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An integrated reservoir operation 
framework for enhanced water 
resources planning
Sonam Sandeep Dash 1*, Bhabagrahi Sahoo 2 & Narendra Singh Raghuwanshi 3

Climate change induced spatiotemporal variation in global water availability modifies the proposed 
design criteria of water infrastructure structures like dams and reservoirs. Although reservoir 
operation is treated as a potential adaptation option, obsolescence of existing operation rules in 
the climate change scenarios could cause devastating situation through faulty water management 
practices. Presently onboard simulation–optimization based reservoir operation schemes fail to 
capture the uncertainty involved in the climate change scenario. Hence, there is a need to identify 
the limiting application scenario of the existing reservoir operation rule, and subsequently, revise 
the operation framework to address the future supply–demand uncertainty adequately. This 
research develops an integrated Soil and Water Assessment Tool (SWAT) (hydrologic), HEC-ResSim 
(hydraulic), and genetic algorithm (GA) (optimization) based adaptive reservoir operation framework, 
which is competent enough in accounting the future supply–demand uncertainty. Incorporation 
of the newly proposed environmental flow assessment approach in the reservoir operation would 
assist the decision makers in guiding the reservoir release for maintaining the water quality and 
sustenance of the downstream aquatic species. Certainly, corresponding to the existing operation 
rules under both the baseline and future climate change scenarios of RCP 4.5 and 8.5, the developed 
SWAT-HEC-ResSim-GA based reservoir operation scheme could improve the performance of the 
Kangsabati reservoir with the time and volume reliability estimates of 0.631 and 0.736, respectively. 
Conclusively, the developed approach in this study could be the best feasible alternative for hydrologic 
characterization in complex reservoir catchment-command regions with the option for enhanced 
reservoir planning in global catchment-command regions.

The dearth of water in conjunction with climate change imparts severe threat to the user and decision-making 
 community1. The global water managers are becoming more concerned about the potential impacts of climate 
change on the water supply–demand  dynamics2,3. The ever-increasing temperature scenario because of 
greenhouse effect results in increased evaporation loss from the reservoir than normal condition. Global warming 
and precipitation fluctuations could result in adverse flood or drought conditions, alteration in environmental 
flow (E-flow), and increased water demand by the stakeholders. Since agriculture accounts for 70% of global water 
withdrawals, the climate change derived future crop-water alteration could adversely affect the supply–demand 
uncertainty in the arid and semi-arid regions of  globe4. Under these plausible future climate change scenarios, 
increasing water supply by dam construction and improved reservoir capacity may be the feasible solutions for 
sustainable management of water demand leading to global socioeconomic  development5. Hence, evaluation of 
the existing reservoir operation policies and its judicious modification could provide the policy makers with a 
more dynamic insight to alleviate the adverse effects of climate change on water availability.

As per the IPCC working group II report, many countries across the globe have started proposing 
adaptive water resources management plan based on projected climate change and the involved uncertainty. 
Eventually, employment of such adaptive rules takes care of the underlying risk, system customization ability, 
and subsequently, modifies the decision rule throughout the analysis time horizon. The major advantage of a 
risk-based framework is that it can quantify the actual impact of climate change and simultaneously modify 
the decision-making process. In impact assessment studies, for the estimation of projected future climate 
scenario, General circulation Model (GCM) seems to be the best possible  alternative6. Recently, the CMIP5 
GCM projections are available at a coarser resolution, ranging from 0.5° to 4° with four RCP scenarios of 2.6, 

OPEN

1School of Civil Engineering, University College Dublin, Dublin, Ireland. 2School of Water Resources, Indian Institute 
of Technology Kharagpur, Kharagpur, India. 3Agricultural and Food Engineering Department, Indian Institute of 
Technology Kharagpur, Kharagpur, India. *email: ssdash@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-49107-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21720  | https://doi.org/10.1038/s41598-023-49107-z

www.nature.com/scientificreports/

4.5, 6.0, and 8.57. Considering the degree of coarseness existing with the raw GCM outputs, direct application 
in impact assessment studies may raise questions over the accuracy of the  analysis8–10. To deal with the inherent 
uncertainty involved with individual GCMs, a multi-model ensemble technique that combines multiple GCM 
outputs to yield a single output has been well adopted in the past hydro-climatological  studies11.

The contrasting supply–demand scenario during the monsoon season and lean period poses challenges in 
terms of maintaining the structural stability of reservoir and altered flow regime, making the reservoir rule 
formulation more intricate. The conventional optimization-based reservoir operation techniques like linear/
nonlinear/dynamic programming and heuristic approaches perform poorly under reservoir operation having 
conflicting objective functions, resulting erroneous policy  formulation12,13. The dynamic programing-based 
reservoir operation approaches are usually solved by integrating solutions of smaller sub-problems; hence, 
only suitable for short-range applications like hourly- or daily-scale14. Adoption of hydrological quantification 
framework and reservoir operation framework individually may not yield the actual feedback in the complex 
river-reservoir system, which is ignored in previous reservoir simulation  studies15,16. The current reservoir 
operation schemes do not consider the environmental flow (E-flow) component for demand computation, 
resulting in an underestimation of the total  demand17. The future climate change impact studies reported that 
increased annual temperature, decreased streamflow resulted increased agricultural water demand than the other 
form of demand in the climate change  scenario1. Further, the outcomes of modelling revealed lower reliability 
and increased vulnerability of the reservoir operation under climate change scenarios. The Kangsabati reservoir 
located in the semi-arid region of eastern part of India could be subjected to significant variability in the reservoir 
inflow and different demand components. The accurate quantification of these components under varying climate 
change scenario could behave as an early warning system for the competent reservoir management authorities to 
take necessary adaptation measures. Nevertheless, assessment of future water availability in complex integrated 
river-reservoir catchment-command system using the conventional approaches is quite cumbersome making 
the reservoir performance assessment more intricate. Given a series of odds, the water managers may realize 
the importance to move beyond the conventional scenario-specific impact analysis approach to an adaptive, 
risk-based planning approach that can render the effects from a spectrum of plausible future climate conditions. 
This necessitates adoption of a reliable integrated modelling framework, which can simultaneously account the 
catchment-hydrology and reservoir hydraulic characteristics in formulating an adaptive reservoir operation rule.

In light of this, the research gaps concerning to reservoir operation under future climate change scenario are 
identified as: (1) operational reservoir policy lacks provision for futuristic corrections; (2) accurate quantification 
of future water distribution dynamics in multifaceted river-reservoir catchment command location is yet to be 
analyzed; (3) incorporation of environmental flow component in the reservoir operation rule formulation is 
ignored in all past studies; and (4) conventional optimization only approach may not yield satisfactory reservoir 
operation in complex catchment-command regions. In this context, the present study tries to address the 
following research questions: (i) What will be the water availability scenario in the Kangsabati reservoir under the 
future climate change scenario?; and (ii) Will the existing operation rule of the Kangsabati reservoir be competent 
enough in satisfying the supply–demand dynamics under climate change scenarios?; (iii) How effectively the 
inclusion of E-flow component will describe the supply–demand dynamics over the study location?; and (iv) 
Will the proposed operation rule assist the decision-makers in planning a sustainable water management policy 
in future climate change scenario? To perform this assignment, the specific objective of this study includes: (1) 
to develop an integrated SWAT-HEC-ResSim-GA based reservoir operation framework for optimized fulfilment 
of various demand components under the baseline scenario; (2) to quantify the future reservoir inflow and 
different demand components over the study area; and (3) to evaluate the applicability of the proposed reservoir 
operation rule under future climate change scenario; and (4) to quantify the associated uncertainty in the GCM 
projections, downscaling approach, and the adopted modelling framework.

The enhanced SWAT-based hydrological framework adopted herein is an advance over the conventional 
SWAT, with improved conceptualization of irrigation application and streamflow estimation under dynamic 
vadose zone process of agricultural  catchment18. The physically based HEC-ResSim based reservoir simulation 
model has not been coupled with the enhanced SWAT model in any past studies; thereby signifying a robust 
methodology to study the integrated effect of river and reservoir on catchment water distribution. Moreover, the 
proposed dynamic hydrological and reservoir simulation framework enables the user to account for the future 
climate and changed reservoir hydraulic characteristic for updated rule curve formulation, which is absent 
in the formerly proposed reservoir operation framework. In essence, the established SWAT-HEC-ResSim-GA 
framework serves as the foundation for a resilient reservoir management system with better understanding of 
complex system, offering the ability to assess uncertainties originating from various sources at different phases of 
decision-making, representing a novel approach on its own. The proposed physically based modelling approach 
can effectively assess the future water availability in complex river-reservoir system with least uncertainty. Overall, 
the performed research can behave as a suit of policy making tool for the decision makers, enabling them to 
ubiquitously detect the involved uncertainty across various decision-making phases and can be well applied 
across any global river-reservoir catchment.

