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Smart home energy management 
and power trading optimization 
using an enhanced manta ray 
foraging optimization
Heba Youssef 1, Salah Kamel 1* & Mohamed H. Hassan 1,2

This paper proposes a plan to manage energy consumption in residential areas using the demand 
response method, which allows electricity users to contribute to the reliability of the power system by 
controlling their usage. Due to the growing population, the residential sector consumes a significant 
amount of energy, and the objectives of this study are to lower electricity costs and the peak to 
average ratio, as well as reduce the amount of imported electricity from the grid. The study aims 
to maximize profit by properly utilizing renewable energy sources and addressing energy trading. 
The manta ray foraging optimization (MRFO) and long term memory MRFO (LMMRFO) algorithms 
are used to solve this problem. Firstly, the validation of the proposed LMMRFO technique is 
confirmed by seven benchmark functions and compared its results with the results of the well-known 
optimization algorithms including hunter prey optimization, gorilla troops optimizer, beluga whale 
optimization, and the original MRFO algorithm. Then, the performance of the LMMRFO is checked 
on the optimization of smart home energy management. In the suggested approach, a smart home 
decides whether to purchase or sell electricity from the commercial grid based on the cost, demand, 
and production of electricity from its own microgrid, which consists of a wind turbine and solar panels. 
Energy storage systems support the stable and dependable functioning of the power system since the 
solar panel and wind turbine only occasionally produce electricity. Through various case studies, the 
proposed plan is tested and found to be effective in reducing electricity costs and the peak to average 
ratio while maximizing profit. Furthermore, a comparative study is conducted to demonstrate the 
legality and effectiveness of LMMRFO and MRFO.

List of symbols
τ  Waiting time
η   Startup time of each device
β   Less time to finish each device
α   Earliest time to start each device
Eb   Total amount of electricity of base device
�b   Power rating of base device
Eni   Total amount of electricity of non-interruptible device
�ni   Power rating of base device of non-interruptible device
Es   Total amount of electricity of shiftable device
�s   Power rating of base device of shiftable device
αb   OFF/ON status of base device
αni   OFF/ON status of non-interruptible device
αs   OFF/ON status of shiftable device
σ t
db

   Hourly cost against utilized electricity of base device
δTotaldb

   Daily cost against utilized electricity of base device
σ t
dni

   Hourly cost against utilized electricity of non-interruptible device
δTotaldni

   Daily cost against utilized electricity of non-interruptible device
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σ t
Ds

   Hourly cost against utilized electricity of shiftable device
δTotalDs

   Daily cost against utilized electricity of shiftable device
t    Single time slot
T   Maximum time slot
Dn   All devices
Ds   Shiftable devices
Dni   Non-interruptible devices
Db   Base devices
db   One device from Base group
dni   One device from non-interruptible group
ds   One device from shiftable group
iL   Light current
Pwtt    Wind turbine power
iS   Diode saturation current
p   Solar panel power generation
RSh   Shunt resistance
RS   Series resistance
ns   Number of solar cells
ηESS   The efficiency of EES
ESch   Charging of ESS
ESdis   Discharging of ESS
SE   Stored electricity
BCbuy   Buying electricity
BCsell   Selling electricity
ς total   The overall cost incurred for the imported electricity throughout a day
ς t   The cost of imported electricity on an hourly basis.
ηt   Total cost of electricity sold
ęearn   The earnings on an hourly basis.
ηsell   Hourly sold electricity
ęt   The overall earnings for a day

The increasing global population, climate change, escalating carbon emissions, and surging electricity demand 
have placed electricity production and distribution entities, as well as governments, in a challenging situation 
where decisive actions to tackle these critical issues are impeded. Power-producing enterprises find it difficult to 
embrace renewable energy sources (RESs) as a solution to combat global warming and reduce carbon  emissions1. 
The existing electrical network provides a significant number of supply lines with low voltage load for residential 
customers and small businesses. Due to the centralized approach, the power flow in the current power system 
is unidirectional. Consumers of electricity are only passive users and have no effect on the dependability and 
stability of the electrical  grid2. The current power system’s a lack of monitoring technology and unidirectional 
communication are the main causes of electricity waste. The innovative strategy is spread based on two-way 
communication. It offers a more widespread and distributed intelligence in the production, transmission, and 
use of electricity. Additionally, the innovative strategy offers power users a variety of ways to control their usage 
for lower bills and dependable grid operation. To address the aforementioned issues in the conventional electric 
grid, the solution is to integrate renewable energy sources with the smart grid. Electricity is produced in the smart 
grid using more affordable and effective resources, and it is then transmitted to users via smart transmission lines. 
The term "electricity users" refers to people who can use and generate electricity from their own local microgrid. 
It is made up of several RESs, such as hydro power plants, wind turbines, solar panels, etc.

The users connect to the industrial grid and use electricity that they produce themselves. They buy electric-
ity from utilities if there is less electricity generation than load demand. If their own microgrid produces more 
electricity than is needed to meet the load, the extra energy is stored in batteries for use at a later time when 
electricity generation is low. Only when the microgrid’s electricity production is low or the cost of electricity per 
unit is high are the batteries allowed to drain. For the purpose of motivating users to minimize their electric-
ity usage during ON-peak times, there exist numerous dynamic pricing schemes. Critical peak rebate (CPR), 
critical peak pricing (CPP), time of usage (ToU), and real-time pricing (RTP) are a few of these pricing models. 
Customers that use electricity can choose the best electricity rate based on their  preferences3.

Currently, RESs produce just a few MW or kW of electricity in residential areas, while large-scale RES inte-
gration is widely dispersed throughout the world. Furthermore, smart homes and small businesses can make 
money by reselling surplus electricity to nearby neighbors or the grid thanks to RES-based electricity generation 
and storage system integration. Additionally, end users can buy energy while power rates are low and trade it 
back if costs are high. Additionally, demand side management (DSM) can reduce electricity use by between 10 
and 30  percent4.

The reductions of PAR and consumption cost optimization are both possible in smart grids thanks to two-
way communication. Numerous studies have concentrated on the cost and PAR reduction provided by DSM as 
a result of the development of a smart  grid5–7. However, the entirety of this research has not encompassed the 
inclusion of electricity production and storage for subsequent usage. The smart home with several smart device 
 kinds8, the optimal electricity usage with maximum consumer comfort is established. They also look at their 
suggested smart construction plan, which consists of several smart dwellings with various living styles such as 
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load demand and power rating. Ahmad et al.9 introduced a DSM model by taking into account various power 
customers. For power users, the authors  of10 have suggested a brand-new smart grid architecture. For the gen-
eration of electricity, they also incorporate RESs. Their research indicates that the consumers have the ability 
to produce, use, store, and sell extra electricity. In order to maximize profits, the extra electricity is sold back to 
the commercial grid. The latest developments suggested solutions consider the issue from the grid’s or electrical 
users’ perspectives. To cut down on electricity costs and carbon emissions, the authors  of11 also incorporate RESs.

In this paper, a DSM scheme for combining energy storage systems (ESS) and RESs in a residential area has 
been presented to reduce PAR and power costs. We take into account a smart house that can produce and use 
electricity from its own mini-grid and store the excess for later use as well as use electricity from the public grid. 
The smart house is also liberated from taking decisions on its own for reducing electricity costs and PAR while 
maximizing earnings for every hour. Consequently, increasing the funds from power exchanging is another 
goal of this study. The smart house takes decisions based on the cost of electricity. The residence makes an effort 
to minimize load demand when prices are high, and any extra electricity is resold to the industrial grid. The 
residence minimizes the PAR by buying electricity during periods of lower cost. For the purpose of calculating 
the cost of selling and buying power, two separate RTP schemes are also taken into account. A comparison of 
the LMMRFO and MRFO algorithm performance is done in the conclusion. The main contributions of this 
paper are as follows:

• Utilizing the LMMRFO and MRFO heuristics to efficiently schedule devices for power trading, enabling 
optimal energy management in the smart home.

