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PACT ‑ Prediction of amyloid 
cross‑interaction by threading
Jakub W. Wojciechowski 1*, Witold Szczurek 1, Natalia Szulc 1,2,3, Monika Szefczyk 4 & 
Malgorzata Kotulska 1*

Amyloid proteins are often associated with the onset of diseases, including Alzheimer’s, Parkinson’s 
and many others. However, there is a wide class of functional amyloids that are involved in 
physiological functions, e.g., formation of microbial biofilms or storage of hormones. Recent 
studies showed that an amyloid fibril could affect the aggregation of another protein, even from a 
different species. This may result in amplification or attenuation of the aggregation process. Insight 
into amyloid cross‑interactions may be crucial for better understanding of amyloid diseases and 
the potential influence of microbial amyloids on human proteins. However, due to the demanding 
nature of the needed experiments, knowledge of such interactions is still limited. Here, we present 
PACT (Prediction of Amyloid Cross‑interaction by Threading) ‑ the computational method for the 
prediction of amyloid cross‑interactions. The method is based on modeling of a heterogeneous fibril 
formed by two amyloidogenic peptides. The resulting structure is assessed by the structural statistical 
potential that approximates its plausibility and energetic stability. PACT was developed and first 
evaluated mostly on data collected in the AmyloGraph database of interacting amyloids and achieved 
high values of Area Under ROC (AUC=0.88) and F1 (0.82). Then, we applied our method to study the 
interactions of CsgA ‑ a bacterial biofilm protein that was not used in our in‑reference datasets, which 
is expressed in several bacterial species that inhabit the human intestines ‑ with two human proteins. 
The study included alpha‑synuclein, a human protein that is involved in Parkinson’s disease, and 
human islet amyloid polypeptide (hIAPP), which is involved in type 2 diabetes. In both cases, PACT 
predicted the appearance of cross‑interactions. Importantly, the method indicated specific regions 
of the proteins, which were shown to play a central role in both interactions. We experimentally 
confirmed the novel results of the indicated CsgA fragments interacting with hIAPP based on the 
kinetic characteristics obtained with the ThT assay. PACT opens the possibility of high‑throughput 
studies of amyloid interactions. Importantly, it can work with fairly long protein fragments, and as a 
purely physicochemical approach, it relies very little on scarce training data. The tool is available as a 
web server at https:// pact.e‑ scien ce. pl/ pact/. The local version can be downloaded from https:// github. 
com/ KubaW ojcie chows ki/ PACT.

Pathological misfolding and aggregation of proteins is a hallmark of a number of devastating disorders, includ-
ing major public health challenges, such as Alzheimer’s and Parkinson’s  diseases1,2, type II  diabetes3,4, and some 
 cancers5. Numerous studies, both experimental and computational, have explored the mechanisms of amyloid 
aggregation and their roles in neurodegenerative disorders, especially the pivotal role of oligomers formed at early 
stages of the aggregation  process6. These diseases not only share a similar molecular mechanism but may also 
cooccur in the same patient. Among others, comorbidities were observed between Alzheimer’s disease and type 
II  diabetes7,8 and Alzheimer’s and Parkinson’s  diseases9. One of the possible explanations of this phenomenon 
could be related to amyloid cross-interactions.

Amyloids are insoluble protein aggregates characterized by exceptional stability due to the tight packing of 
monomers, resulting in a characteristic pattern in X-ray diffraction  experiments10. Typically, despite significant 
structural similarities shared by all amyloids, their sequences are surprisingly diverse and have little  homology11. 
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On the other hand, very similar sequences may also result in distinctive  structures12. It was also shown that 
polymorphism of an amyloid structure may play a role in aggregation  processes13,14.

More recent studies revealed that the presence of amyloid aggregates could affect the aggregation rate of 
another  protein15. Furthermore, it was observed that interacting proteins could form heterogeneous fibrils con-
sisting of both interacting partners. Hypothetical structural mechanisms of cross-seeding, depending on the 
nature of interactors, were proposed by Ivanova et al.16. Among others, it was shown that proteins showing 
sequence similarities are more likely to interact; however, many counterexamples were also  found17. The studies 
highlight the importance of the structural compatibility of amyloid cores. Notably, aggregation and coaggregation 
can be affected by environmental or experimental conditions. In the case of conditions hampering aggregation, 
coaggregation may help to overcome the energy barrier needed for fibrillation, as was observed for bovine serum 
albumin (BSA) protein in the presence of hen egg white lysozyme (HEWL)  protein18.