Material and methods
Hydrologic and reservoir simulation model framework
The integrated reservoir operation rule showing the detailed procedure of integration of different components 
in the proposed framework is presented in Fig. 1.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21720  | https://doi.org/10.1038/s41598-023-49107-z

www.nature.com/scientificreports/

SWAT hydrological model
The Soil and Water Assessment Tool (SWAT) is a catchment-scale, semi-distributed, and daily/sub-daily-scale 
model, extensively employed for hydrologic quantification of river  catchments19. As a process-based model, the 
SWAT utilizes different conceptualizations to understand the hydrological flux generation and dynamics inside 
the catchment. The SWAT conceptualization is exclusively centered on the principle of mass conservation, 
momentum conservation, and energy  conservation20. The SWAT employs the convention curve number (CN) 
and pothole-based streamflow simulation approach for the non-paddy and paddy growing regions, respectively. 
However, considering the inherent dynamics in the paddy field hydrological behavior, it has undergone 
substantial  modifications21,22. To account for the complex paddy growing regions located in the integrated river-
reservoir catchment regions, the most recent physically based enhanced SWAT-Pothole approach proposed  by18 
has been incorporated in the present study. Further, to quantify the crop water requirement of the concerned 
study location, the embedded FAO-56 Penman–Monteith (PM) in the SWAT was chosen for both baseline and 
future climate change scenarios. The detailed workflow of the SWAT model for reservoir inflow simulation is 
presented in Fig. A1.

Reservoir simulation framework
The HEC-ResSim, which is an advancement over the previously proposed conceptual HEC-5 model, is adopted 
in the present study for long-term continuous reservoir inflow, outflow, and storage  simulation23. The HEC-
ResSim assists in irrigation planning and flood control operations in complex catchment-command regions. 
In practice, the HEC-ResSim acts as a combination of both hydrologic and hydraulic conceptualization, and 
subsequently, assists in integrated supply–demand  management23. The HEC-ResSim consists of multiple sub-
routines including, watershed module, reservoir network module, and reservoir simulation module, where each 
module serves unique purpose.

The reservoir system is represented by four types of elements, viz., junctions, routing reaches, reservoir, 
and diversions in the HEC-ResSim model conceptualization. The actual operational rule curves are defined for 
the decision-making process in governing the release schedule of the reservoir. In real world conditions, the 
flow requirement and the related constraints are the explicit function of the current state of the reservoir pool. 
Hence, the HEC-ResSim discretizes the pool into varying elevation bands; thereby assigning different sets of 
prioritized rule curve to individual operating zones for guiding the release accordingly. Moreover, reservoir 
simulation modelling in the HEC-ResSim domain requires to define the target elevation level exclusively. The 
guide curve, i.e., the dividing line between the upper zone (Flood-control pool) and lower zone (conservation 
pool) of reservoir, which is a function of time primarily decides the release decision logic of the reservoir. 
When the pool elevation reaches above the guide curve, the additional water is released through the emergency 
spillway in the form of uncontrolled release and upon attaining the lower level of guide curve, considering the 
user-defined rule curve less water is set to release out of the pool. Further, a series of connecting reservoirs can 
be modelled through complex conceptualization of the river-reservoir system through defining nested reservoir 
operation rule curves across all the reservoirs located in the model domain. The detailed workflow of the reservoir 
outflow simulation by the HEC-ResSim reservoir simulation is presented in Fig. A2.

Reservoir operation rule formulation
The proposed integrated simulation–optimization based framework for the Kangsabati reservoir is characterized 
by the given objective functions, viz., minimization of reservoir release and maximizing the capacity of reservoir 
storage to assist in flood governance and fulfilment of water demand, respectively. The present water level of 

Figure 1.  Integrated reservoir operation framework under future climate change scenario.
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the reservoir is chosen as the decision variable in the conceptualization. The detailed process flowchart for the 
performed optimization study is presented in Fig. 2. The expression of the proposed objective functions is given 
below as follows:

The minimization in the water supply deficit  (f1) is given by:

where Rt is the water release to meet demand (MCM); Dt is the total water demand at downstream (MCM); St 
is the volume of water storage at the beginning of reservoir simulation in the period ‘t’ (MCM); and ST is the 
target reservoir storage in period ‘t’ (MCM).

The second objective function maximizing the reservoir storage  (f2) is described as:

where Qt
D is the demand specific reservoir in month ‘t’ (MCM); Qt

Th is the downstream discharge threshold 
resulting flood control (MCM).

The following constraints are defined to address the proposed objective functions.
The water balance constraint is given by:

where St+1 is the water storage in the end of tth month (MCM); It is the inflow to reservoir in the tth month 
(MCM); Et is the reservoir evaporation loss in the tth month (MCM); Ot is reservoir outflow in the tth month 
(MCM); and Pt is the reservoir seepage loss in the tth month (MCM).

(1)f1 = Minimize

12
∑

t=1

[

(Rt − Dt)
2 − (St − ST )

2
]

(2)f2 = Minimize

12
∑

t=1

Max
{

Qt
D − Qt

Th, 0

}

(3)St+1 = St + It − Rt − Et − Ot − Pt , t = 1, 2, . . . ., 12

Figure 2.  Adopted reservoir optimization framework in the present study.
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Further, the active storage and designed storage in the reservoir have been in tth month introduced by means 
of the storage constraint as given below:

where Sdead and Smax are the reservoir dead storage capacity and maximum possible reservoir storage capacity, 
respectively.

The amount of water that could be released in each month corresponding to the various demand component 
is depicted as the release constraint, expressed as:

The excess water flow from the reservoir under release exceedance condition is termed as the overflow 
constraint, given as:

Climate change impact assessment
The climate change impact assessment was carried out in this study by forcing the GCM derived precipitation and 
temperature estimates into the previously calibrated and validated SWAT model. Since the RCP 2.6 corresponds 
to the least GHG emission scenario, the corresponding rainfall and temperature scenarios may not be the true 
representative of the plausible climate condition of the KRB. Moreover, the RCP 6.0 as a moderate GHG emission 
scenario poses no significance for the analysis. Hence, in this study, the CMIP5 derived five GCMs were chosen 
for projecting the future climatic conditions of the KRB under two RCP scenarios of 4.5 and 8.5, depicting the 
lowest and highest plausible radiative forcing conditions, respectively.

The inherent uncertainty in the climate model leads to the adoption of substantial correction in the forcing 
variables prior to the model specific operation. Moreover, the coarser resolution of raw GCM outputs depicts 
their inability to represent the actual erratic variation of the forcing variables like precipitation and temperature, 
which is obvious in larger catchment-scale conditions. Hence, the five GCMs were appropriately bias corrected 
and downscaled with reference to suitable observed meteorological variables using the statistical downscaling 
 approach24 as discussed below.

Selection of general circulation model (GCM)
In general, the climate change impact assessment is carried out by forcing the GCM derived precipitation and 
temperature estimates to the previously calibrated and validated hydrological or reservoir simulation model. In 
this study, the CMIP5 derived nine GCMs were chosen originally for projecting the future climatic conditions of 
the KRB under two RCP scenarios of 4.5 and 8.5. The source of origin and spatial resolution of the nine chosen 
GCMs are presented in Table A1 (Appendix section). Subsequently, the performance evaluation of the GCM 
with respect to the observed rainfall and temperature estimates at two representative locations of reservoir 
upstream and command area, five GCMs are shortlisted for the construction of multi-model ensemble and 
corresponding analysis.

As the physical process dynamics of different GCMs vary significantly, it is quite difficult to draw a solid 
conclusion about the regional climatology based on the individual GCM output. In this context, a suitable 
climate ensemble approach was adopted to construct an ensemble of multiple GCMs, hereafter, referred as 
multi-model ensembles (MME), which would behave as a representative future climate scenario for the KRB. 
However, all the GCMs may not represent the true climatology of a region; hence, selection of appropriate 
GCMs for the construction of MME is an important step. To identify the suitable GCMs for constructing the 
MME, the statistical relationship between the gridded IMD rainfall/temperature and individual GCM outputs 
including mean, standard deviation, root mean square deviation (RMSD), and PBIAS were computed which 
are illustrated in the form of Taylor diagrams (Figs. A3–A5). As envisaged from Fig. A3, the regional rainfall 
scenario is best reproduced by the MIROC5 GCM and the remaining RCMs exhibit almost similar estimates of 
standard deviation and correlation coefficient. However, the magnitude of daily rainfall is the best indicative of 
GCM performance, and the deviation of the GCM rainfall estimates from the observed rainfall was quantified 
in terms of the PBIAS. The higher PBIAS (> 10%) of the four GCMs, i.e., GFDL-CM3, IPSL-CM5A-LR, IPSL-
CM5A-MR, and HadGEM2-ES in reproducing the daily rainfall led to non-consideration of these four GCMs 
in creating the MME of future rainfall. Similarly, the PBIAS estimates for reproducing the observed daily  Tmin 
and  Tmax variables in the KRB showed relatively higher value for the above said four GCMs; hence, excluded 
from the subsequent analysis.

Downscaling and bias‑correction of GCM
The grid-scale downscaling performed in this study consisted of 99 spatial grid locations encompassing the whole 
Kangsabati River Basin (KRB). The GCMs chosen in this study are of varying spatial resolution, whereas the 
NCEP predictors are available at a fixed spatial resolution of 2.5° × 2.5°. Hence, using the bilinear interpolation 
technique, the GCMs were re-gridded to the NCEP grids to avoid the potential mismatch in the predictor grids.

