling.

mTORC1 signaling association with tumor immune microenvironment (TIME)
To examine the impact of mTORC1 signaling on immunological features of the TIME, we assessed the presence of 
immune cells, evaluated the effectiveness of the cancer immunity cycle, and examined the expression of immune 
checkpoint genes (Fig. 6). We used the CIBERSORT algorithm to estimate the infiltration of immune cells in the 

Figure 2.  High mTORC1 signal in bladder cancer suggests poor prognosis. (A) Comparison of mTORC1 scores 
between bladder cancer tissues and adjacent tissues. (B–D) Analysis of mTORC1 scores in different subgroups 
based on (B) age, (C) stage, and (D) sex. (E) Kaplan–Meier analysis and (F) Cox regression analysis of mTORC1 
scores in overall survival (OS) of bladder cancer patients. − P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, and 
****P < 0.0001 indicate statistical significance.
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TIME, and found that patients exhibiting high mTORC1 signaling had less Treg infiltration but higher infiltration 
of T cells CD4 memory activated, resting NK cells, and M1-like macrophages (Fig. 6A, Supplementary Fig. S4A). 
Although the proportion of infiltrated  CD8+ T cells was slightly higher in the high mTORC1 signaling group, 
this was not statistically significant. Interestingly, the high mTORC1 signaling group had higher expression of 
immune checkpoint-related genes (Fig. 6B, Supplementary Fig. S4B). Concurring with these observations, the 
analysis of the immunity cycle revealed that mTORC1 signaling was positively correlated with scores of positive 
and negative regulation of most immune cycle steps (Fig. 6C, Supplementary Fig. S4C). To investigate further 

Figure 3.  Functional annotation of mTORC1 signaling. (A–C) Enrichment analysis of upregulated 
differentially expressed genes (DEGs) in (A) KEGG, (B) GO, and (C) Hallmark pathways. (D–F) Enrichment 
analysis of downregulated DEGs in (D) KEGG, (E) GO, and (F) Hallmark pathways. (G, H) Functional analysis 
of mTORC1 using gene set enrichment analysis (GSEA) based on (G) KEGG and (H) Hallmark gene sets.
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the impact of mTORC1 signaling in the TIME, we analyzed scRNA-seq data from seven bladder cancer patients 
(GSE135337) (Fig. Supplementary S4D). These samples were then partitioned into high and low mTORC1 signal-
ing groups based on the average mTORC1 signaling score expression of the samples (Fig. Supplementary S4E). 
Using iTalk to deduce the putative intercellular communication through the analysis of ligand-receptor signaling 
pathways, we found that the overall number of upregulated and downregulated receptor-ligand pairs was similar 
in the high mTORC1 signaling group. However, it was observed that fibroblast-related receptor-ligand pairs 
were upregulated in this group (Fig. 6D). After analyzing the scRNA-seq data of seven bladder cancer patients, 
it was found that there is a significant change in receptor-ligand pairs in high mTORC1 signaling groups. Out of 
the 20 most significant changed receptor-ligand pairs, 14 pairs were related to fibroblasts and were upregulated 
(Fig. 6E). This indicated that both anti-tumour immune and immune escape pathways were activated and coun-
teract each other in high mTORC1 signaling group patients. Furthermore, tumor-associated fibroblasts might 
play an important role in this process.

Potential of mTORC1 signaling for predicting therapeutic opportunities
In this study, we further investigated the relationship between mTORC1 signaling and the response to chemo-
therapy, radiotherapy, and targeted therapies. Our analysis revealed that the high mTORC1 signaling group 
exhibited higher scores for the network associated with epidermal growth factor receptor (EGFR) and its ligands, 
and pathways associated with radiotherapy response (cell cycle, DNA replication, and hypoxia). Whereas, the 
low mTORC1 signaling group demonstrated higher scores for immune-suppressive oncogenic pathways (PPARG 
network, WNTγ catenin network, and IDH1) (Fig. 7A).

Table 1.  Correlations between mTORC1 and molecular subtypes using six different algorithms and bladder 
cancer signatures.