Cross-interactions were identified between numerous proteins, including those involved in type II diabe-
tes and neurodegenerative diseases, for example, interactions between alpha-synuclein and human islet amy-
loid polypeptide (hIAPP)19. This shed new light on potentially new aspects regarding the origin of the disease 
 comorbidity17. A similar mechanism was found to enhance the virulence of HIV virus by increasing its adhesion 
to host  cells20. In recent years, numerous studies have also highlighted the connection between the gut micro-
biome composition and the onset of some diseases, including neurodegenerative Alzheimer’s and Parkinson’s 
 diseases21. Despite intensive research, understanding of the molecular mechanisms underlying this connection 
remains elusive. A possible mechanism may include protein cross-interactions. The aggregation of bacterial 
amyloids could enhance the aggregation of disease-related proteins, potentially facilitating the  disorder22. This 
hypothesis seems consistent with the results obtained by Chen and coworkers, who discovered increased produc-
tion and aggregation of alpha-synuclein in rats exposed to bacterial strains producing biofilm-related functional 
 amyloids23.

Despite the importance of amyloid coaggregation, its mechanisms are still poorly understood. This can be 
attributed to limited experimental data, and this shortage may also introduce a bias in available data. Thus far, 
interactions of a few well-described proteins, such as amyloid-beta (Abeta), islet amyloid polypeptide, or alpha-
synuclein, have been very extensively studied, and they contributed to the majority of the data.

Experimental studies of amyloid aggregation, especially their interactions, are time-consuming and ham-
pered by general difficulties in handling amyloids, which are related to their low solubility, rapid aggregation, 
and need for high  purity24. The experimental methods can be based on amyloid binding of Congo Red (CR)25 or 
Thioflavin T (ThT)26, application of infrared spectroscopy or direct observations of fibrils with high-resolution 
microscopy techniques, including electron  microscopy27 and atomic force  microscopy28. Finally, advancements 
in nuclear magnetic resonance (NMR) spectroscopy have made it an important tool for studying aggregation at 
the molecular  level29. However, currently, the usage of experimental methods for the identification of all amy-
loids in genome-wide studies would be impossible. To address this problem, several computational methods 
have been proposed, which are based on different approaches (reviewed  in30  and31), starting from structural 
 modeling32, statistical analysis of the sequence including  FoldAmyloid33 and  FishAmyloid34, physicochemical 
models such as PASTA 2.035, and machine learning techniques such as  APPNN36 and  AmyloGram37. There are 
methods combining approaches, such as  PATH38 and  Cordax39. Finally, some methods, such as Aggrescan  3D40, 
utilize information about protein structure. It was also shown that bioinformatics techniques are quite robust 
and even capable of identifying some misannotated data despite being trained on  them41. Unfortunately, none 
of these methods can predict amyloid cross-interactions.

Here, we present a new computational method, PACT (Prediction of Amyloid Cross-interaction by Thread-
ing), designed for the identification of potentially interacting amyloid pairs. The method is based on the molecu-
lar threading applied to the potential complex of interacting amyloids and the assessment of the stability of 
obtained molecular models. The method was tested on varied amyloid-related data, showing its good predictive 
power. Selected results of the modeling were also validated experimentally. Furthermore, to assess potential 
interactions between gut microbiome metabolites and amyloidogenic human proteins, we modeled interactions 
of bacterial functional amyloid CsgA with human alpha-synuclein, whose aggregation is a hallmark of Parkinson’s 
disease, and with hIAPP, which is involved in type 2 diabetes.

Results
The presented method is based on the assumption that cross-interactions between amyloidogenic parts of pro-
teins would result in a stable heterogeneous aggregate. Therefore, its model structure, obtained by threading 
into an amyloid fibril template, would be energetically more favorable than an equivalent model structure of a 
noninteracting pair. In PACT, we used  Modeller42 software to thread a query sequence on the structure of amyloid 
fibrils formed by islet amyloid polypeptide (IAPP)43. To assess the obtained models, we proposed the use of the 
ndope score, which is a normalized version of DOPE (Discrete Optimized Protein Energy) statistical potential 
implemented in the Modeller software.