Predictors are the GCM simulated climatic variables present in a region, which are extensively used in the 
statistical downscaling of the desired local-scale meteorological variables, such as precipitation and temperature, 
referred as the predictand. Since the predictor-predictand interrelationship varies across different seasons 
following spatiotemporal variation of atmospheric circulation, a seasonal stratification approach was adopted 
to perform the analysis individually in three different seasons of pre-monsoon (March–May), monsoon 

(4)Sdead ≤ St ≤ Smax , t = 1, 2, . . . ., 12

(5)Rt ≤ Dt , t = 1, 2, . . . .12

(6)Ot = St+1 − Smax
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(June–September), and post-monsoon (October-February). Since the GCM based predictor variables are 
associated with systematic biases in their mean and variance magnitudes relative to the NCEP predictors, to 
reduce the extent of bias in the analysis, a standardization approach was followed as given by:

where Pstandardized is the standardized predictor variable, Pactual is the actual predictor variable, and Pmean and 
Pstandarddeviation are the mean and standard deviation of predictor estimates, respectively.

The readily available IMD gridded dataset at a spatial resolution of 0.25° × 0.25° was used as the observed 
dataset for carrying out the bias-correction for more realistic future projections in the KRB. The widely adopted 
Quantile Mapping (QM) bias-correction technique, as suggested  by25,26 was used herein for the bias correction of 
daily rainfall, minimum temperature  (Tmin), and maximum temperature  (Tmax). To perform the bias-correction, 
the complete historical time period of 55 years (1951–2005) was divided into 1951–1975 (25 years) and 
1976–2005 (30 years) as the testing and training periods, respectively.

In this study, a parametric multiple linear regression (MLR) and non-parametric Kernel regression (KR) 
approaches were used to establish the functional relationship between the predictor and predictand. In the 
statistical learning approach, an input was matched to the output at every point. In the MLR approach, a linear 
relation is fitted between the desired predictand (rainfall/temperature) and NCEP/GCM derived predictor 
variables. Conversely, the non-linear kernel regression approach estimates the conditional expectation of random 
variable by means of a weighted average technique; wherein the present study adopts a Gaussian kernel function 
having mean and standard deviation values of 0 and 1, respectively. To calibrate and validate the downscaling 
model, 30 (1976–2005) and 25 (1951–1975) years of training and testing periods were chosen, respectively. The 
calibration of the Kernel regression model was characterized by the selection of suitable smoothing parameter 
which forms the primary step of the kernel estimation. Further, the tuned calibration parameters performed 
satisfactorily during the validation period were treated as the transfer function and applied on the GCM 
predictors to estimate the future climate projections for the respective grid locations.

Assessment of future water availability scenario
Owing to the significant variation in the KRB future climatology, the water balance components are subjected to 
substantial alteration. The future water availability in the KRB is studied at two representative locations of rain-
fed upstream and downstream command region during the future time horizons of Near-future (2020–2045) 
(NF), Mid-future (2046–2071) (MF), and Far-future (2072–2099) (FF). To assess the future water availability in 
the KRB, the following stepwise procedure was followed:

 i. The pre-calibrated and validated SWAT model was forced with the bias-corrected weather inputs from the 
five GCMs and multi model ensemble (MME) for the two representative scenarios of RCP 4.5 and 8.5.

 ii. The hydrological simulations were performed over the three pre-defined future time horizons, and 
subsequently, the monthly-scale estimates of the two major water balance components, viz., streamflow 
and ET were estimated. Because of this alteration, the corresponding changes in the two associated water 
balance components, viz., soil moisture storage and groundwater recharge were assessed for the above 
said future timescales.

 iii. The changes in the future water balance components corresponding to the baseline projections were 
analyzed.

 iv. Further, the trend of the streamflow and ET components were estimated using the Mann–Kendall (MK) 
and Sen’s slope test statistics as given below.

The Mann–Kendall (MK) test was formulated  by27 and its mathematical expression is given by:

where n is the length of data series, xi  and xj are the data values in the time series i and j (j > i), respectively, and 
sgn

(

xj − xi
)

 is the sign function expressed  as27:

The variance is computed as:

where P is the number of tied pairs and ti is the number of data values in the P th group. If there are no tied groups, 
this summary process may be ignored. A tied group is a set of sample data having the same value.

The significance test is carried out using the Z-score given by:

(7)Pstandardized =
Pactual − Pmean

Pstandarddeviation

(8)S =
n−1
∑

i=1

n
∑

j=i+1

sgn
(

xj − xi
)

(9)sgn
�

xj − xi
�

=







+1, if xj − xi > 0

0, if xj − xi = 0

−1, if xj − xi < 0

(10)Var(S) =
n(n− 1)(2n+ 5)− (

∑P
i=1ti(ti − 1)(2ti + 5))

18
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If the Zcalculated > Ztabulated , null hypothesis gets rejected, and treated as statistically significant trend. 
Alternatively, the upward or downward trends in a time series is known by the positive or negative value of the 
Zcalculated . For this study, the significance level, α = 5%  (Z0.05 =  ± 1.96), which is the threshold cut-off for rejecting 
the null hypothesis.

Assessment of future water demand scenarios in the basin
As the Kangsabati reservoir is not meant to fulfill the domestic water needs under the baseline scenario, there 
is no scope left for the reservoir to address this issue under the future climate change scenarios. Hence, like the 
baseline scenario, the future water demand is assumed to be from two major water consumption sectors, i.e., 
irrigation water requirement and environmental flow requirement. The methodology to estimate the various 
water demand components are given below.

Irrigation water demand assessment under future climate change scenarios
The irrigation water demands in the Kangsabati command area under future climate change scenarios was 
assessed assuming that, as compared to the baseline period, there would not be any significant change in the 
crop calendar and crop growing locations in future. For computing the reference evapotranspiration (ET0) 
during the baseline scenario, the FAO-56 Penman–Monteith (PM) method was used for which temperature, 
wind speed, and solar radiation are the input variables. However, in the future climate change scenario, the 
GCM derived outcomes only provide the information of rainfall, and minimum and maximum temperatures. 
Contemplating the accuracy of the FAO-56 PM approach, an indirect mean was adopted to derive the essential 
missing meteorological variables for ET0 estimation. Under limited data availability conditions, to estimate 
missing information on relative humidity (RH), the actual vapor pressure can be computed with the assumption 
that the dew point temperature is very close to the mean annual temperature as:

Subsequently, RH is estimated as:

where es is the saturated vapour pressure (kPa).
The estimates of daily solar radiation can be derived using the minimum and maximum temperatures under 

different RCP scenarios  as28:

where Rs is the actual solar radiation (MJ  m−2  day−1) and its value is a function of the latitude and day of the year 
which becomes a location specific constant value, and Ra is the extraterrestrial radiation estimated as:

where Sc is the solar constant (0.082 MJ  m−2  day−1); Id is the inverse relative distance estimated as:

Sha is the sunset hour angle, estimated as:

Sd is the solar declination angle; Jday is the Julian day of the year; and Ndays is the given number of days in a 
year.

Due to the unavailability of wind speed data in future timescales, its magnitude was considered as the average 
wind speed data during the baseline scenario. Consequently, all the estimated inputs were used to compute ET0 
using the FAO-56 PM approach and the season specific crop coefficient value at the respective locations of the 
command region were used assuming that the crop calendar remained unchanged as that of the baseline scenario 
to estimate the actual evapotranspiration (ETact). The SWAT-based comprehensive approach was adopted to 
obtain the water balance components of the concerned command region, and subsequently, the effective rainfall 
was estimated. The Reff  of the concerned command region is computed from the SWAT water balance equation 
as given  below19:

(11)Zcalculated =



























S − 1
√
Var(S)

if S > 0

0 if S = 0

S + 1
√
Var(S)

if S < 0

(12)ea = 0.611exp
17.27Tmin

Tmin + 237.3

(13)RH =
ea

es
× 100

(14)Rs = 0.16Ra
√

Tmax − Tmin

(15)Ra =
1440

π
Sc × Id(Sha × sinSl × sinSd + cosSl × cosSd × sinSha)

(16)Id = 1+ 0.033× cos
(

2× π × Jday/Ndays

)

(17)Sha = cos(−tan(Sl)tan(Sd))

(18)Reff = PR − Qs − Qlat − Qseep
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where Reff  is the effective rainfall (mm); R is the total rainfall touching the ground (mm); Qs is the streamflow 
(mm); Qlat is the loss in the form of lateral flow (mm); and Qseep is the water lost in the form of seepage (mm).

Environmental flow demand assessment
A range of environmental flow simulation approaches including the Hydrological Approach (HA)29, Hydraulic 
Approach (HUA)30, Habitat Simulation Approach (HSA), and Holistic Approach (HLA)31 are currently being 
operational across the globe. However, the HA approach, which explicitly depends on the historical streamflow 
time series is assumed to be the simplest yet effective approach and the HLA approach, which is a combination 
of hydrological information and biological factors is the complex most approach of E-flow estimation. However, 
unavailability in the large-scale habitat and corresponding biological factor information leads to non-adoption 
of the HLA approach more frequently. Hence, this study adopted the HA approach of E-flow estimation while 
computing the necessary demand components in the reservoir operation framework.