Characteristics Low (N = 204) High (N = 204) Total (N = 408) p value

Baylor.subtype 1.3e−21

 Basal 25 (6.13%) 118 (28.92%) 143 (35.05%)

 Differentiated 179 (43.87%) 86 (21.08%) 265 (64.95%)

UNC.subtype 1.2e−19

 Basal 44 (10.78%) 136 (33.33%) 180 (44.12%)

 Luminal 160 (39.22%) 68 (16.67%) 228 (55.88%)

CIT.subtype 3.2e−28

 MC1 116 (28.43%) 46 (11.27%) 162 (39.71%)

 MC2 20 (4.90%) 5 (1.23%) 25 (6.13%)

 MC3 8 (1.96%) 10 (2.45%) 18 (4.41%)

 MC4 34 (8.33%) 5 (1.23%) 39 (9.56%)

 MC5 1 (0.25%) 0 (0.0e + 0%) 1 (0.25%)

 MC6 2 (0.49%) 2 (0.49%) 4 (0.98%)

 MC7 23 (5.64%) 136 (33.33%) 159 (38.97%)

Lund.subtype 5.0e−19

 Ba/Sq 4 (0.98%) 49 (12.01%) 53 (12.99%)

 Ba/Sq-Inf 9 (2.21%) 35 (8.58%) 44 (10.78%)

 GU 20 (4.90%) 12 (2.94%) 32 (7.84%)

 GU-Inf 15 (3.68%) 14 (3.43%) 29 (7.11%)

 Mes-like 16 (3.92%) 18 (4.41%) 34 (8.33%)

 Sc/NE-like 4 (0.98%) 13 (3.19%) 17 (4.17%)

 Uro-Inf 21 (5.15%) 2 (0.49%) 23 (5.64%)

 UroA-Prog 66 (16.18%) 28 (6.86%) 94 (23.04%)

 UroB 7 (1.72%) 17 (4.17%) 24 (5.88%)

 UroC 42 (10.29%) 16 (3.92%) 58 (14.22%)

MDA.subtype 2.8e−23

 Basal 24 (5.88%) 119 (29.17%) 143 (35.05%)

 Luminal 88 (21.57%) 57 (13.97%) 145 (35.54%)

 p53-like 92 (22.55%) 28 (6.86%) 120 (29.41%)

TCGA.subtype 4.2e−23

 Basal_squamous 20 (4.90%) 113 (27.70%) 133 (32.60%)

 Luminal 34 (8.33%) 12 (2.94%) 46 (11.27%)

 Luminal_infiltrated 51 (12.50%) 16 (3.92%) 67 (16.42%)

 Luminal_papillary 95 (23.28%) 51 (12.50%) 146 (35.78%)

 Neuronal 4 (0.98%) 12 (2.94%) 16 (3.92%)
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Gemcitabine and cisplatin are two of the most frequently utilized chemotherapy drugs in the treatment of 
bladder cancer. In this study, we calculated the  IC50 values for these agents using pRRophetic, and found that the 
high mTORC1 signaling group demonstrated greater sensitivity to both drugs (Fig. 7B). We also analyzed the 
Drugbank database, which revealed that the high mTORC1 signaling group expressed higher EGFR inhibitors 
and targets related to chemotherapeutic agents. These findings suggest that the high mTORC1 signaling group 
may respond better to these chemotherapeutic agents and may benefit from treatment with EGFR inhibitors 
(Fig. 7C). Furthermore, the analysis of the IMvigor210 cohort data showed that the patients who had higher 
mTORC1 signaling scores had a greater number of immune cells infiltrating their tumors (Fig. 7D). Addition-
ally, patients who exhibited a better response to immunotherapy had higher mTORC1 signaling scores (Fig. 7E). 
However, despite demonstrating better responses to immunotherapy, patients with higher mTORC1 signaling 
scores had worse prognoses (Fig. 7F). These findings suggest that the role of mTORC1 signaling in the tumor 
microenvironment is complex and may have different effects on the response to various therapies.

We conducted a mutation profile analysis of the TCGA-BLCA cohort and found that RYR3, FAT3, and VCAN 
were the three most significantly mutated genes (Supplementary Fig. S5). The mutation frequency of RYR3 was 
higher in the low mTORC1 signaling group, whereas FAT3 and VCAN had higher mutation frequencies in the 
high mTORC1 signaling group.