• Application of the optimization algorithm to a real-world problem in home energy management, leading to 
practical implications such as optimized power consumption, cost reduction, and minimization of the peak 
to average ratio (PAR).

• Integration of renewable energy sources (RESs), such as wind turbines and solar panels, into the optimization 
framework, demonstrating the algorithm’s practical applicability in green energy systems.

• Development of a system that empowers smart homes to autonomously make decisions regarding energy 
consumption and trading with the grid based on electricity prices. This promotes energy efficiency and cost 
savings.

• Performance evaluation of the algorithm through comprehensive simulations considering various metrics, 
including total cost, PAR, and earnings. This evaluation provides valuable insights into the effectiveness and 
practical benefits of the proposed approach.

• Conducting comprehensive simulations using MATLAB (2018a) to validate the effectiveness of LMMRFO 
and MRFO.

The rest of the paper is structured as follows: In section "Related work", an overview of the literature is given. 
The problem description and suggested system model are described in section "Model of proposed system". In 
section "Proposed Algorithm", we describe our suggested plan. section "Benchmark functions" presents the 
simulation results using the benchmark functions. section "Scenario Studies" provides an explanation of case 
studies, and section "The Results" provides the findings of the simulation. In section "Conclusions", a paper 
finding is explained.

Related work
In the past few decades, academics have focused on two important and difficult research problems: lowering 
the cost of electricity and achieving load equilibria between supply and demand. In the recent years, a variety of 
DSM techniques have been proposed to minimize electricity costs and PAR while maximizing user satisfaction. 
Below is a presentation of some of the current research.

In12, an approach based on integer linear programming (ILP) is suggested. Finding a balance among power 
supply and demand in the housing locality is the main goal of this study. For time- and power-shiftable devices, 
their suggested technique effectively shifts the optimal operating time and power. According to experimental 
findings, the technique they suggested effectively archived the stated goals. An mixed integer linear programming 
(MILP)-based load balancing strategy and cost reduction in a residential neighborhood is shown  in11. Electricity 
users are regarded as consumers by a MILP-based  HEMS10. For an individual smart house and a group of 39 
prosumers, they presented HEMS. Each smart home has a set of solar panels on it to generate electricity, and it is 
additionally linked to a public grid to help it fulfill request. When their generation exceeds their needs, consum-
ers store excess energy in batteries. To maximize profits, they are unable to export electricity during times when 
it is most expensive.  In13, a mixed integer linear programming (MILP)-based scheduling method for household 
appliances was put forth to lower overall electricity costs and balance load demand in residential settings. The 
experimental findings show that their suggested strategy quickly meets the required goals, namely the decrease 
of peak load and power cost. The authors of 13 presents a plan for minimizing costs by incorporating dispersed 
energy sources. Additionally, each user has a solar panel and battery system for producing electricity. Customers 
of electricity have the option to sell or buy it based on price indications. In their work, the cost of electricity is 
calculated using an RTP system. However, because there are devices that can be interrupted, like TVs, etc., this 
study only takes non-interruptible equipment into account, which is unrealistic for a smart house. Zhang et al.14 
presented a MILP-based methodology for reducing electricity costs and PAR as well as integrating RESs. The 
simulation findings support the suggested model for reducing PAR and power costs with effective RES integra-
tion. GA and Particle swarm optimization (PSO) were also suggested as a heuristic-based technique by Khan 
et al.15. Three alternative pricing signals ToU, RTP, and CPP along with a knapsack problem are applied to design 
the optimization problem. The major goals of this endeavor are to reduce peak demand and electricity costs. 
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Experimental investigation demonstrates the effectiveness of the suggested PSO and GA method. Additionally, 
they compare GA to PSO, demonstrating that GA performs better than PSO. The authors  of16 used a genetic 
algorithm to make balance load between electricity demand and supply and reduce energy cost. The authors 
 in17 used A dynamic programming (DP) to reduce electricity costs. Home appliances can be scheduled to run 
during off-peak hours to save money on electricity. Additionally, a game theory-based strategy is used to engage 
power users while generating additional electricity. Agnetis et al.18 solved three the problem of optimization, 
which are cost minimization, maximization of user comfort and scheduling preference optimization. The prob-
lem of electricity bill optimization in a ToU system is described  in19. Additionally, they divide the overall load 
into 3 groups: shiftable load, weather-based load, and interruptible load.  In20, a GA-based plan for reducing the 
cost of power with integrated ESS and RES was given. The energy storage system is applied to equilibrium the 
demand and supply for electricity. An empirical investigation demonstrates the effectiveness of their suggested 
plan. According  to21, the HEMS use mixed integer linear programming to modify the load request between 
the electric vehicles and ESS, electric grid and PV panels. The DR policy, which is described  in22, aims to save 
money on electricity and reduce PAR by scheduling smart devices in accordance with hourly electricity costs.

The integration of RESs into an intelligent HEMS was presented  in23 for the reduction of power costs and 
PAR. The trade issue in smart grids was examined by the authors  of24. Users of electricity have the option to 
generate, buy, and sell electricity. However, rather than selling to a single utility, they put their surplus of elec-
tricity up for auction. The capability of energy users to concurrently produce, retain, and alter their usage in 
accordance with electricity tariffs, as well as sell extra electricity back to the electric grid, hasn’t been taken into 
account  in10,11,13,24. Here, we provide a brand-new energy management strategy that uses LMMRFO and MRFO 
to address the issues outlined above.

The author of  reference25 presents a thorough examination of efficient HEMS within the context of modern 
smart grids and advancing technologies. The review encompasses technical aspects, conceptual frameworks, 
and challenges associated with HEMS. Additionally, it introduces an innovative approach that incorporates 
green building concepts into home design, aiming to decrease energy consumption. The paper highlights the 
significance of not only developing energy-efficient models and appliances but also promoting user awareness 
and active participation in energy conservation. The study showcases the effects of different strategies on reduc-
ing peak loads, with the Optimization-based Residential Energy Management technique achieving a substantial 
35% decrease in overall electricity bills.

In  reference26, the paper focuses on utilizing the Sine Cosine Algorithm to optimize HEMS, with a particular 
emphasis on load shifting through Demand Side Management (DSM) in smart homes. The primary goal of this 
optimization is to reduce electricity bills and Peak-to-Average Ratio (PAR) while maintaining consumer com-
fort. The study takes into account various pricing signals and demonstrates significant reductions in electricity 
bills (up to 40%) and PAR (up to 50%) without significant impacts on electricity costs and PAR when devices 
are coordinated in real-time.

This research employs the Improved Bald Eagle Search Optimization Algorithm to create an efficient HEMS 
for smart  homes27. Its primary objectives are to handle load demand, optimize energy usage, reduce electric-
ity expenses, decrease average peak ratios, and improve user comfort. To achieve these goals, a load conver-
sion strategy is implemented to effectively coordinate household appliances, minimizing peak-to-average ratio 
(PAR) and electricity costs. Real-time scheduling of daily activities and dynamic programming are employed to 
address rescheduling challenges. The study assesses the algorithm’s performance under various pricing strategies, 
improved user convenience, reduced peak ratios, and cost savings.

The author  of28 concentrates on improving the energy efficiency of buildings to meet economic and envi-
ronmental goals. They utilize an elite evolutionary strategy in an artificial ecosystem optimization approach to 
optimize the scheduling of electrical appliances in smart homes, incorporating load conversion as a demand-
side management (DSM) strategy. It’s worth noting that this paper conducts a comparative analysis between the 
proposed algorithm and the original one to validate its effectiveness.