PACT correctly identifies amyloid‑prone regions
In the first step, the idea presented above was tested on the homoaggregation of amyloid peptides, which can be 
considered a special case, and the simplified variant of interactions occurring in heteroaggregation. We com-
pared ndope scores obtained for models of potential homoaggregates of amyloidogenic and nonamyloidogenic 
peptides, for which the sequences were obtained from the AmyLoad  database44. Importantly, the negative dataset 
consisted of peptides with strong beta propensity that could be more easily misclassified for amyloid proteins 
by modeling methods.
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The majority of models obtained for amyloidogenic peptides showed lower scores (meaning more stable 
structures) in comparison with nonamyloids, and their first quartiles of the scores were well separated (Fig. 1). 
Differences between both groups were statistically significant. Based on the Mann-Whitney U test, we were able 
to reject the hypothesis that the distributions of both populations were identical ( p = 2.48e − 8 ). Considering 
the energy difference, we built a threshold-based classifier. The classification threshold was chosen based on the 
receiver operating characteristic (ROC) curve as a point on the curve closest to the point (0,1), representing 
perfect classification (Fig. 1B). The optimal score value in this case equaled ndope = -242. If used merely for 
distinguishing amyloids from nonamyloids, such a classifier was able to achieve an area under the ROC curve 
(AUC) of 0.73 and accuracy of 0.77. Moreover, high values of Sensitivity (0.73) and Specifictity (0.86) were 
obtained. Such results are comparable with state-of-the-art amyloid predictors on the same dataset (Table S1).

We also tested whether the method is capable of recognizing amyloid propensity in functional amyloids, 
which poses a major problem for most predictors due to their underrepresentation in databases of amyloids. 
We tested the performance of the method on imperfect repeats of the CsgA protein from Escherichia coli and 
Salmonella enterica45, which were not included in our primary reference dataset (Fig. S1). Aggregation-prone 
regions of this protein (R1, R3, and R5) scored much lower than nonamyloidogenic regions (R2 and R4) from 
Escherichia coli. On these data, PACT achieved an accuracy of 0.9. Furthermore, the observed difference between 
the ndope score for R4 fragments from Escherichia coli and Salmonella enterica corresponds very well to the dif-
ference in their aggregation propensities observed in  experiments45.

The results showed that the method can accurately predict aggregation-prone peptides of varying lengths. 
Furthermore, it potentially can be utilized to detect functional amyloids.

PACT predicts amyloid cross‑interactions
We used a similar methodology to predict cross-interactions of amyloid peptides, which is the main purpose of 
the method. We extracted amyloid interactions from the AmyloGraph database, which contains data on interact-
ing pairs of different  amyloids46, and applied 119 pairs of peptides, which enhance (faster dataset) and 73, which 
slow down (slower dataset), the aggregation of each other. The ndope scores of heteroaggregates consisting of 
pairs of peptides whose cross-interactions resulted in faster aggregation were compared with nonamyloidogenic 
pairs of peptides (Fig. 2). A similar analysis was performed for pairs of peptides whose cross-interactions resulted 
in slower aggregation (Fig. S2). In both cases, models of heterologous aggregates resulting from cross-interac-
tions showed lower values of ndope scores than nonamyloids and well-separated first quartiles of their scores 
(Fig. 2). Furthermore, in both cases, differences between groups were statistically significant (Mann-Whitney U 
test, p = 5.54e − 16 for faster vs. negative and p = 2.19e − 15 slower vs. negative cases. Therefore, we built the 
threshold-based classifier using the approach described in the previous section.

To assess the performance and choose the optimal threshold value, ROC curves were calculated for both 
cases: faster rate vs. negative (Fig. 3) and slower vs. negative (Fig. S3) on both training and test sets. To minimize 
the impact of the data choice, we performed k-fold cross-validation with k=5 on the training set and calculated 
several metrics describing the performance of the method (Table 1). The same metrics were then calculated on 
an independent test set. The same analysis was performed for the case of prediction of interactions resulting in 
slower aggregation (Table S2). Optimal ndope thresholds were very similar in both scenarios, namely, -256 and 
-245 for faster vs. negative and slower vs. negative, respectively. PACT performed well on both cross-validation 
and independent test sets. It achieved Accuracy values of 0.83 and 0.80 on test sets of faster vs. negative and 
slower vs. negative cases, respectively. In all cases, the results obtained on the test set were within the value of 
one standard deviation range from the mean values obtained with the cross-validation procedures. The method 
performance was quite similar in both faster vs. negative and slower vs. negative scenarios. However, due to the 
smaller dataset size, a larger standard deviation was obtained for the slower vs. negative scenario (Table 1). The 