Figure 4.  Correlation analysis between mTORC1 and molecular subtype in bladder cancer. (A) Differential 
expression of specific bladder cancer-related signatures in patients with high and low mTORC1 scores. (B) 
Correlation heatmap of specific bladder cancer-related signatures in patients with mTORC1 scores. − P > 0.05, 
*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 indicate statistical significance.
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mTORC1RS development and validation
To establish the mTORC1RS, we first conducted univariate Cox regression on 3,001 genes associated with OS 
that were identified from DEGs between high and low mTORC1 signaling groups. To prevent overfitting, we 
applied LASSO regression analysis (Fig. 8A,B) and multivariate Cox regression (Fig. 8C) to further refine the 
model. Eventually, six genes were identified to construct the mTORC1RS: EMP1 (weight = 0.17755), AKR1B15 
(weight = 0.12164), SP6 (weight =  − 0.1685), MTATP8P1 (weight =  − 0.2049), APOL6 (weight =  − 0.2254), and 
IGF2 (weight = 0.12738). Using the mTORC1RS, patients were categorized into subgroups of high- and low-risk 
based on the median value of the score (Fig. 9A), and the predictive performance of the mTORC1RS was vali-
dated using KM survival curves (Fig. 9B). Notably, patients in the high mTORC1RS risk group had a significantly 
lower survival probability in the TCGA-BLCA cohort.

To develop a clinically applicable method for predicting patient survival probability, we constructed a nomo-
gram that considered clinicopathological covariates. Based on the results of the Cox analysis, a nomogram was 
established to predict OS rates (Fig. 9C). Furthermore, calibration curves demonstrated that the nomogram 
linked to mTORC1RS accurately predicted the survival probability (Fig. 9D).

Discussion
Bladder cancer is a prevalent disease that leads to high rates of morbidity and mortality, with recurrence and 
metastasis posing significant treatment  challenges1,2. One key aspect of successful treatment is the identifica-
tion of outcome-associated biomarkers and response to therapy. We aimed to explore the molecular landscape 
and phenotypic characteristics of bladder cancer with abnormal mTORC1 signaling and determine its potential 
influence on clinical outcomes and the immune microenvironment. The results of this investigation could aid 
in the development of individualized therapeutic approaches for bladder cancer patients.

New technologies such as transcriptome, genome, and bioinformatics have significantly contributed to the 
discovery of biomarkers that can inform personalized therapeutic interventions for cancer  patients25–28. Our 
study revealed that mTORC1 signaling was overactivated in bladder cancer and correlated with poor prognosis. 
Our findings suggested that mTORC1 signaling could be used as an independent predictor of clinical out-
comes for bladder cancer patients. Moreover, the study also revealed that mTORC1 dysregulation is associated 

Figure 5.  Correlation analysis between mTORC1 and bladder cancer metabolism. Heatmap showing the 
expression patterns of metabolism signatures in patients with high and low mTORC1 scores.
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simultaneously with antitumor immune activation and the activation of immune evasion mechanisms, highlight-
ing the potential of mTORC1 in regulating the immune response in bladder cancer. Prior research has indicated 

Figure 6.  Correlation analysis between mTORC1 and tumor immune microenvironment (TIME). (A–C) 
Differential expression of (A) immune cells, (B) immune checkpoints, and (C) immune cycle score in patients 
with high and low mTORC1 scores. (D) Sankey diagram and (E) circos plots depicting ligand-receptor 
interactions with significant expression differences in the TIME of bladder cancer. − P > 0.05, *P < 0.05, 
**P < 0.01, ***P < 0.001, and ****P < 0.0001 indicate statistical significance.
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that mTORC1 inhibitors like rapamycin can improve the immune response of T cells, which includes increased 
interferon-γ and cytokine production, T cell differentiation, and  activation29,30. Therefore, targeting mTORC1 
signaling could have therapeutic benefits for bladder cancer. This is because it could directly impede the growth of 
the tumor and also change the immune microenvironment by modulating the immune-related gene expression.

Besides, the findings of this study reveal a positive correlation between elevated mTORC1 signaling pathway 
scores and heightened mutation frequencies in FAT3 and VCAN. Concurrently, a negative association is demon-
strated with the mutation frequency of RYR3. FAT3 and VCAN genes are intricately involved in processes such 
as cell adhesion, migration, and tumor invasion, all of which constitute pivotal aspects of cancer progression 
and  metastasis31,32. These revelations suggest that patients with heightened mTORC1 activation might be more 
susceptible to developing a subtype of bladder cancer characterized by increased invasiveness and malignancy. 
The RYR3 gene encodes a calcium ion channel protein, and mutations in this gene may be linked to the dysregula-
tion of calcium in tumor cells. Previous studie has reported that the inactivation of RYR3 results in constrained 
growth of breast cancer cells.33. Therefore, these results imply that the lower mutation frequency of the RYR3 
gene in patients with high mTORC1 activation could signify a potential anti-cancer mechanism.