Model of proposed system
The goal of this paper is to develop a design for future smart grids that will reduce power costs for residential 
users, stabilize the system, and reduce peak load across the board. Several smart devices with varying opera-
tional times and power ratings are included in the smart home. The solar panel and wind turbine make up the 
microgrid. Due to the intermittent nature of these distributed EGSs, ESS, or batteries, are also installed to meet 
the load requirements of users. The shortfall load is brought from the ESS or utility, and electricity costumers 
generate all of their own microgrid to fulfill their own energy needs. Consumers of electricity occasionally have 
extra energy leftover after use. In this case, electricity users have the option of selling their excess electricity to 
the industrial grid. The suggested optimization model is described below and shown in Fig. 1. 29 Additionally, we 
take into account an electric system with a single utility provider that has smart grid features includes effective 
monitoring, bidirectional communication, etc. The numerous consumers are all supplied with energy by the same 
utility company. Each consumer has their own distributable energy generating system (EGS), or microgrid, as 
well as numerous smart devices that use electricity.

Objective functions and constraints
The primary focus of our study is to minimize the total energy cost for the smart home while reducing the PAR 
of electricity consumption and maximizing earnings through power trading. This study presents an improved 
algorithm that surpasses the performance of the original one. Furthermore, we’ve incorporated a benchmark 
section to demonstrate the remarkable enhancements achieved by the enhanced algorithm compared to the 



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22163  | https://doi.org/10.1038/s41598-023-49176-0

www.nature.com/scientificreports/

original. The enhanced algorithm makes a substantial contribution to the effective scheduling of devices for 
power trading, facilitating optimal energy management within a smart home.

Utilizing the improved algorithm to address real-world challenges within home energy management, resulting 
in tangible benefits like optimized power consumption, cost reduction, and PAR minimization. Incorporating 
RESs, such as wind turbines and solar panels, into the optimization framework, showcasing the practical applica-
tion of the algorithm in green energy systems. Creating a system that empowers smart homes to autonomously 
make decisions concerning energy consumption and grid-based trading, guided by electricity prices. This fosters 
energy efficiency and financial savings.

Home electricity load
In this study, we take a 24-h implementation into account, with 1 h allotted for each time slot written. The single 
time slot is represented by t  and the sum of the daily time slots by T. The household also includes a variety of 
devices, which are further divided into three primary groups: base-load devices ( Db ), shiftable devices ( Ds ), 
and non-interruptible devices ( Dni ). Dn is the total number of devices. Each device also has an internet con-
nection and can communicate with the energy management controller (EMC). EMC has a Wi-Fi connection to 
the internet, which enables it to adjust appliance operation to our fitness needs. Every smart device must finish 
its operational time in our system model. Table 1 shows the parameters for devices. The values for the device 
parameters mentioned in Table 1 were obtained  from29. Additionally, the classification of household devices is 
described in the following part.

Base devices. The base devices DB are the kind of devices that can’t be moved or stopped in the middle of a 
task. These devices, also known as non-interruptible and non-shiftable devices, are typically thought of as the 
primary load in each household. We classify refrigerators and interior lighting as base devices. Each device in 
this category is represented by a power rating ( �b ), and the total amount of electricity ( Eb ) used in a day is com-
puted as follows:

Energy storage
system

Invertor

Solar energy
Solar energy
gateway

Solar energy
invertor

Commercial grid Wind energy

Wind energy
gateway

EMC

Smart home

Two way
electricity flow

AC line
DC line

Communication
line

Smart meter

Figure 1.  system model.
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Equations (2) and (3) are used, respectively, to determine the hourly and daily cost against utilized electricity:

αb(t) represents the OFF/ON status of base device:

Non-interruptible devices. The second group of devices, known as non-interruptible devices, is defined in this 
section. This kind of device may not be stopped once execution has begun, but may be moved to another time 
slot before it does. Non-interruptible devices cannot have their operation time modified. This kind of device can 
be scheduled between the earliest starting and the latest finishing times. Let dni ∈ Dni stand in for each device 
under this heading. Each device in this category is represented by a power rating ( �ni ), and the total amount of 
electricity ( Eni ) used in a day is computed as follows:

Equations (6) and (7) are used, respectively, to determine the hourly and daily cost against utilized electricity:

αni(t) represents the OFF/ON status of base device:

Shiftable devices. The third group of devices, known as shiftable devices, is defined in this section. Depending 
on their use, various types of devices may be moved or stopped at any time. The class of movable devices includes 

(1)Eb =

T
�

t=1





�

db∈Db

(�b × αb(t))





(2)σ t
db

=
∑

db∈Db

(�b × ρ(t)× αb(t))

(3)δTotaldb
=

T
�

t=1





�

db∈Db

(�b × ρ(t)× αb(t))





(4)αb(t) =

{

1, If db is ON
0, If db isOFF

(5)Eni =

T
�

t=1





�

dni∈Dni
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(6)σ t
dni

=
∑

dni∈Dni
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=
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�
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�

dni∈Dni
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(8)αni(t) =

{

1, If dni is ON
0, If dni is OFF

Table 1.  Device parameters for the home.

Device category Device name Least finishing time (h) Earliest starting time (h) Varying operational times (h) Power rating (kw)

Base load
Interior lighting 24 16 6 0.84

Refrigerator 24 1 24 0.3

Non-interruptible

Dish washer 17 9 2 1.5

Washing machine 15 7 2 1.5

Spin dryer 18 13 1 2.5

Shiftable

Cooker hub 10 6 1 3

Cooker oven 20 15 1 5

Microwave 10 6 1 1.7

Laptop 24 18 2 0.1

Desktop 24 18 3 0.3

Vacuum cleaner 17 9 1 1.2

Electrical car 8 18 3 3.5
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laptops, vacuum cleaners, electric vehicles, etc. Each device in this category is represented by a power rating ( �s ), 
and the total amount of electricity ( Es ) used in a day is computed as follows:

Equations (10) and (11) are used, respectively, to determine the hourly and daily cost against utilized 
electricity:

αs(t) represents the OFF/ON status of base device:

Microgrid
We take into account the neighborhood microgrid with various renewable energy sources, such as wind turbines 
and solar panels. Equations (13) and (14), respectively, are used to express how much electricity the microgrid 
generated during the time period t ∈ T and during the entire day:

The single time slot t  and maximum time slot T are denoted in Eqs. (13) and (14), respectively. The fact that 
RESs are intermittent in nature is one thing to keep in  mind30. There are numerous statistical models available 
to forecast future RES electricity generation.

Wind turbine
A wind turbine uses the kinetic energy to create electricity. Equation (15) explains how the wind turbine Pwtt  
in time t  generates electric power. The area of wind turbine blades, the speed of wind, and efficiency of wind 
turbines are used in this equation to compute the electric energy. Between the wind’s cut-out and cut-in speeds, 
wind turbine produces electric energy. Equations (16) – (18) present all restrictions for wind turbines.

Wind turbines cannot be operated without risk when the wind speed exceeds the cut-out speed, which is the 
highest wind speed at which they produce their most electricity. Cut-in speed is the lowest wind speed at which 
a wind turbine produces the least amount of energy; when wind speeds are below cut-in speed, no energy is 
produced. As a result, when the wind speed exceeds the speed of cut-out, the wind turbine switches to the OFF 
status for protection concerns, and in this case, no energy is produced. Generally speaking, the wind speed is 
higher during the day and lower at  night31.

Solar panel
The suggested DMS makes use of electricity produced by the microgrid during times when it is most expensive 
to reduce costs while attempting to enhance consumer comfort. Photovoltaic cells convert solar energy into 
electricity by converting direct current to alternating current via a converter. Current–voltage (I-V) curve and 
a maximum power point (MPP) that might aid in further optimizing solar cells is produced by integrating per-
formance models for photovoltaic cells. The I-V curve is shown in Fig. 2 and the following equation can be used 
to estimate how well photovoltaic cells perform:
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where iL stands for light current, iS is for diode saturation current,  p denotes solar panel power generation, RSh 
stands for stands for and RS stands for series resistance. The ideality factor is defined as α = q/nskT , where 
k = 1.38× 1023j/K ,k = 1.38× 1023j/K ,ns is the number of solar cells, T = 298K temperature, and C is the 
electronic charge. In this study, the generation of power from five 230W solar panels is taken into  consideration29.