The conventional HA-based streamflow estimation approaches mostly rely on the analysis of monthly-scale 
streamflow time series and subsequent,  90th percentile exceedance probability-based streamflow (referred 
as the  Q90) is estimated and regraded as the Flow duration curve (FDC)-derived E-flow for the concerned 
catchment. However, this approach performed poorly under the hydrological noise scenarios prevalent during 
the monsoon and lean periods, resulting in erroneous E-flow estimation. To address this limitation, this study 
proposed a novel and reliable sub-monthly scale E-flow estimation approach. The suitable river sections having 
relatively stable flow velocity and water depth was identified over the Kangsabati river reach. The FDC analysis 
is approached on the observed daily streamflow data of the pre-identified reach under the pristine condition 
(Pre-dam construction period), i.e., 1950 to 1973, at a 10-daily scale. To reduce the relative noise during the 
monsoon/lean periods, each month was expressed as three sub-monthly periods (e.g., Jan-I, Jan-II, Jan-III), 
consisting of 10-daily averaged streamflow estimate. Further, each sub-monthly period streamflow time-series 
were subjected to Weibull’s plotting position analysis to perform the necessary FDC analysis and derive the  Q90 
value. Upon accumulating the estimated environmental flow for each sub-monthly period, the resulting monthly 
E-flow value was estimated. Subsequently, the net water demand was estimated as the sum of irrigation water 
requirement and E-flow requirement.

Performance assessment of Kangsabati reservoir under future climate change scenario
The pre-calibrated and validated HEC-ResSim model was used to evaluate the developed operation rule in 
satisfying the demand of the command region in the future timescales. The reservoir inflow and SWAT estimated 
evaporation loss under different RCP scenarios as simulated by the SWAT model were fed to the HEC-ResSim 
model. Simulated reservoir release was compared with the demand for a given RCP scenario, and subsequently, 
the efficiency of the rule curve was evaluated.

As envisaged from the Kangsabati reservoir sedimentation survey (Table 1) by the Irrigation and Waterways 
Department, Government of West Bengal (GoWB), the Kangsabati reservoir faced acute sedimentation issue 
with a substantial reduction in the dead storage and live storage. With the assumption that the rate of reduction 
in the Kangsabati reservoir storage to be constant over the years, the average annual reduction in the reservoir 
live storage was estimated as 0.307%. Further, due to the reservoir restoration activity by the Kangsabati dam 
authority in the year 1994, its live storage was improved by 3% over a period of 30 years. Considering this rate 
would remain static in the future timescales, every 26-year span in the near-, mid-, and far- future period is 
expected to experience a reduction of 5.083% from the baseline period of 1970–1994. The reservoir simulation 
under the future RCP scenarios was carried out after updating the reservoir live storage values in the HEC-
ResSim model.

Predictive uncertainty in reservoir performance under climate change scenario
The climate change impact analysis studies involving sustainable water resources management are subjected 
to multiple sources of uncertainty, including input data uncertainty, processing uncertainty, and modelling 
uncertainty. To ascertain the robustness of the proposed water resources planning framework, quantification of 
all the individual sources of uncertainty across the analysis time scale is quite inevitable. Hence, the uncertainty 
in the proposed future reservoir operation study could be attributed to the following sources, viz., the analysed 
emission scenarios, chosen GCMs, adopted downscaling scenario, and hydrological model. Certainly, the 
reservoir operation framework is dependent on the simulated reservoir inflow by SWAT model under multiple 
climate projections. Among the existing uncertainty quantification approaches, the present study adopted the 
maximum entropy (ME) based uncertainty quantification approaches as proposed  by32 to individually analyse 
the inherent uncertainty in the precipitation, temperature, and simulated reservoir inflow as given below.

Table 1.  Reduction in Kangsabati reservoir storage capacity due to sedimentation (Irrigation and Waterways 
Department, GoWB).

Period Capacity at the end of last survey period  (m3)
Capacity at the end of given survey period 
 (m3) Cumulative loss  (m3) Cumulative loss (%)

1970–71 434,721,523.8 429,086,987.2 5,634,536.61 1.30

1976–77 429,086,987.2 423,822,494.5 10,899,045.52 2.51

1993–94 423,822,494.5 393,334,569.4 41,386,954.48 9.52



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21720  | https://doi.org/10.1038/s41598-023-49107-z

www.nature.com/scientificreports/

A given set of forcing variable characterized with maximum and minimum values of m and n, respectively, 
the corresponding maximum entropy (ME), i.e., H(x) is expressed  as33:

To qunatify the uncertainty involved with the streamflow projections, all the possible streamflow combinations 
(24 in this study) constituing the scenarios and models are generated. Then for model j corresponding to a given 
stage i the resulting maximum and minimum streamflow vaues are estimated and the corresponding maximum 
entropy, ME  Hij is estimated (Eq. 19). Further, individal stage specific maximum entropy values are identified with 
two selection options, viz., avaergae or maximum. However, the present study adopts the maximum selection 
approach to quantify the total uncertainty from various sources. The similar steps are repeated to quantify 
the uncertainty involved with the forcing variable upon excluding the source of uncertainty arising from the 
hydrological model SWAT.

Study site and database
Study area
The KRB is situated in the eastern part of India, which encompasses both reservoir command (5735  km2) and 
river catchment (6279  km2) regions (Fig. 3). The Kangsabati River starts in the Chhota Nagpur plateau, and 
subsequently, reaches the downstream location after covering a long flow path. The basin experiences highly 
undulated topography with the upper part of the basin characterized by high slope conditions. The study 
basin receives a mean precipitation of 1400 mm, of which 80% is concentrated during the monsoon period. 
The Kangsabati reservoir was built near the convergence point of Kangsabati and Kumari River. The dam was 
constructed in two phases with the first construction began in the year 1965. In the second phase, the dam 
construction over tributary Kumari was started in the year 1973, and subsequently, the Kangsabati reservoir 
was formed. The command area is encompassed between the districts of Bankura, Midnapur, and Hooghly of 
West Bengal having coordinate bounds of 22°08’ to 23°13’ N latitudes, and 86°45’ to 87°47’ E longitudes. The 
reservoir provisions the water flow through two main canal schemes, viz., Right Bank Main Canal (RBMC) and 
Left Bank Feeder Canal (LBFC) (Fig. 3).

(19)H(X) = −
∫ n

m
fx(x)lnfx(x)dx = −ln(n−m)

Figure 3.  Index map showing river and reservoir catchment command locations.
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The LBFC initially meets the Silabati river, where a barrage has been constructed, and subsequently, irrigates 
the area between the Silabati and Darakeswar river. The total length of the LBFC, i.e., from LBFC HR to SMC HR 
is approximately 9.9 km, whereas the length of KMC is about 21.1 km. The basic discretization of the Kangsabati 
canal system works in such a way that the main canal supplies water to the distributaries and to the direct outlet 
points, subsequently, the distributaries transmit water to the minors and sub-minors, whereas direct outlet points 
supply water to the field channels. Major agricultural crops are paddy during kharif season and wheat, potato 
and mustard are mostly grown during the rabi season. Summer (Boro) paddy is pre-dominantly cultivated in the 
command regions. The crop calendar of the kharif paddy is characterized by the sowing/transplanting period 
during mid-June to Early-July and harvesting is done during the month of October. In both LBFC and RBMC 
command area paddy growing regions combinedly constitute 48% of the total basin area.

Pedo-hydrological database and pre-processing
The present study consisted of hydrological modelling of integrated river-reservoir catchment command; hence, 
the accuracy of this research is certainly pivoted around the availability of long-term and reliable input data. 
Observed forcing inputs, such as precipitation, maximum and minimum air temperatures, solar radiation, relative 
humidity, and wind speed at 1-daily temporal resolution available at six weather stations of Simulia, Kharidwar, 
Tusuma, Kangsabati dam, Rangagora, and Mohanpur for the period 1980 to 2011 were procured from the Central 
Water Commission (CWC), Asansol and India Meteorological Department (IMD), Pune.

The reservoir characteristic curves, viz., stage-area curve (Fig. 4a), stage-volume curve (Fig. 4b); dead storage, 
live storage, and daily flow releases at head regulators of LBFC and RBMC, downstream spillway discharge, daily 
reservoir inflow from the upstream catchment, and information about the canal network and their corresponding 
command regions for the period 1986–2011 were procured from the Office of the Superintending Engineer, 
Irrigation and Waterways Department, Bankura, Govt. of West Bengal. As per the information of the Water and 
Power Consultancy Services (India) Ltd. (WAPCOS, 2003), the field application efficiency was assumed to be 
80% and the corresponding seepage loss in the canal networks is assumed to be 2.94 cumec/M sq. m.

Generally, the climate change impact assessment is carried out by forcing the GCM derived precipitation 
and temperature estimates to the previously calibrated and validated hydrological model. In this study, the 
CMIP5 derived five GCMs were chosen for projecting the future climatic conditions of the KRB under two RCP 
scenarios of 4.5 and 8.5.