We identified six mTORC1-related genes and incorporated them into the mTORC1RS. Among these genes, 
EMP1, AKR1B15, and IGF2 were associated with high risk, while SP6, MTATP8P1, and APOL6 were associated 
with low risk.  EMP134 and  IGF235 have been found to promote tumor growth and metastasis, while APOL6 has 
been found to inhibit the migration and invasion of cancer  cells36. However, there is currently no research on 
the role of AKR1B15, MTATP8P1, and SP6 in cancer. AKR1B15 is a type of aldo–keto reductase that is similar 

Figure 7.  Correlation between mTORC1 and Therapeutic Response in Bladder Cancer. (A–C) Differential 
expression of (A) enrichment scores of therapeutic signatures such as targeted therapy and radiotherapy, (B) 
IC50 values of gemcitabine and cisplatin, and (C) drug-target genes in patients with high and low mTORC1 
scores. (D, E) mTORC1 scores in patients with different (D) immune phenotypes and (E) clinical response 
to cancer immunotherapy in the IMvigor210 cohort. (F) Kaplan–Meier analysis of mTORC1 scores in the 
IMvigor210 cohort.
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to AKR1B10 in terms of amino acid sequence, with a 92%  identity37. AKR1B10 is an extensively studied enzyme 
with high retinaldehyde reductase activity linked to the development of various cancers. On the other hand, SP6 
is a member of the transcription factor, characterized by three zinc finger domains for DNA binding contain-
ing Cys2His2 motif tetrahedrally coordinated with zinc atoms. These transcription factors attach to GC-rich 
motifs and associated GT and CACCC elements, and SP6 is no exception to  this38. Additionally, MTATP8P1 is 
a pseudogene. Pseudogenes were initially thought to be non-functional genomic relics resulting from mutations 
in genes during evolution. However, subsequent research has shown that they play diverse roles at multiple levels 

Figure 8.  Construction of the mTORC1RS. (A, B) Candidate genes were screened using the LASSO regression 
method. (C) Multivariate Cox regression was performed to identify key genes.
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Figure 9.  Validation of the mTORC1RS and establishment of the mTORC1RS related nomogram. (A, B) 
Analysis of risk scores and Kaplan–Meier analysis of mTORC1RS in the TCGA cohort. (C) Nomogram 
for predicting overall survival probability using age, mTORC1RS group, and tumor stage as parameters. 
(− P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 for multivariate regression of clinical factors 
and mTORC1RS). (D) Calibration curves to verify the accuracy of predictions, where red represents the 1-year 
prediction, blue represents the 3-year prediction, and green represents the 5-year prediction.
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(DNA, RNA, and/or protein) in various physiological and pathological processes, particularly in cancer, both 
dependent and independent of parent  genes39. Given this evidence, further research is needed to investigate the 
role of AKR1B15, MTATP8P1, and SP6 in cancer.

Our study also has some limitations that need to be addressed. First, we only focused on the dysregulation 
of mTORC1 signaling in bladder cancer and did not investigate other pathways that may contribute to bladder 
cancer development and progression. Future studies should explore the interplay between mTORC1 signaling 
and other cellular pathways to obtain a more comprehensive understanding of bladder cancer pathogenesis. 
Second, our study only utilized publicly available gene expression data, and additional validation studies are 
needed to confirm our findings. Future studies should examine the correlation between mTORC1 signaling and 
immune cell infiltration to obtain a more comprehensive understanding of the immune microenvironment in 
bladder cancer.

In conclusion, our study provides new insights into the role of mTORC1 signaling in bladder cancer patho-
genesis. Our identification of mTORC1-related genes associated with mTORC1 signaling dysregulation in bladder 
cancer may provide new opportunities for the development of personalized therapies targeting the mTORC1 
signaling pathway involved in bladder cancer. However, further studies are needed to validate our findings and 
to explore the interplay between mTORC1 signaling and other cellular pathways involved in bladder cancer 
development and progression.

Data availability
The raw data of our study were downloaded from TCGA dataset (http:// cance rgeno me. nih. gov/), GEO dataset 
(GSE135337, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE13 5337) and IMvigor210CoreBiologies 
dataset (http:// resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies/).
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