Energy storage system
The main objective of the installation of ESS is to maximize the effectiveness of the suggested HEMS. If the cost 
is minimal, ESS preserves electricity from the commercial grid. It also preserves electricity from the microgrid 
during peak electricity generation times. In this study, energy storage system is regarded as a shiftable load and 
discharging and charging can be planned at any time interval in an adaptable manner. Due to safety concerns, 
ESS can only store a maximum of 90% of the electricity that it can generate (5 kW) in this  study29.

The maximum and lowest levels of energy storage that ESS enables for the home are 90% and 10%. Only 
when the microgrid is unable to fulfill demand or electricity tariffs are high does the ESS discharge. The extra 
electricity is purchased back to the industrial grid when the ESS is at its full storage  capacity32. Equation (20) 
represents the stored energy at a specific time slot, considering all the constraints outlined in Eqs. (21) to (23), 
except for the restrictions on electricity charging and discharging limits.

where ηESS is the efficiency of EES , at time (t), the charging of ESS is ESch , at time (t), the discharging of ESS is 
ESdis and SE shows the stored electricity.

(19)iL − iSexp
[

α
(

vpv + RSi − pv
)]

− 1vpv + RSipv/RSh − ipv = 0, p = VPV IPV

(20)SE(t) = SE(t − 1)+ k · η
ESS

· ESch(t)− k · ESdis(t)/ηESS

(21)EScht <= ES(max )

(22)ESScht < ESS( upl )

(23)ESdist >= ES(min )
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Bill calculation and price tariff
For each hour, there are two separate electricity rates: one for buying electricity BCbuy , and the other for selling 
extra electricity BCsell to the commercial grid. However, according to Eq. (24), the hourly selling rate of power 
is 90% of the hourly purchase  rate33. Figure 3 shows the electricity selling and buying tariff.

A further dynamic feature of our suggested system concept is an electricity pricing. The utility firm offers a 
variety of electricity rates to encourage customers to control their load requirements. In this study, we calculate 
the cost of electricity use by taking into account RTP signals.

Consumers reimburse utilities for all costs associated with the electricity they use. Equations (25) and (26) 
calculate the cost of electricity for an individual time period (hour) with and without mini-grid integration, 
respectively. The consumer first uses electricity obtained from the mini-grid at any time. The additional electricity 
needed is then bought from the industrial grid:

Similarly, Eqs. (27) and (28), which calculate the overall price per day with and without a microgrid, 
respectively:

At the beginning of each hour, the choice is made not to store, buy, or sell the electricity. The smart house 
attempts to buy electricity for load needs when the price is lower. Electricity produced by mini-grids is retained 
in ESS for potential later exchanging. The smart house uses ESS or the mini-grid to fulfill its load during ON-
peak times, and any extra power is traded back to the industrial grid according to Eq. (29):

Equation (31) calculates the total quantity of electricity exported to the commercial grid:

Equations (32) and (33), which show the day total and hourly profits from a commercial grid, respectively:

Constraints
Constraints are an essential component of optimization problems, as they define the limitations and boundaries 
within which a solution must operate. They play a critical role in guiding the optimization process and ensuring 
that the solutions generated are not only optimal but also feasible. In smart home, constraints serve to reflect real-
world limitations, making sure that the solutions found are not only mathematically optimal but also practical 
and applicable to the problem at hand. Balancing the optimization objectives with these constraints is a crucial 
aspect of the optimization process.

Constraints in this study encompass various factors and limitations. They include device-specific power 
requirements, scheduling restrictions. In addition to these constraints, wind turbines have specific limitations 
that must be considered. For instance, they cannot operate safely when wind speeds exceed the cut-out speed, 
which is the highest wind speed at which they can efficiently generate electricity. Conversely, the cut-in speed is 

(24)BCsell
= 0.90 ∗ BCbuy

(25)ς t
= ((

∑

dn

�dn × α(t)))− E(t)) ∗ BCbuy(t)

(26)σ t
=

∑

dn

�dn × ρ(t)× α(t)

(27)ς total
=

24
∑

t=1

((
∑

dn

�dn × α(t))− E(t)) ∗ BCbuy(t)

(28)δtotal =

24
∑

t=1

(
∑

dn

�dn × ρ(t)× α(t))

(29)ηsell(t) = (
∑

dn

�Dn × α(t))− [E(t)+ ESS]

(30)ηsell(t) =

{

ηsell(t), If ηsell(t) < 0,
0, otherwise

(31)ηt =

T
∑

t=1

[ηsell(t)]
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(33)ęt =

T
∑
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the lowest wind speed at which a wind turbine can produce energy, with no energy generation occurring when 
wind speeds are below this threshold. Equations (16)–(18) present all restrictions for wind turbines.

Table 2 displays several metrics for our studies, where ESSCAP , solarcap , and windcap represent the average 
hourly energy production from ESS, solar panel, and wind turbine respectively. Vcut−off  and Vcut−in depict the 
wind speed at the cut-out and cut-in points when the wind turbine produces the most and least energy, respec-
tively. Also, managing the stored energy in a certain period of time requires restrictions to ensure safe and optimal 
operation, and these restrictions are represented mathematically using Eq. (21) to Eq. (23).

Proposed algorithm
Every house in the smart grid environment has a smart meter installed, and the smart meter is further linked to 
the energy management controller. Only smart meters allow for 2-way communication among electricity users 
and utilities. In this work, we examine heuristic methods for solving trading and scheduling issues. The use of 
the manta ray foraging optimization (MRFO) algorithm and Long term memory MRFO (LMMRFO) algorithm 
aims to maximize profits while minimizing costs and PAR. In benchmark tests, MRFO has exhibited competi-
tive performance compared to other optimization algorithms, establishing itself as a reliable choice for solving 
complex optimization problems. While the effectiveness of MRFO algorithm in search mechanisms is evident, 
there remain certain areas where enhancements can boost its efficiency in tackling challenging optimization 
problems, specifically the scheduling and trading problem. This is imperative as the current algorithm may 
overlook critical search  regions41. Additionally, the MRFO algorithm exhibits shortcomings, such as insufficient 
exploitation capability, reduced population diversity, and a susceptibility to getting stuck in local optima. These 
limitations primarily stem from an imbalance in the algorithm’s exploitation and exploration of the search  space42. 
To elevate algorithm performance and rectify the equilibrium between exploitation and exploration capabilities, 
this paper introduces LMMRFO, which incorporates a long-term memory strategy. This strategy is designed 
to augment the algorithm’s exploitation ability, addressing the issue of slow convergence. These characteristics 
make LMMRFO technique a promising technique for efficiently scheduling devices for power trading, facilitating 
optimal energy management in smart homes.

This section first provides a thorough introduction of MRFO and LMMRFO, followed by an explanation of 
how MRFO and LMMRFO work in relation to the benchmark test functions and our scheduling and trading 
problem.

Manta Ray foraging optimization
The MRFO was introduced in 2020 by Zhao et al.34. The MRFO algorithm is depending on simulating the behav-
iors of the clever actions of manta rays. Chain foraging, cyclone foraging, and somersault foraging, three distinct 
foraging techniques used by manta rays, are imitated in this work to create an effective optimization paradigm 
for resolving various optimization issues.

Manta rays look awful, but they are sophisticated creatures. They rank among the biggest marine animals 
ever discovered. Manta rays gracefully swim while using their pectoral fins, which have a flat body from top to 
bottom. A pair of cephalic lobes that extend in front of their enormous terminal mouths are also present. Fig-
ure 4A features an image of a manta ray engaged in foraging, captured by Swanson Chan on Unsplashed, while 
Fig. 4B depicts the anatomical structure of a manta ray. Manta rays feed on plankton, which consists mainly of 
tiny aquatic organisms, despite lacking sharp teeth. During foraging, they employ their horn-shaped cephalic 
lobes to draw both water and prey into their mouths.

Mathematical model
Chain harvesting, cyclone foraging, and somersault foraging are the three foraging techniques that served as the 
inspiration for MRFO. Below is a description of the mathematical models.