Results and discussion
Evaluation of integrated hydrologic and reservoir simulation model performance
The daily-scale representation of reservoir inflow during the calibration and validation periods is illustrated in 
Fig. 5, which revealed adequate representation of reservoir inflow during peak and lean water availability periods. 
As envisaged from Fig. 5, the daily-scale NSE and  R2 ranged between 0.77–0.84 and 0.77–0.85, respectively 
during the calibration and validation periods. Considerable underestimation in the peak inflow is pre-dominant 
during the monsoon periods of the analysis horizon, which could be attributed to instantaneous high rainfall 
events. As depicted from RMSE estimates of 48.77 and 32.82  m3/s, respectively, the simulated inflow values are 
at par with the observed inflow estimates, and certainly, the chosen goodness of fit estimators are well within 
the acceptable limits as suggested  by34. To identify the governing parameters of catchment-scale streamflow 
generation, an extensive sensitivity analysis was performed for the present study. Selection of hydrological model 
parameters plays vital role in governing the spatial simulation of the hydrological flux components. The model 
calibration was initiated with 26 commonly used parameters for streamflow simulation, and subsequently, using 
the Latin Hypercube One Factor at a Time (LHOAT) sensitivity analysis approach, 10 sensitive most parameters 
were included in the model calibration. The curve number (Fitted range of 47–86) turns out to be the top 
sensitive parameter, signifying that the reservoir upstream location surface water characteristic mostly governs 

Figure 4.  (a) Stage-area curve of Kangsabati reservoir; (b) stage-volume curve of Kangsabati reservoir.
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the reservoir inflow simulation. The second most sensitive parameter, i.e., main channel conductivity (CH_K2) 
estimate of 30.7 mm/h depicts that the water travels from the upstream to the downstream section with moderate 
pace and maintains the time of concentration of the catchment. Moreover, few groundwater parameters including 
the soil hydraulic conductivity (SOL_K), baseflow alpha factor (ALPHA_BF), and deep percolation recharge 
(RCHRG_DP) are identified to be the sensitive parameters revealing the contribution of groundwater parameters 
to overall reservoir inflow simulation. Nevertheless, the HRU slope factor in the range of 0.2–14.32% plays a 
decisive role in rainfall-runoff translation.

The monthly-scale reservoir release as obtained from the HEC-ResSim model alongside the observed inflow 
is illustrated in Fig. 6a, b. The reservoir release as simulated near the three outlets, i.e., LBFC, RBMC, and the 
main spillway are treated the combined outcome of the reservoir operation in the model conceptualization. The 
HEC-ResSim simulated reservoir outflow very well reproduced the observed counterparts across all the analysis 
time horizons; however, marginal mismatch could be noticed during the years 1989, 1993, and 2001. As depicted 
from goodness of fit indicators including NSE = 0.85,  R2 = 0.89, and PBIAS =  + 1.23%, the HEC-ResSim model is 
quite effective in replicating the reservoir outflow pattern during both flood and drought phases. Nevertheless, 
the maximum reservoir release ranged between 20 and 31 MCM during the June–September months of the 
years 1989 and 1993, which were considerably underestimated from the simulated counterparts. Overall, with 
satisfactory performance at the canal network and their corresponding command regions both hydrological and 
reservoir simulation models, the proposed framework could be well adopted under both baseline and future 
climate change scenario.

Integrated simulation–optimization based improved reservoir rule formulation
This study uses the simulated reservoir inflow and the estimated water demand as two primary inputs for 
the developed framework. Further, as per the proposed 10-daily E-flow estimation framework, the kharif 

Figure 5.  Representation of daily-scale reservoir inflow by the SWAT model.
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season E-flow was estimated to be 126.37 MCM, and subsequently, added with the pre-estimated irrigation 
demand to compute the total water demand in the command region. The final fitted vales of the GA parameters 
including population size, mutation probability, and crossover probability were estimated to be 171, 0.01, and 
0.72, respectively resulting in optimal system performance value of 8327 MCM with negligible deviation in the 
reservoir release is noticed.

The developed simulation–optimization framework is conceptualized by two representative priority scenarios, 
i.e., Supply Priority Rule Curve (SPRC) and Equal Priority Rule Curve (EPRC) scenarios, wherein the former 
corresponds to only reservoir release and the later refers to both reservoir release and flood control storage. The 
rule curve for the baseline scenario was constructed using the previously optimized GA parameters as presented 
in Fig. 7. As depicted from Fig. 7, both EPRC and SPRC based operation rules are swiveled around the original 
operation rule of the KRB; wherein significant deviation is observed during the post-monsoon period between 
the derived and the existing rule curve. The proposed rule curve revealed that the generated demand in the 
baseline scenario could be well met under the SPRC scenario, with relatively no scope for flood control storage. 
Owing to maximum release in the SPRC scenario, the storage level reaches a magnitude of 63.29 MCM during the 
month of May lead to critical dearth of future time horizon, which behaves as Standard Operating Policy (SOP) 
kind of reservoir operation. Conversely, the EPRC lowers the current demand of water marginally to contain 
flood storage and meet the plausible water demand in future like the hedge rule type operational procedure. 
Contemplating the applicability of EPRC in real world water management planning, the present study adopted 
the EPRC approach for both present and future analysis timescales.

Performance evaluation of the derived rule curve is analyzed under two major heads: first, actual water 
demand of LBFC and RBMC regions and second is practical water application scenario constituting 10–40% 
cut-off in the estimated water demand; henceforth termed as cut-off irrigation (CI) scenario. As more than 40% 
cut-off induces critical moisture stress in the crops, the cut-off in water demand is limited to 40% in the present 
study. Maximum volume reliability and time reliability estimates of 0.827 and 0.729, respectively, is depicted 
under the SPRC based operation scenario. Conversely, the previously described performance indicators attain 
their maximum value of 0.926 and 0.949, respectively under cut-off irrigation condition, depicting improved 
reservoir operation condition. Significant discrepancy is observed between the existing rule curve and EPRC 
derived rule curve as envisaged from the reservoir vulnerability and resiliency estimates of 0.127 and 0.671, 
respectively under 30% CI scenario. However, above 30% cut-off in actual irrigation obsoletes practicality in 
water resources planning; hence, the planning is limited to maximum 30% cut-off in the actual demand.

Multi-model ensemble (MME) derived future climate change scenario
The magnitude of average annual rainfall as derived from the MME is in the decreasing order of MF 
(1733 mm) → FF (1611 mm) → NF (1529 mm); and MF (1689 mm) → FF (1623 mm) → NF (1569 mm) during 
the RCP 4.5 and 8.5 scenarios, respectively, with respect to the base period magnitude of 1395 mm at the upstream 
rain-fed location. This depicts that under both the RCP 4.5 and 8.5 scenarios, the MF period of the Kangsabati 
Reservoir is expected to face higher inflows that would cause adverse flood scenario in the downstream command 
regions. However, relatively higher monsoon rainfall could be expected in the command regions of the KRB 
yielding a positive impact on the crop growth during the lean periods. The projected temperature scenario in 
the KRB revealed that the MME-derived average monthly Tmin reaches a value of 25 °C during the period of 
March–April-May under all the RCP scenarios with the least deviation among the individual GCMs. However, 
in the FF period, considerable difference is noticed among individual GCMs as envisaged from the standard 
deviation estimates of 3.02 °C and 2.27 °C for the reservoir and Mohanpur locations, respectively. Under the RCP 
4.5 scenario, the  Tmax/Tmin temperatures are expected to increase in future as: NF (39.1/24.4 °C) → MF (40.6/25.4 
°C) → FF (41.3/26.2 °C); while under the RCP 8.5 scenario, the  Tmax/Tmin temperatures are expected to increase 
as: NF (40.3/25.1 °C) → MF (41.4/26.3 °C) → FF (42.4/27.1 °C) depicting more intense heat wave scenario. As 
interpreted from the MME-derived projected temperature scenario at the upstream reservoir location, a relatively 
consistent projected temperature scenario could be expected in estimating  Tmin than the  Tmax with the highest 
 Tmax estimate of 44 °C to be observed in the FF period under the RCP 8.5 scenario.
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Figure 7.  Derived reservoir operation rule curve for the baseline scenario.
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Because of alteration in the future climatology in the study area, the water balance components are subjected 
to significant variation with respect to their magnitude in the baseline scenario. In this study, two major water 
balance components, i.e., streamflow and ET, depicting the supply–demand dynamics in the context of irrigation 
water demand are chosen for the analysis. The average annual trend estimates of streamflow and ET for the 
period 2020–2099 under three future time horizons of NF (2020–2045), MF (2046–2071), and FF (2072–2099) 
are presented in Tables 2 and 3. The estimated trends in the average seasonal future streamflow revealed a 
contrasting trend at the reservoir inflow location and the Mohanpur outlet. Similarly, there is a decreasing trend 
in the future streamflow only during the NF period at the reservoir inflow location, whereas in all the three-time 
horizons, the command area would experience a decreasing trend of streamflow. The considerable reduction in 
the streamflow could be attributed to the increased temperature projections over the KRB resulting in increased 
evapotranspiration loss. Conversely, the future ET projections over the KRB indicate an increasing trend by 
all the time horizons and RCP scenarios. However, the corresponding increase in the trend is more prevalent 
in the reservoir-command region than the upstream rain-fed regions as envisaged from the MK-test derived 
mean trend estimates of 1.987 and 2.788 in the MF and FF periods, respectively. Further, more intent ET loss 
is observed under the RCP 8.5 scenario, which could be due to the explicit interrelation between the ET and 
temperature variable.