Figure 1.  (A) Distribution of ndope score for models of amyloidogenic and nonamyloidogenic peptides. (B) 
ROC curve for amyloid vs. nonamyloid classification. The orange line represents the distance between the 
perfect classification point (0,1) and the chosen threshold.
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results showed that the method could predict whether two peptides could cross-interact but could not distinguish 
between interactions enhancing and slowing fibrillation.

Finally, we tested PACT on a very limited experimental dataset of 10 nonredundant pairs of sequences from 
AmyloGraph (negative set). Here, 3 out of 10 sequences were predicted to interact, which gave a false-positive 
rate of 0.3, including one sequence whose score was very close to the classification threshold (see Supplementary 
Information, Section 6).

Figure 2.  The score ndope for models of interacting identical nonamyloidogenic peptides (negative set) and 
interacting pairs resulting in increased aggregation rates (faster set).

Figure 3.  ROC curves for classification of nonaggregating and cross-interacting pairs resulting in faster 
aggregation on (A) training and (B) test set.

Table 1.  Performance of PACT on cross-validation and independent test set for classification of non-
aggregating and cross-interacting pairs resulting in faster aggregation.

Acc [std] Sens [std] Spec [std] F1 [std] MCC [std]

Cross-validation 0.90 [0.05] 0.91 [0.03] 0.90 [0.08] 0.90 [0.04] 0.80 [0.06]

Test set 0.83 0.78 0.88 0.82 0.66
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PACT is robust to bias in data
A serious problem concerning the data on interacting amyloids, available in the literature and consequently our 
dataset, is the large overrepresentation of interactions including the Abeta peptide. This may cause overfitting of 
the method to Abeta. To assess the effect of the potential bias, we analyzed the scores obtained for interactions 
regarding different Abeta variants (Fig. S6). The observed scores for the pairs of Abeta fell within the range of 
values observed for the remaining pairs, and therefore, they should not have a significant effect on the perfor-
mance of the method. These pairs showed a relatively narrow distribution of the ndope values, centered slightly 
below the ndope value of −275 , which is relatively close to the identified classification threshold of −256 , while 
the remaining interacting pairs showed even lower scores.

Cross‑interactions between bacterial biofilm protein CsgA and hIAPP
To further test the PACT performance and gain more insight into interactions potentially involved in amyloid 
diseases, the study was carried out on a functional amyloid from bacteria inhabiting human guts and human 
amyloidogenic protein involved in diabetes type 2. Interactions of the CsgA protein from Escherichia coli with 
the hIAPP protein were first modeled with PACT, and then the results were validated experimentally. It should be 
noted that CsgA protein was not included in the dataset used to develop PACT since it exceeded the maximum 
length of the template. It was previously shown that the whole molecule of CsgA could enhance the aggregation 
of  hIAPP20. We aimed at more detailed characterization of this interaction by identifying which CsgA region is 
most likely to interact with hIAPP. To do so, interactions between each CsgA repeat (known for their potential 
amyloidogenic propensity) and hIAPP were first modeled. PACT classified positive interactions of hIAPP with 
its repeats R1 and R5, with scores of -257.39 for R5 and -256.52 for R1. Notably, these fragments are likely to 
be exposed to the environment, which also makes them good candidates for potential interactions. To test the 
PACT predictions, experimental validation was performed using CD spectroscopy and the ThT assay (All details 
regarding experimental validations and their results are presented in SI, Section 4.). Using CD, we performed 
preliminary tests of the propensity for aggregation of the tested peptides over time to determine the initial rate 
of the studied process (hours, days or weeks) (Fig S9, Table S5). The ThT assay, under varied experimental condi-
tions, was used to evaluate the coaggregation process. The results showed stronger fluorescence and reduced lag 
phases for interactions with R1 and R5 fragments than those of hIAPP, R1 and R5 alone. Additionally, reduced 
half-lifes of hIAPP aggregation were observed in the presence of R5 (Fig. S10, Table S6) and, to a slightly weaker 
extent, for R1 (Fig. S11, Table S7). Importantly, the observed effects are concentration dependent, as shown in 
case of the aggregation rate of hIAPP upon addition of R1 fragment (Fig. S11, Table S7). This could suggest a 
particular role of R1 and R5 fragments in cross-seeding of hIAPP, as predicted by PACT. The results confirmed 
the correct prediction of PACT and showed agreement with previously published results revealing interactions 
of the whole protein molecules