Chain harvesting. Manta rays can see where plankton is in MRFO and swim toward it. A place is better the 
higher the concentration of plankton there is. The optimum answer may not be known, but according to MRFO, 
the plankton with a high concentration that manta rays desire to approach and feed is the best one so far dis-
covered. Manta rays align themselves in a foraging chain from head to tail. Everyone but the first person moves 
toward the meal and the person in front of it. In other words, each person gets updated throughout each iteration 
with the best answer so far and the solution in front of it. The following is a representation of this chain foraging 
mathematical model:
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Table 2.  Parameters for case studies.

Parameters ESSCAP solarcap windcap Vcut−off Vcut−in
η
ESS SOC

Values 5 KW 1 KW 2 KW 25 5 95% 90%
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where,d is dimensions, t  is time, the individual i position is xdi  , r is a random vector with range between 1 and 0, 
α is a weight coefficient, and xdbest is the concentrated plankton. This foraging activity is shown in Fig. 5.

Cyclone foraging. A school of manta rays will create a long harvesting chain and travel in a spiral toward the 
food when they spot a patch of plankton in deep water. WOA employs a similar spiral foraging  technique35. 
However, in manta ray swarms, the cyclone foraging method, each manta ray swims toward the one in front of 
it in addition to spiraling towards the food. In other words, manta rays perform foraging in swarms that create a 
spiral. The foraging behavior of a cyclone is depicted in Fig. 6. A creature only moves in a spiraling motion in the 
direction of the food as opposed to just following the one in front of it. The mathematical formula that describes 
how manta rays travel in a spiral pattern in two dimensions, it is calculated by:

(35)α = 2.r
√

∣

∣log(r)
∣

∣

(A)

Mouth

Eye

Cephalic lobe

Tail

Pectoral fin

(B)

Figure 4.  (A) A manta ray foraging, and (B) a manta ray’s structure.
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Figure 5.  Chain Harvesting.
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where w and r are random numbers within the range between 1 and 0. β is the weight coefficient.
All individuals conduct their searches at random, using the food as their point of reference. As a result, the 

area with the optimal solution thus far is well-utilized by cyclone foraging. The exploration is also much enhanced 
by this behavior. By designating a new random position throughout the whole search area as their reference 
position, we may drive each person to look for a new position far from the current best one. The mathematical 
equation for this mechanism, which primarily focuses on exploration and allows MRFO to conduct a thorough 
global search, it is calculated by:

where xdrand is a random position generated at random in the search space, and the upper and bottom bounds 
of the dimension are Lbd and Ubd.

Foraging in somersault. The location of the food is seen as a pivot in this behavior. Each person usually swims 
back and forth around the pivot before somersaulting into a different position. As a result, they constantly update 
their positions in relation to the best position thus far. The following can be done to generate the mathematical 
model:

where S is the somersault factor that determines the manta rays’ somersault range and r2 and r3 are two random 
values between 0 and 1.

As can be seen from Eq. (40), each individual has the ability to relocate to any position inside a new search 
area that is situated among its symmetrical position around the best position discovered and its current position 
thus far. The disturbance on the present position decreases as the separation among the best position and the 
individual position thus far decreases. Each person eventually gets closer to the ideal outcome in the search area. 
when a result, when iterations rise, the somersault foraging range adaptably decreases. The somersault foraging 
behavior of MRFO is depicted in Fig. 7.

According to Eq. (40), Fig. 8 demonstrates that three individuals developed 100 times in the search space. As 
the distance shrinks, the sampled points become sparser and randomly spread between their symmetrical places 
around the current coordinates. The nearby dense sites can significantly aid in exploitation, while the nearby 
sparse points can greatly aid in exploration.

(36)
{
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Figure 6.  Foraging activity of cyclones.
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Long term memory Manta Ray foraging optimization
Though the MRFO optimization method shows promise, there is room for further improvement to achieve best 
results. Like numerous other metaheuristic algorithms, MRFO technique relies on searching around a single 
global best position. However, this approach of having a single reference point for the entire population possibly 
not ensure concourse to the global optimal point. The reliance on a single global best position often leads to pre-
mature convergence in metaheuristic techniques. To address this limitation, this research introduces the concept 
of long-term memory in MRFO. By incorporating long-term memory, the population of individuals can make 
decisions based on multiple past experiences. This approach offers a broader perspective of many potentially 
successful points, thereby mitigating risk of premature stagnation. The proposed method, called Long-Term 
Memory MRFO (LMMRFO), introduces an additional parameter known as Memory Length. Memory Length 
(ML) is a user-defined control factor that determines how many past experiences population or swarm can recall 
at any given  time36. By incorporating long-term memory into MRFO, LMMRFO enhances the algorithm’s ability 
to explore diverse solutions and avoid premature convergence.

The updating process of the long-term memory in LMMRFO follows a First-In-First-Out (FIFO) queue 
mechanism. The memory stores the ML best locations discovered thus far. In the FIFO approach, when a new 
item is added, the oldest item is removed to maintain the queue’s length. In the case of MRFO, during each 
iteration t, the memory is modified by adding the most recent optimal point found while deleting oldest entry. 
Once the memory is modified, swarm determines its subsequent step by selecting single item from the long-term 
memory. The choice is made probabilistically, using a probability calculation for each item in memory, denoted 
as pi for the ith item, as shown in Eq. (41):

In Eq. (41), f (xdj ) or f (xdi ) represents the fitness value of the jth or ith clause in the long-term memory. After 
computing the probability of selection for each item within the long-term memory, the Roulette Wheel Selec-
tion method is employed to execute the selection process. Upon selecting a clause from the long-term memory, 
this method can be applied in all equations for updating positions. In LMMRFO, in place of using the position 
of the single global optimal, xbest , as in MRFO, LMMRFO employs xkbest , which corresponds to the kth global 
optimal position stored in the long-term memory. K is chosen through the Roulette Wheel Selection method. 
As a result, each position modifies equations in LMMRFO remain the same as MRFO, with the exception of 
replacing xbest with xkbest.

(41)pi =
f (xdi )

∑ML
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Figure 7.  MRFO’s somersault foraging technique.
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Figure 8.  Three individuals’ somersault foraging behavior.
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The process of modifying the long-term memory is illustrated in Fig. 9. As mentioned previously in this 
section, LMMRFO gives a updating to the original algorithm. The emphasizes the importance of conducting 
thorough analyses of metaheuristic algorithms to achieve efficient results, rather than introducing new algo-
rithms frequently when numerous alternatives already exist. The flow chart of LMMRFO algorithm is illustrated 
in Fig. 10.

Benchmark functions
In this section, we demonstrate the effectiveness of the LMMRFO technique by evaluating its performance on 
seven benchmark functions. The mathematical expressions for these test functions can be found in  Table37. These 
benchmark experiments were conducted using MATLAB (R2016a) on a computer equipped with an Intel(R) 
Core i5-4210U CPU running at 2.40 GHz and 8 GB of RAM. This study utilizes seven widely recognized bench-
mark test functions to assess and compare the performance of the LMMRFO technique. All the metaheuristic 
methods discussed in this paper are subjected to a uniform maximum iteration limit of 200 iterations, along 
with a consistent population size of 50. In this section, we compare the LMMRFO technique with four recently 
proposed techniques, namely  GTO38,  HPO39,  BWO40, and MRFO algorithms.

This study establishes the supremacy of the obtained solution using the mean value and standard deviation. 
An algorithm with lower mean value and standard deviation demonstrates robust global optimization capa-
bilities and greater stability. The statistical results derived from the LMMRFO algorithm and four well-known 
algorithms, applied to solve seven benchmark functions, are presented in Table 4. As depicted in Table 4, the 
LMMRFO technique outperforms other evaluated methods across the majority of benchmark functions in terms 
of the mean value. The data clearly indicates that the LMMRFO algorithm consistently achieves more favorable 
solutions compared to recently proposed techniques for solving various benchmark functions. Additionally, 
it is evident that the LMMRFO approach surpasses GTO, HPO, BWO, and MRFO techniques in addressing 
benchmark functions. This analysis underscores the efficiency of the LMMRFO algorithm.