Similarly, the future ET projections revealed that these estimates are the highest during the month of August 
and the lowest during the month of February in the command region under both the RCP scenarios. The GCM 
derived future ET estimates are found to be in synchronous with the  Tmax and  Tmin variability. The future ETact 
estimates are relatively higher under the RCP 8.5 scenarios by 13.14% and 17.32% from that under the RCP 4.5 
scenario in the rain fed upstream and reservoir command regions, respectively. However, the monsoon period 
of the command region is likely to experience the highest increase in ET from the NF to FF periods. A detailed 
overview of the crop water requirement at the three test locations, viz., upstream rain-fed region, LBFC, and 
RBMC, the relative change in the ET magnitude with respect to the baseline scenario (1951–2014) is illustrated 
in Fig. 8. The MME derived ETact projections in Fig. 9 revealed that the FF time horizon of the LBFC region may 
experience the highest increase in ET estimates of 18.02%. Corresponding the baseline scenario ET estimates 
of 1073 and 1297 mm in the rain-fed and command regions, respectively, the mean annual  ETact magnitude in 
the rain-fed and command regions are estimated to be 1158 mm/1226 mm and 1468 mm/1517 mm under the 
RCP 4.5/8.5 scenarios, respectively. This provides a clear insight into the increased water demands in the study 
area during the future time periods.

Projected future irrigation water demand
Since the change in E-flow requirement was assumed to be insignificant in the future scenario, the projected 
irrigation demand was added with the estimated E-flow in the baseline scenario to compute the projected net 
water demand. The mean projected irrigation demand during the kharif season at the LBFC and RBMC command 
is illustrated in Fig. 10. At both the command locations, the increase in irrigation demand under the RCP 8.5 
scenario is relatively higher than the RCP 4.5 scenario, depicting the role of substantial decrease in rainfall in 
the command regions which may lead to reduced availability of effective rainfall for plant water uptake. The 
projected volumetric irrigation demand was the highest during the FF time periods under the RCP 8.5 scenario 
for both the LBFC (867.49 MCM) and RBMC (224.43 MCM) command regions. Moreover, the intent increase 
in the projected ET during the NF, MF, and FF periods seems to have direct influence on the irrigation water 
requirement scenario, wherein the projected irrigation water demand at both the LBFC and RBMC are reduced 
in the order of FF → MF → NF. Although both the rainfall and temperature variables are subjected to increase 

Table 2.  Seasonal streamflow projections derived from MME under RCP 4.5 and 8.5 scenarios.

Season

Reservoir inflow  (m3/s) Mohanpur outlet  (m3/s)

NF MF FF NF MF FF

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Pre-monsoon 1.96 3.15 2.19 3.67 3.06 4.17 6.56 7.75 5.84 8.77 5.17 10.09

Monsoon 63.32 84.23 74.92 93.56 103.93 101.75 143.43 166.22 132.89 181.22 128.98 197.47

Post-monsoon 20.31 28.96 24.47 29.56 29.19 34.79 38.79 41.86 33.32 48.23 30.71 52.49

Table 3.  Seasonal ET projections derived from MME under RCP 4.5 and 8.5 scenarios.

Season

Upstream rain-fed region (mm) Command region (mm)

NF MF FF NF MF FF

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Pre-monsoon 211.54 234.32 228.55 240.43 237.21 257.79 291.76 323.67 311.78 334.96 320.21 324.31

Monsoon 506.32 528.89 554.32 592.87 637.89 648.87 698.23 712.65 712.78 727.82 741.26 754.98

Post-monsoon 331.09 343.74 351.27 397.61 417.28 431.23 420.76 431.02 448.49 462.31 461.21 477.41
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Figure 8.  Mean seasonal precipitation change anomaly at the rain-fed and command regions in the study 
area for NF, MF, and FF periods with respect to the baseline (1951–2014) period under RCP 4.5 and RCP 8.5 
scenarios.

Figure 9.  Relative increase in ET projections with respect to the baseline scenario at different test locations of 
KRB.
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in the future scenario, the relative impact of ET is higher in governing the future irrigation demand. Moreover, 
the mean heatwave intensity of 2.84 °C during the FF period under the RCP 8.5 scenario with prolonged event 
duration of 10–12 days could have caused substantial moisture stress in the command region aggravating the 
irrigation water demand to a greater extent under the RCP 8.5 scenario. Finally, the estimated irrigation demand 
and previously estimated E-flow requirement are combined to estimate the total water demand in the future 
scenarios, and subsequently, used in the reservoir simulation–optimization model framework.

Assessment of reservoir performance under future climate change scenario
To facilitate the climate change impact on reservoir operation, the SWAT model was used to simulate the 
Kangsabati reservoir inflow for the NF, MF and FF periods under two RCP scenarios of 4.5 and 8.5. The reservoir 
performance under the future climate scenario was assessed by comparing the simulated outflow and estimated 
future demand as indicated by the time reliability, volume reliability, resiliency, and vulnerability indices. Under 
unsatisfactory reservoir performance condition, necessary modification to the existing operation rules was 
applied. The SWAT simulated reservoir inflow and estimated water demand for the RCP 8.5 scenario was adopted 
in the previously proposed SWAT-HEC-ResSim-GA framework to derive the optimized rule curve for the RCP 
8.5 scenario. The applicability of the EPRC-derived reservoir operation rule pertaining to the actual future water 
demand as simulated under the MME-derived future climate change scenarios are presented in Table. 4.

It is evident from Table 4 that the efficiency in reservoir operation under NF period gradually degrades during 
the MF and FF periods under the two RCP scenarios. The SWAT-HEC-ResSim-GA derived reservoir operation 
rules for the baseline scenario revealed that the reservoir release could satisfactorily meet the desired water 
demands during all the NF, MF, and FF episodes under the RCP4.5 scenario with the reservoir time reliability 
estimates of 0.621, 0.584, and 0.611, respectively; volume reliability of 0.657, 0.593, and 0.638, respectively; 
resiliency of 0.547, 0.497, and 0.512, respectively; and vulnerability of 0.203, 0.226, and 0.217, respectively. 
However, during the MF/FF episodes of the RCP 8.5 scenario, the Kangsabati reservoir is projected to perform 
poorly with reduced time and volume reliability estimates of 0.389/0.402 and 0.456/0.491, respectively, which 
can be attributed to the 19% and 22% increase in the projected irrigation water demands during the MF and 
FF episodes from the baseline scenario. This necessitates a clear understanding of how the individual reservoir 
performance evaluation index varies corresponding to the baseline scenario. To ascertain the relative lowering 
in future reservoir operation performance with respect to the baseline scenario, the percentage change in the 
individual performance index corresponding to its counterpart in the baseline scenario is presented in Fig. 11.

As seen from Fig. 9, the reliability, resiliency, and vulnerability estimate for the Kangsabati reservoir 
have significant variability with respect to the baseline scenario (1986–2011). Across all the future time-
horizons, the RCP 4.5 scenario is subjected to minimal alteration in the range of <  ± 10% for the four reservoir 
performance indices. The minimal reduction in the reservoir performance under the RCP 4.5 scenario signifies 
the improved applicability of the proposed operation rule under baseline scenario. Conversely, the RCP 8.5 
scenario corresponds to much adverse water supply–demand scenario in the future timescales with significantly 
varying reservoir performance index estimates from that of the baseline scenario (1986–2011). Among the four 
performance evaluation criteria considered herein, the vulnerability criterion under the RCP 8.5 scenario for 
the far-future period is found to be the highest (34.5%) than that of the RCP 4.5 scenario (22.6%). Overall, the 
proposed reservoir operation rule for the baseline scenario performed satisfactorily under RCP 4.5 scenario. 

Figure 10.  Future projected irrigation demand in the KRB command regions.

Table 4.  Performance of Kangsabati reservoir during future timescales of RCP 4.5 and RCP 8.5 scenarios.

Performance index

RCP 4.5 RCP 8.5

NF MF FF NF MF FF

Time reliability 0.621 0.584 0.611 0.512 0.389 0.402

Volume reliability 0.657 0.593 0.638 0.595 0.456 0.491

Resiliency 0.547 0.497 0.512 0.518 0.342 0.473

Vulnerability 0.203 0.226 0.217 0.213 0.345 0.306
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Moreover, the MF and FF periods under RCP 8.5 are likely to experience significant reduction in the reservoir 
volume reliability and resiliency indices in the range of 23.1–2.6 and 10.6–23.7%, respectively, revealing the 
necessity to modify the proposed operation rule under baseline scenario. To address this limitation in the 
reservoir operation rule under the RCP 8.5 scenario, the SWAT-HEC-ResSim simulated rule curve was updated 
by the GA-based optimization technique in which the projected future water demands and reservoir inflows for 
the RCP 8.5 scenario were used as the input variables.