The tied rank method is a statistical approach used to compare the performance of multiple techniques when 
there are ties in the performance metric, signifying those two or more observations share the same value. After 
assigning ranks, the rank sums for each algorithm are compared. The algorithm with the lowest rank sum is 
deemed to have performed better than the others. The data presented in Table 4 unequivocally demonstrates that 
the LMMRFO technique exhibits superior performance across the majority of the 7 benchmark optimization 
problems, as evidenced by its ranking order. In second and third positions are the MRFO and GTO algorithms, 
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Figure 9.  Long-term memory update process.

Figure 10.  Flow chart of LMMRFO algorithm.
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both displaying robust efficacy. This collective evidence establishes the LMMRFO technique as a highly effective 
algorithm for successfully identifying optimal solutions within this category of problems.

Moreover, the convergence curves unmistakably highlight the consistent superiority of the LMMRFO tech-
nique when compared to other methods across the majority of benchmark functions. This underscores its robust-
ness and adaptability in addressing a diverse spectrum of optimization problems. The exceptional performance 
of the LMMRFO technique can be attributed to its effective amalgamation of the MRFO algorithm and Long-
Term Memory strategy. This combination empowers it to adeptly navigate the search space, exploit promising 
regions, and achieve faster convergence with superior solutions. Furthermore, the convergence curves, depicted 
in Fig. 11, not only confirm the rapid convergence of the LMMRFO technique but also its ability to sustain 
stable and reliable performance throughout the optimization process. This is a pivotal trait for an optimization 
algorithm, assuring that it consistently identifies optimal solutions without being trapped in local minima. 
Additionally, the experimental findings indicate that the LMMRFO technique exhibits resilience to variations 
in optimization parameters, such as population size and crossover probability. This resilience implies that the 
LMMRFO algorithm can be seamlessly applied to diverse problem domains without the need for extensive 
parameter fine-tuning.

In summary, these results establish the LMMRFO technique as a potent and versatile optimization method 
capable of efficiently achieving optimal solutions for a wide range of real-world optimization challenges. Its rapid 
convergence, consistent performance, and parameter robustness make the LMMRFO algorithm an appealing 
choice for both practitioners and researchers. The numerical data is visually represented in box plots, illustrat-
ing the diverse optimal values obtained across multiple runs for each specific algorithm. Figure 12 displays 
these box plots for seven benchmark functions, utilizing data collected from 30 individual iterations. Box plots 
excel at depicting data distribution, offering a clear means to emphasize data consistency. Upon examination of 
Fig. 12, it becomes evident that the box plots for the LMMRFO technique showcase narrower spreads and rank 
among the lowest values across most functions. These visual representations serve as powerful tools for assessing 
the performance of the nonlinear system, providing a clear contrast between different techniques. The results 
unequivocally highlight the superior performance of the LMMRFO method.

Wilcoxon’s rank test results
In this subsection, we conduct a further statistical analysis to assess the variances between LMMRFO and 
other techniques using the Wilcoxon rank-sum test (WRST), a paired assessment method employed to identify 
significant differences between the two techniques. The results of these tests, conducted at a significance level 
of α = 0.05, are presented in Table 5. In the table, symbols like "+/=/−" indicate whether LMMRFO performs 
better, similarly, or worse than the compared technique. Furthermore, the table provides statistical insights into 
LMMRFO’s performance across different dimensions and functions, revealing whether it outperforms, performs 
similarly, or lags behind the comparison algorithm.

It is worth noting that LMMRFO exhibits superior statistical performance in F1–F7 with Dim = 30 when 
compared to other techniques, affirming its significant dominance across most functions. Consequently, we can 
confidently conclude that the proposed LMMRFO technique demonstrates the best overall performance when 
compared to other methods.

Friedman’s rank test results
Table 6 presents the statistical results obtained through Friedman  tests43 conducted on seven benchmark func-
tions employing the analyzed algorithms. In this analysis, a lower ranking value signifies a more superior algo-
rithm performance. The results reveal a distinct ranking order among the five techniques, which is as follows: 
LMMRFO, MRFO, GTO, HPO, and BWO. This ranking order provides valuable insight into the relative perfor-
mance of these algorithms across the benchmark functions, with LMMRFO emerging as the top-performing 
technique, followed by MRFO, GTO, BWO, and HPO in descending order. These findings offer a comprehensive 
view of how the algorithms fare in comparison to one another across various test functions.

Table 3.  Benchmark functions.

Name Function Dim Range fmin

Sphere F1(x) =
∑N

i=1x
2
i

30 [− 100, 100] 0

Schwefel 2.22 F2(x) =
∑N

i=1|xi | +
∏N

i=1|xi | 30 [− 10, 10] 0

Schwefel 1.2 F3(x) =
∑N

i=1

(

∑i
j−1xj

)2 30 [− 100, 100] 0

Schwefel 2.21 F4(x) = maxi{|xi |, 1 ≤ i ≤ N} 30 [− 100, 100] 0

Rosenbrock F5(x) =
∑N−1

i=1 [100
(

xi+1 − x2i
)2

+ (xi − 1)2 30 [− 30, 30] 0

Step F6(x) =
∑N

i=1(|xi + 0.5|)2 30 [− 100, 100] 0

Quartic F7(x) =
∑N

i=1ix
4
i + random[0, 1] 30 [− 1.28, 1.28] 0
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Scenario studies
Three scenario studies are offered in this paper to show the effectiveness of our suggested system from the 
viewpoints of the user/smart house as well as the commercial grid. In the initial scenario work, house lacks 
intelligence; in other words, we take into account a typical house and the electrical system. Without being aware 
of the electricity rate, the house purchases and uses conventional electricity. In the other two instances, homes 
with various features such as the integration of a wind turbine, solar panels, and ESS are taken into account 
and compared to one another from the viewpoints of the customer and the electrical network. The smart house 
capable buy, storage, sell or move the load during the transient phase of each case study, which is when each 
smart house takes autonomous decisions in relation to the commercial grid. The proposed system’s overall per-
formance will eventually stabilize.

Table 4.  the statistical results of seven benchmark functions by the LMMRFO algorithm and other well-
known techniques.

Function LMMRFO MRFO GTO HPO BWO

F1

Best 2.1E−202 8.8E−180 1.3E−176 1.17E−77 1.5E−111

Average 3.3E−190 3E−168 9.1E−152 1.49E−69 3.8E−106

Median 4.5E−196 8.2E−174 4.2E−170 3.09E−72 6.8E−108

Worst 3.1E−189 5.3E−167 1.8E−150 1.92E−68 2.5E−105

std 0 0 4.1E−151 4.51E−69 6.8E−106

Rank 1 2 3 5 4

F2

Best 3.8E−100 5.73E−92 2.96E−85 5.41E−41 1.95E−57

Average 4.94E−98 2.78E−85 1.44E−80 2.69E−38 2.56E−54

Median 1.63E−98 8.8E−87 5.06E−82 1.64E−39 1.15E−54

Worst 2.98E−97 3.19E−84 9.29E−80 2.64E−37 1.18E−53

std 9.12E−98 7.82E−85 2.93E−80 6.13E−38 3.58E−54

Rank 1 2 3 5 4

F3

Best 1.4E−184 1.7E−172 3.8E−167 4.64E−68 6.4E−104

Average 1.2E−170 5.2E−162 3.9E−149 1.72E−59 5.5E−100

Median 2E−176 4.9E−167 9.3E−157 5.21E−63 1.2E−101

Worst 8.8E−170 8.3E−161 7.4E−148 3.12E−58 7.3E−99

std 0 1.8E−161 1.7E−148 6.95E−59 1.6E−99

Rank 1 2 3 5 4

F4

Best 1.4E−100 3.32E−88 8.11E−88 2.1E−35 9.97E−55

Average 9.68E−95 1.1E−83 1.3E−80 7.25E−32 2.03E−52

Median 1.36E−96 1.57E−84 8.8E−83 1.31E−32 5.03E−53

Worst 9.48E−94 1.44E−82 1.37E−79 7.27E−31 1.38E−51

std 2.99E−94 3.22E−83 3.51E−80 1.69E−31 4.03E−52

Rank 1 2 3 5 4

F5

Best 2.01E−05 24.05046 4.82E−05 23.80007 0.000406

Average 0.000206 24.74472 3.890629 24.34554 0.010977

Median 0.000109 24.73866 0.003429 24.16784 0.006422

Worst 0.000617 25.81043 26.5186 25.98622 0.05599

std 0.000221 0.428115 9.448749 0.511546 0.015734

Rank 1 5 3 4 2

F6

Best 1.74E−08 4.8E−06 1.28E−07 3.7E−07 2.47E−08

Average 1.79E−07 2.36E−05 0.000152 0.000811 5.36E−07

Median 1.4E−07 1.09E−05 2.01E−05 1.8E−06 3.77E−07

Worst 5.4E−07 0.000139 0.001805 0.015867 1.4E−06

std 1.71E−07 3.13E−05 0.0004 0.003544 4.28E−07

Rank 1 3 4 5 2

F7

Best 2.28E−05 1.75E−05 5.83E−06 2.71E−05 2.65E−06

Average 0.000166 0.000226 0.000168 0.000529 0.000257

Median 0.000146 0.00019 0.000152 0.000167 0.000225

Worst 0.000398 0.000832 0.000421 0.001566 0.000674

std 0.000136 0.000189 0.00012 0.000569 0.000205

Rank 1 3 2 5 4

Average Rank 1 2.714286 3 4.857143 3.428571

Final ranking 1 2 3 5 4
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The results
The results of the simulation are displayed to determine the power exchange and best scheduling for the home. 
We conduct simulations several times before averaging the findings from 20 runs. To evaluate and validate our 
suggested method, two algorithms LMMRFO are MRFO used. We imagine a smart home with 12 distinct smart 
appliances, each of which has a different operational times and power rating as described in Table 2. These appli-
ances are divided into three different groups as well. Because base-load appliances cannot be moved and must 
be turned ON in accordance with user choices, they may not help reduce power prices or PAR. In this paper, 
the operation period is divided into 24 1-h slots starting at 6 a.m. and ending at 6 a.m. the following day. For 

F1 F2 F3

F4 F5 F6

F7

Figure 11.  The convergence characteristics of the studied techniques for the benchmark functions.
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the purpose of calculating electricity costs, we take into account RTP signals, which are shown in Fig. 3. On a 
computer system with a 2.3 GHz processor, 4 GB RAM, and Windows 7 Operating System, simulations and 
experiments of our suggested model were run. Additionally, this approach uses MATLAB as a simulator.

Scenario 1: House without Microgrid and Energy Management
In this scenario, the operational behavior of a standard house in the absence of microgrid connection and ESS was 
investigated. The traditional house is unable to control its electricity usage, and it has no extra energy that could 
be sold back to the power system. The house is also powerless to decide how much electricity to use. It purchases 
and uses electricity without thoughtful planning, disregarding the tariff rates or any other factor. The electric-
ity normal residences purchase from the electric grid is shown in Fig. 13 along with price signals. The findings 
clearly show that the typical house does not take into consideration pricing tariffs and uses electricity without 

F1 F2 F3

F4 F5

F7

F6

Figure 12.  Boxplots of the studied techniques for the benchmark functions.
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Table 5.  Statistical results of the Wilcoxon rank-sum test.

LMMRFO vs MRFO GTO HPO BWO

Function P Winner P Winner P Winner P Winner

F1 1.83E−04 + 1.83E−04 + 1.83E−04 + 1.83E−04 +

F2 1.83E−04 + 1.83E−04 + 1.83E−04 + 1.83E−04 +

F3 1.13E−02 + 1.83E−04 + 1.83E−04 + 1.83E−04 +

F4 1.83E−04 + 1.83E−04 + 1.83E−04 + 1.83E−04 +

F5 1.83E−04 + 5.80E−03 + 1.83E−04 + 3.30E−04 +

F6 1.83E−04 − 7.69E−04 + 2.46E−04 + 9.11E−03 +

F7 9.70E−01  = 2.73E−01  = 3.12E−02 + 2.12E−01  = 

WRST (+/=/−) 5/1/1 6/1/0 7/0/0 6/1/0

Table 6.  Friedman test for the five algorithms.

Function LMMRFO MRFO GTO HPO BWO

F1 1 2.5 2.5 5 4

F2 1 2 3 5 4

F3 1.2 1.8 3 5 4

F4 1 2 3 5 4

F5 1.1 3.9 2.5 4.9 2.6

F6 2.1 1 4.8 4.1 3

F7 2.8 2.4 2.5 3.9 3.4

Mean ranks 1.457143 2.228571 3.042857 4.7 3.571429
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Figure 13.  Electricity consumption and Pricing signals.
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Figure 14.  Cost of power per hour.
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careful consideration. The typical residence makes its electricity purchases in time slots 10 and 9 when the price 
is at its highest and also causes peaks because of its highest electricity usage. As a result, the typical residence 
would incur the highest electricity expenses due to improper use of electricity. Figures 14 and 15, respectively, 
show the hourly and total electricity costs vs unscheduled usage. However, the findings in this section serve as 
a starting point for our subsequent comparisons.

Scenario 2: Home without Microgrid but With Energy Management
In this scenario, a home’s energy management is taken into account, and a smart home is able to control its elec-
tricity usage. In this case, EMC is in place, and EMC adjusts the load in accordance with the load information 
and price. It’s possible that the shiftable devices moved from ON-peak to Off-peak times. The hourly electricity 
usage with and without energy management using LMMRFO and MRFO is shown in Fig. 16. The outcome shows 
that during ON-peak times, without energy management, electricity consumption is high, but during ON-peak 
times with LMMRFO and MRFO, electricity consumption is low. As seen in Fig. 17, our suggested techniques 
effectively move the load while reducing PAR. The comparison to MRFO and an unplanned case, LMMRFO 
performs well in reducing PAR. The PAR is 3.41 in the case of using MRFO, but in the case of using LMMRFO 
it is 2.04. Using MRFO and LMMRFO, the PAR is reduced by 15% and 49%, respectively. By managing our 
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energy use, we can reduce the cost of electricity by the hour and ultimately by the day. In contrast to unplanned 
energy consumption patterns, Fig. 14 hourly power cost clearly illustrates that it is lowest during ON-peak hours 
when our proposed strategy is used. Figure 15 displays the overall cost of daily electricity consumption. When 
LMMRFO is compared to MRFO and unscheduled electricity consumption, the results show that the cost of 
electricity is at its lowest. However, the cost of electricity paid with MRFO is less than the cost of unscheduled 
electricity use. In instance 2, employing MRFO and LMMRFO, the overall electricity cost is reduced by 30% 
and 40%, respectively.

Scenario 3: Home with microgrid and energy management
In the third scenario, the smart house receives electricity if costs are low, the microgrid meets the load require-
ment during ON-peak hours, and surplus electricity is sent back to the industrial grid at a loss to the commercial 
grid. The smart house in this scenario is like to scenario 2, but it includes an ESS with microgrid. Every hour, the 
smart home can decide whether to switch the load, buy, sell, or store electricity. This action generates the high-
est profit for the smart home. The electricity produced by a solar panel and wind turbine is depicted in Fig. 18. 
Because solar irradiation and the wind speed are at their highest during the daytime, the microgrid generates 
the most electricity during ON-peak times. However, when wind speed and sun irradiation are at their lowest 
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Figure 18.  Electricity is generated using solar panels and wind turbines.
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Figure 19.  Temperature and the amount of electricity generated by solar panels.
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or zero during the evening or early morning, the amount of electricity produced is low. The correlation between 
electricity produced by solar panels and temperature and electricity produced by wind turbines is shown in 
Figs. 19 and 20, respectively. Electricity generation is at its peak when wind speed is at its peak, and vice versa. 
In order to sell the electricity generated and stored during ON-peak hours, load must first be moved during 
Off-peak hours. A residence that executes this task effectively makes the highest profit potential from power 
trading. Furthermore, when it comes to moving loads and selling power during high-priced hours, our sug-
gested LMMRFO outperforms MRFO. The overall cost of power compared to imported electricity and the total 
revenue compared to sell electricity are shown in Fig. 21. Figure 22 displays the total amount of electricity that 
was imported and sold using the MRFO and LMMRFO algorithms. The outcomes reveal that both algorithms 
perform well. In comparison to MRFO, our suggested algorithm LMMRFO outperforms it in terms of lowering 
electricity costs and increasing profits. The main justification for LMMRFO’s effectiveness is that there are fewer 
parameters that need to be adjusted.