As can be seen from Fig. 12, the optimized revised rule curve so generated under the RCP 8.5 scenario could 
ensure efficient irrigation release with time and volume reliability estimates of 0.623 and 0.651 for the equal 
priority rule curve scenario, respectively. The revised reservoir rule curve under the RCP 8.5 scenario revealed 
that the simulated reservoir releases during the period of April-August are increased by 3–7% under the RCP 
8.5 scenario; while during the lean periods (January-May), the simulated release are increased by approximately 
12% to address the acute water demands in the downstream command area under the equal priority scenario. The 
revised operation rule under the RCP 8.5 scenario derived by the SWAT-HEC-ResSim-GA framework resulted 
in reduced numbers of irrigation failures from 64 to 38 and from 43 to 29 during the MF and FF periods when 
compared with the baseline period. This caused significant improvement in the reservoir performance under 
the RCP 8.5 scenario with the time/volume reliability estimates of 0.596/0.607 and 0.623/0.651 during the FF 
and MF episodes, respectively, as compared to the baseline period derived rule curve with the corresponding 
estimates of 0.402/0.389 and 0.491/0.456 in the FF and MF episodes. Consequently, the reservoir resiliency and 
vulnerability also improved to 0.581/0.502 and 0.223/0.241 in the FF and MF episodes, respectively.

Further, adopting the revised rule curve under the RCP 4.5 scenario also resulted in substantial 
improvement in the reservoir performance as envisaged from enhanced reservoir performance indices (time 
reliability/volume reliability/resiliency/vulnerability) of 0.639/0.671/0.563/197, 0.598/0.613/0.514/0.201, 
and 0.632/0.669/0.532/0.194 during the NF, MF, and FF episodes, respectively. Although the supply priority 
derived rule curve ensures higher reliability and resiliency value, the reservoir releases during most of the 
monsoon periods exceeds the maximum channel carrying capacity leading to probable flood scenario in the 
downstream. Hence, the equal priority-based rule curve also seems to be the best possible reservoir operation 
scheme under the RCP 4.5 scenario. The number of times the simulated reservoir release fails to meet the 
desired water demand is treated as irrigation failure and becomes the true representative of the efficiency of the 
proposed reservoir operation rule. The number of irrigation failures as simulated by the SWAT-HEC-ResSim-GA 
conceptualization using the modified rule curves proposed for the RCP 8.5 scenarios with the actual and critical 
irrigation demands is presented below in Fig. 13. As envisaged from Fig. 13, the number of irrigation failures 
will be reduced substantially in the future time scales from that of the existing rule curve-based operation 
in the baseline scenario. Considering the actual irrigation demand, the number of failures is estimated to be 
relatively lower under the RCP 4.5 scenario; however, considering the pre-assumed 30% curtailment in the actual 
demand, the number of failures is reduced by 19.72% in the RCP 8.5 scenario corresponding to the baseline 

Figure 11.  Kangsabati reservoir performance under the future climate change scenario.

Figure 12.  Proposed optimized rule curve for the Kangsabati reservoir under the RCP 8.5 scenario.
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proposed rule curve release scenario. This depicts that the magnitude of irrigation demand is projected to be 
higher under the RCP 8.5 scenario as compared to the RCP 4.5 scenario for the MF and FF periods. By adopting 
the proposed revised reservoir rule curve under the RCP 8.5 scenario, the average reduction in the number of 
irrigation failures, pertaining to the 30% cut-off in the actual irrigation demand, is estimated to be 31.10% and 
23.13% under the RCP 4.5 and RCP 8.5 scenarios, respectively. This depicts that under critical water availability 
scenario, with 30% cut-off in the actual water demand, for instance, the Kangsabati reservoir would perform 
more efficiently under both the RCP scenarios. The number of irrigation failures presented in Fig. 13 revealed 
that the proposed SWAT-HEC-ResSim-GA simulation–optimization based reservoir operation framework could 
perform better in the reservoir operation under climate change scenarios. Therefore, development of similar 
improved adaptive reservoir operation rules under future climate change scenarios has the potential to aid the 
decision makers in formulating sustainable operation policy for other multi-purpose reservoirs worldwide. 
Conclusively, the reservoir performance assessment scheme implemented herein could effectively address 
the possible additional demand sectors like inter-basin water transfer and domestic water requirement in the 
catchment-scale applications.

Assessment of uncertainty in reservoir performance
As envisaged from Table 5, the cumulative uncertainty in streamflow simulation goes on increasing with the 
advancement of different processing stages. The final cumulative uncertainty as obtained in the end of Table 5 
represents the total uncertainty estimate of 5.26. Certainly, the uncertainty contribution to the streamflow 
simulation was the highest from analysis scenarios (55.90%) followed by GCMs, downscaling technique, and 
chosen hydrological model. Further, more uncertainty is arising from the RCP 8.5 scenario with ME estimates of 
2.94 corresponding to the RCP 4.5 scenario (ME = 2.12), signifying that the streamflow projections obtained in 
this study are more reliable in the RCP 4.5 scenario. A close observation at the relative contribution to uncertainty 
in streamflow simulation by the individual GCM and the MME revealed that the MME derived streamflow 
simulation yielded the lowest uncertainty in long-term future streamflow simulation with ME estimate of 3.31 
corresponding to the high ME value of 4.91 in case of the MIROC-ESM-CHEM model. These findings are in line 
with the recommendation of many previous studies that the MME derived climatic projections give more reliable 
estimation of the future streamflow with least  uncertainty35,36. Moreover, the natural variability corresponding to 
the uncertainty in the baseline scenario having magnitude 56.46% is quite comparable with the future streamflow 
projections with less than 50% increased uncertainty. Hence, the projected streamflow simulations obtained 
in this study are accurate enough in deriving the future reservoir operation rule for both the RCP 4.5 and 8.5 
projections with slightly higher degree of overall uncertainty in the RCP 8.5 scenario.

Figure 13.  Projected number of irrigation failures under the RCP 4.5 and 8.5 scenarios for the near-future 
(NF), mid-future (MF) and far-future (FF) time episodes.

Table 5.  Quantification of reservoir inflow simulation uncertainty under climate change scenario.

Analysis stage Maximum entropy (ME) Maximum of ME Incremental ME Uncertainty ratio (%)

RCP scenarios
RCP 4.5 2.12 2.94 – 55.9

RCP 8.5 2.94

GCMs

BCC-CSM1-1 3.98 4.91 1.97 37.45

GFDL-ESM2G 4.33

MIROC5 4.87

MIROC-ESM-CHEM 4.91

NorESM1-M 4.29

Multi model ensemble (MME) 3.31

Downscaling technique
MLR 3.82 5.17 0.26 4.94

KR 5.17

Hydrological model SWAT 5.26 0.09 1.71

Total uncertainty 5.26 5.26 – 100

Natural variability 2.97 2.97 – 56.46
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To ascertain the uncertainty involved with the projected forcing variables, Fig. 14 revealed the relative 
uncertainty contribution from different RCP scenarios, GCMs, and adopted downscaling technique. Like 
the streamflow, the RCP scenarios contributed the highest uncertainty for all the three forcing variables, the 
highest uncertainty being observed for the minimum temperature variable (76.68%). However, the adopted 
downscaling technique contributed to least uncertainty (< 20%) depicting better special discretization of all the 
forcing variables for the future simulation. As expected, the RCP 8.5 scenarios corresponded to the highest overall 
uncertainty in case of all the derived future forcing variable projections. Overall, the uncertainty assessment 
performed herein revealed that the future projected uncertainty is 43.54% higher than the baseline scenario 
and the proposed reservoir operation rules can be adopted in future decision-making studies with reasonable 
accuracy.

Discussions
Broadly, the reservoir release operation is described under two primary modelling heads, viz., open loop reservoir 
model and close loop reservoir model. The open loop model exclusively relies on historical hydro-meteorological 
data and pre-defined rule curves for governing the reservoir release. Considering relatively simpler model 
conceptualization and higher computational efficiency, the open loop-based reservoir simulation models were 
extensively used in many past  studies37–39. Conversely, the closed loop model which accounts for the real time 
hydrological condition and demands to adjust the release decision dynamically. However, excessive computational 
requirement and required access to real-time hydrological information constrains the application of closed 
loop reservoir  models40. Moreover, the application of the closed loop reservoir models under climate change 
scenario may yield unreliable performance because of increased uncertainty form the climate model and machine 
learning or data assimilation approaches. The proposed integrated reservoir simulation strategy, which adopts 
both the hydrological and reservoir simulation approach in conjunction with the dynamic environmental flow 
and demand estimation approach can be treated as a semi-closed reservoir modelling approach with satisfactory 
performance across both historical and future climate change scenarios.

The future water demand projection is in line with the outcomes form past support vector regression-based 
demand estimation study performed over the Netherland and Belgium region, depicting 0.8% increase in the 
demand by the period  205041. Owing to the high temperature and varying precipitation behaviour, the temperate 
region may face more severe water scarcity issue than the tropical region. A study on the global future water 
demand revealed that few parts of India and Middle East may experience water demand from the hydroelectricity 
sector, although more emphasis on import of food products will reduce the agricultural water demand to some 
 extent42. Further the increased future water demand in the concerned region could be attributed to more paddy 
cultivation, which is evident in the study conducted  by43, depicting that intense cereal and paddy cultivation 
may lead to increased water demand under baseline and future climate change scenario.