Performance evaluation
In this section, we compare the three scenarios studies that were previously presented together with our sug-
gested plan that combines MRFO and LMMRFO. Figure 15 shows that the suggested plan employing MRFO 
and LMMRFO reduced the overall cost of power compared to scenario 1. Figure 17 compares scenario 1 and 
scenario 2, and the data make it abundantly evident that scenario 2 has a lower PAR than scenario 1. In addi-
tion, when we contrast scenarios 2 and 3, as depicted in Fig. 21, in scenario 3, the electricity cost is significantly 
reduced. Scenario 3 minimizes the total imported electricity from the external grid compared to scenarios 1 
and 2, as shown in Fig. 21. For dependable and steady grid functioning in scenario 3, ESS is also taken into 
consideration. However, power trading is only feasible in scenario 3, and Fig. 21 shows the entire amount of 
money made via power trading. In Scenario 1, where no specific technique was utilized, the cost amounted to 
766 cents, and the Peak to Average Ratio registered at 3.99. Nevertheless, it’s important to note that cost savings 
and earnings were not applicable in this particular scenario. Moving on to Scenario 2, in which the LMMRFO 
technique was implemented, a notable reduction in cost was observed, with the figure decreasing to 461 cents. 
Additionally, the Peak to Average Ratio improved significantly, reaching 2.04. This resulted in a cost savings of 
40%. However, it’s worth mentioning that earnings were not recorded in this case. Conversely, when the MRFO 
technique was employed, the cost in this scenario amounted to 538 cents, and the Peak to Average Ratio was 
3.41. In this context, cost savings of 30% were achieved.

In Scenario 3, we deployed both the LMMRFO and MRFO approaches to efficiently oversee household energy 
consumption. When utilizing the LMMRFO method, the overall electricity expenses were significantly reduced 
to 277 cents, marking a remarkable 64% reduction compared to Scenario 1. The Peak to Average Ratio (PAR) 
saw a notable decrease to 1.78, indicating effective load management. Additionally, this optimization strategy 
yielded substantial earnings of 263 cents, highlighting its ability to maximize profits through electricity trading.
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Figure 21.  Costs and profits from selling and importing electricity.
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In contrast, the MRFO technique in Scenario 3 resulted in a slightly higher electricity cost of 310 cents, with a 
PAR of 2.99. Despite achieving a somewhat lower cost savings of 60% compared to LMMRFO, MRFO still show-
cased significant enhancements over Scenario 1. Earnings in this scenario amounted to 199 cents, emphasizing 
its effectiveness in reducing costs and maximizing profits when compared to the baseline scenario. These findings 
underscore the importance of selecting the appropriate optimization technique, with LMMRFO clearly outper-
forming MRFO, leading to substantial cost reductions and increased earnings in residential energy management.

One of the most important factors contributing to the improved efficiency, cost-effectiveness, and perfor-
mance is the implementation of an optimized load management and scheduling algorithm (LMMRFO). This 
algorithm effectively shifts electricity consumption from peak hours to periods with lower costs, as shown in 
Fig. 16. In addition, the integration of renewable energy sources, such as solar and wind, enables users to gen-
erate electricity and even sell excess energy back to the grid. This not only enhances profits but also reduces 
electricity expenses, as shown in Figs. 21 and 22. Strategic management of energy use, especially the avoidance 
of peak hours, has played a crucial role in reducing electricity costs and relieving pressure on the electricity grid.

Table 7 shows the comparison as a whole and the approach presented  in29. In the Table 7, we compare the 
results of different scenarios using various techniques, including LMMRFO, MRFO, SA and  SCA29. It is evident 
that the improved algorithm (LMMRFO) outperforms the original algorithm in terms of cost and efficiency. This 
is particularly noticeable in the cost savings percentage, where the enhanced algorithm showcases significant 
improvements compared to the original. When compared to the results obtained from the  reference29, the supe-
riority of the improved algorithm becomes even more apparent. The cost savings and earnings demonstrate the 
effectiveness of the enhanced approach in achieving cost-efficiency and overall better performance compared 
to the baseline and the  reference29.

The electricity cost in Scenario 2, achieved a substantial cost reduction of 40% with the utilization of 
LMMRFO, surpassing the MRFO (30%) and SCA (36.42%) approaches. Additionally, the PAR values of 2.04 
and 2.29 were obtained using the LMMRFO and SCA techniques, respectively. These outcomes underscore the 
superior performance of the LMMRFO algorithm in terms of cost savings compared to MRFO and SCA, as well 
as its efficiency in enhancing PAR.

In Scenario 3, the LMMRFO approach continues to excel, both in terms of electricity cost and PAR.
When focusing on earnings, LMMRFO achieves remarkable results with a earning of 263 cents, while SCA 

lags behind at 249.39 cents. This emphasizes the cost-efficiency of LMMRFO over SCA. Furthermore, the PAR 
values further underscore the superiority of LMMRFO, with a PAR of 1.78 compared to SCA’s 1.98. These find-
ings demonstrate the consistent performance improvement of LMMRFO across various scenarios, making it a 
compelling choice for optimizing electricity cost and overall system efficiency.

Conclusions
A smart home is equipped with various appliances and a microgrid powered by renewable energy sources (RES) 
to generate electricity. Demand response (DR) technology has become increasingly important in balancing 
power supply and demand, especially with the development of smart grid technologies. This study proposes a 
DR scheme based on real-time pricing (RTP) tariffs in residential areas, with the goal of reducing the peak to 
average ratio (PAR) and electricity costs. By utilizing the manta ray foraging optimization (MRFO) and long-
term memory MRFO (LMMRFO) algorithms, as well as an RTP tariff for power trading between users and the 
commercial grid, an electricity load management plan is created. The plan takes into account both power trading 
and load scheduling issues in a smart home with a microgrid connected to the grid. To improve the efficiency 
and reliability of the microgrid, an energy storage system (ESS) is also included. The smart home autonomously 
decides whether to sell, buy, or store electricity based on pricing and electricity generation signals. Simulation 
results demonstrate that the proposed strategy outperforms other methods in terms of reducing PAR and power 
costs while maximizing revenue. Specifically, the proposed plan using MRFO and LMMRFO reduced power 
costs by 30% and 40% in case 2 and 60% and 64% in case 3, respectively. The earnings from the proposed strategy 
using MRFO and LMMRFO were 199 and 263 cents, respectively. Overall, the results indicate that LMMRFO 
performs better than MRFO.

Data availability
All data generated or analysed during this study are included in this published article.
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Table 7.  Comparison between case studies with the approach presented  in29.

Parameters Scenario 1 Scenario 2 Scenario 3

Technique – LMMRFO MRFO SA29 SCA29 LMMRFO MRFO SA29 SCA29

Cost (cents) 766 461 538 562.02 487.43 277 310 335.74 284.70

PAR 3.99 2.04 3.41 3.63 2.29 1.78 2.99 3.12 1.98

Cost savings% – 40 30 26.63 36.42 64 60 56.26 62.83

Earnings (cents) – – – – – 263 199 173.39 249.39
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