An approach  by37 accounted the synergistic relationship between the environmental flow and the cropping 
pattern optimization conceptualization under climate change scenario, revealing that maintaining both irrigation 
demand and environmental flow might be challenging under low reservoir inflow condition. In support of the 
findings  by37,44, the present study depicted that under adequate precipitation and reservoir inflow scenario, 
the proposed reservoir operation rule can meet both irrigation demand and environmental flow adequately, 
highlighting the explicit climatic control on the supply–demand dynamics. An overview on the climate change 
impact on the reservoir operation revealed the difference between the supply–demand was the highest during 
the dry periods of many global studies, which is also evident in the current study region during the month of 
April and  May45–47. To ascertain more practical water management scenario, 30% cut-off in the actual irrigation 
demand is recommended in this study, which is in line with the study conducted  by48 depicting 30% reduction 
in agricultural demand under RCP 4.5 scenario resulted higher sustainability index.

The proposed reservoir operation framework integrated the hydrological modelling framework with the 
reservoir simulation framework to evaluate the efficiency of the derived rule curve. The conventional hydrological 
models like SWAT and VIC adopted extensively in reservoir operation studies do not represent the actual 
stream-reservoir connectivity; hence the modelling outcomes are less  reliable49,50. Moreover, the HEC-ResSim 
based reservoir simulation model provides the option to define the reservoir operation rules while evaluating 
the reservoir operation performance across the concerned river basin. A comparative study between the Soil 
Conservation Services-Curve Number (SCS-CN) method and Artificial Neural Network (ANN) for Kangsabati 
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Figure 14.  Relative uncertainty in the projected forcing variables for the future scenario.
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reservoir inflow simulation revealed poor performance owing to the involved complexity of catchment and 
 reservoir51. Many past studies tend to ignore the primary loss component, viz., evaporation loss while estimating 
the overall water balance, resulting in an erroneous assessment of demand  components52. Assessment of 
environmental flow under limited data availability conditions hinders the adoption of habitat-simulation and 
holistic  approaches8. In this context, the hydrological analysis based FDC approach is extensively adopted in past 
studies; however, all the previous studies performed the analysis in a monthly-time scale depicting significant 
 uncertainty53. To account for the underlying uncertainty, the proposed novel sub-monthly scale E-flow estimation 
technique resulting in more realistic E-flow quantification for the reservoir operation; thereby improving the 
overall demand assessment of the study catchment. Certainly, the improved E-flow estimation approach can 
enrich the decision makers with more confidence in assessing the downstream E-flow requirement.

Lack of suitable adaptive operating policy results in reduced reservoir performance along the future climate 
change scenarios. As envisaged from a study on the Descoberto reservoir, the reservoir reliability reduced in 
the range of 15–50% during future climate scenarios of 2031–2080 from the initial value of 100% during the 
baseline scenario, pointing towards the risk of water management under highly non-stationary  condition54. 
The developed approach analyzed the reservoir performance under a range of irrigation application and water 
demand scenario to determine the best possible adaptation option for maintaining the reservoir performance 
at optimal level. Certainly, the 30% cut-off irrigation strategy suggested in this study can maintain the reservoir 
reliability to more than 95% from its corresponding value in the baseline scenario. The developed approach 
proved to be an advancement over the previous reservoir operation studies, wherein the reservoir performance 
reduced drastically in the climate change scenarios. The proposed hydrological modelling-based reservoir inflow 
and hydrologic flux estimation strategy effectively conceptualized the catchment dynamics and undergoing 
management operations; thereby addressing the limitations raised in the previous  studies51. The primary concern 
of the non-availability of long-term hydrological and environmental conditions of pre and post dam construction 
period fails to mimic the true hydrological  behaviour55. In many past studies, with the stationarity assumption, 
the past hydro-meteorological datasets are extrapolated, giving incomplete estimate of future water availability 
 scenario56. The integrated proposed approach effectively simulates the reservoir water balance and catchment 
hydrological behaviour to effectively predict the future supply–demand scenario. The developed HEC-ResSim 
reservoir simulation model accounts for detailed hydraulic components of the river-reservoir system and all the 
involved demand components in the conceptualization to design the operation rule curve with utmost accuracy. 
Moreover, the proposed 10-daily scale E-flow assessment has the potential to quantify the corresponding demand 
component with lower uncertainty than the existing monthly E-flow assessment approaches. The integrated 
methodology is subjected to inherent predictive uncertainty arising from model, climate scenario, and input data, 
which is ignored or estimated as a single component in most of the previous  studies57. The uncertainty quantified 
herein adds more confidence to the overall assessment framework by segregating the relative uncertainty from 
different sources, thereby improving robustness. Given these improvements, the scenario-based reservoir 
operation framework proposed in this study is a novel approach on its own; adding substantial flexibility to 
derive the reservoir operation rule by giving complete priority to irrigation demand in agriculture dominated 
catchment and varying weights under mixed demand conditions. The proposed integrated methodology is in the 
form of a loose coupling; hence, simultaneous update of the simulated reservoir inflow, reservoir outflow, and 
storage can be achieved through a tight coupling of the SWAT and HEC-ResSim models. The upcoming studies 
may integrate a hybrid machine learning framework with the developed approach for real time and near future 
performance assessment of the reservoir system with utmost accuracy.

The proposed approach certainly behaves as a suit of decision-making tool having potential to estimate 
the supply and demand components under both baseline and climate change scenario. The policy makers can 
adopt this approach with high reliability to ascertain ubiquitous reservoir operation policy under highly non-
stationary future climate change scenario. Moreover, provision of futuristic correction and practical irrigation 
planning proposed herein will enrich the policy makers with more realistic crop planning and integrated water 
management.

Conclusions
Some of the key findings from this present study are given below:

 i. The developed SWAT-HEC-ResSim-GA based simulation–optimization framework could effectively 
address the irrigation water demand and flood control objectives under the ‘equal priority’ rule curve 
scenario with the satisfactory time and volume reliability estimates of 0.614 and 0.722, respectively. 
Although the ‘supply priority’ rule curve scenario provides more reliability and resiliency than that of the 
‘equal priority’ rule curve scenario, with a reduced reservoir storage of 50.21  Mm3 and increased irrigation 
failure of 37 during the period June–December against 16 irrigation failures during January–May, the 
reservoir operation behaves more like a standard operating policy.

 ii. The GCM-derived future climate change scenario revealed that the mid-future period would be the 
extreme rainfall projections during both RCP 4.5 (1733 mm) and RCP 8.5 (1689 mm) scenarios with 
declined projections are confined to the pre-monsoon season. Similarly, the future temperature projections 
revealed that the upstream rain-fed locations would be the hottest during the RCP 8.5 scenario with 
mean annual Tmax estimate of 43ºC. However, the degree of disagreement between the individual GCM 
projections gradually increased from RCP 4.5 to RCP 8.5 scenario.

 iii. The MK-test and Sen’s slope trend statistics of the two major water balance components indicated a 
decreasing trend for the streamflow (only during NF) and increasing trend for the ET across both the rain-
fed upstream and downstream command locations. However, significant trend for ET is observed during 
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the RCP 8.5 period at the KRB command regions. The declined trend of streamflow at the Kangsabati 
reservoir inflow location would result in reduced projected reservoir storage.

 iv. The inter-seasonal variability of streamflow was the highest during the monsoon season. Moreover, the 
LBFC is projected to be more drought-prone as compared to the RBMC and upland rain-fed locations 
with 18.02% increase in the mean ET loss during 2020–2099 with respect to the baseline scenario.

 v. The proposed rule curve for the baseline scenario could satisfactorily meet the desired water demands 
during all the near-, mid-, and far-future episodes under the RCP4.5 scenario with the reservoir time 
reliability estimates of 0.621, 0.584, and 0.611, respectively; volume reliability of 0.657, 0.593, and 0.638, 
respectively; resiliency of 0.547, 0.497, and 0.512, respectively; and vulnerability of 0.203, 0.226, and 0.217, 
respectively.

 vi. The proposed rule curve for the baseline scenario could not perform satisfactorily under RCP 8.5 scenario 
of mid- and far-future period with both time and volume reliability estimates of below 0.5. However, the 
SWAT-HEC-ResSim-GA based proposed revised operation rule under the RCP 8.5 scenario improved 
the Kangsabati reservoir performance in satisfying the irrigation demand with substantial reduction in 
the reservoir vulnerability estimates of 0.211 and 0.197 from that of the existing reservoir operation rule 
vulnerability estimates of 0.345 and 0.306 during the mid- and far-future periods, respectively.

The proposed SWAT-HEC-ResSim-GA framework proved to be an effective advancement over the 
conventional reservoir operation strategy with provision for futuristic update of hydrometeorological conditions, 
quantifying the underlying uncertainty arising from different phases of decision-making, novel environmental 
flow assessment approach, and capability to conceptualize all the supply/demand components in the modelling 
framework. To enhance the robustness and accuracy of the proposed approach, the follow-up studies may 
integrate a hybrid machine learning algorithm in the currently proposed framework to enable real time reservoir 
operation policy. The machine learning based real-time error updating scheme can address the plausible error 
arising due to the climate model uncertainty in the future climate change scenario. Conclusively, the developed 
framework can assist the decision makers in systematic planning of integrated river-reservoir catchments with 
increased confidence and can be well extended across any global catchment.

Data availability
The data that support the findings of this study are available from the Central Water Commission (CWC), 
Asansol, India, but restrictions apply to the availability of these data, which were used under license for the 
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