Mechanism of interactions between CsgA protein and alpha‑synuclein
Finally, to better understand a potential connection between the gut microbiome and Parkinson’s disease, we 
modeled interactions between bacterial functional amyloid CsgA and human alpha-synuclein, whose aggrega-
tion is a hallmark of Parkinson’s disease. The study aimed to discover more information on the interactions by 
specifying the unknown location of interacting regions. Here, CsgA protein originated from five different organ-
isms found in the human microbiome: Escherichia coli (EC), Hafnia alvei (HA), Yokenella regensburgei (YR), 
Citrobacter youngae (CY), and Cedecea davisae (CD). PACT was applied to predict their interactions with human 
alpha-synuclein, which was recently studied experimentally by Bhoite and  coworkers47. Considering that PACT 
does not choose the location of the optimal fragment for automatic modeling, the sequence of alpha-synuclein 
was divided into overlapping fragments, each including 20 amino acids, and their interactions with R1-R5 repeats 
of each CsgA protein were tested. A fragment length of 20 was assumed in accordance with the length of the 
CsgA repeats (R1–R5). Consistent with the experimental results, all the studied CsgA variants were predicted 
to interact with alpha-synuclein. Among the CsgA protein fragments, R1, R3 and R5 were predicted to interact, 
with R5 showing the best scores (Fig. 4). These results are consistent with our current state of knowledge about 
CsgA, as the most aggregation-prone regions in these proteins are R1, R3 and R5. Furthermore, the R5 fragment, 
which showed the lowest ndope scores again, is typically located at the protein surface. Therefore, it can interact 
without the need for major conformational changes. In the alpha-synuclein part, the best scoring region was 
located between positions 32 and 56 (Fig. S7). This region was recently indicated as crucial for aggregation of 
the  protein48,49.

Code availability
PACT was implemented as an open-source Python module, available at GitHub repository: https:// github. com/ 
KubaW ojcie chows ki/ PACT. For users’ convenience, we prepared a docker container for the application, as well 
as the web server: https:// pact.e- scien ce. pl/ pact/. For the prediction of cross-interaction, we recommend the 
use of a default score threshold of -256 and for the prediction of homoaggregation -242. The classification result 
denoted as “1” indicates potential interactions, and “0” indicates no interaction. Apart from the classification, 
the software returns generated structural models of the aggregates.

Discussion
We proposed the first computational method, accompanied by the online tool, for predicting amyloid cross-
interactions. It is based on a highly interpretable and well-established physicochemical model, which is not 
heavily dependent on training data. This feature is especially important since the available data contain a strong 
interest bias toward interactions of a few popular amyloids related to neurodegenerative diseases, for example, 

https://github.com/KubaWojciechowski/PACT
https://github.com/KubaWojciechowski/PACT
https://pact.e-science.pl/pact/
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Abeta. However, in the case of our method, we carefully studied the effect of this overrepresentation and showed 
that it does not affect its performance. Furthermore, good performance on functional amyloids, which are very 
underrepresented in the datasets, suggests that the method is robust and can be effectively used on a wide range 
of sequences. In total, PACT achieved high accuracies of 0.83 and 0.80 on the independent test sets of interac-
tions, concerning increased and decreased aggregation rates, respectively. On both sets, the method achieved 
high AUC values of 0.88 and 0.89 and F1 values of 0.82 and 0.77, respectively. On the other hand, since both cases 
were characterized by similar interaction energies, the method cannot distinguish between enhancement and 
inhibition of aggregation. These results suggest that these processes may be driven by similar mechanisms. This 
issue was addressed in a recently published work by Louros and  coworkers50, who applied a somewhat similar 
approach to study the effect of point mutations on aggregation characteristics. Nevertheless, these processes may 
differ in more specific aspects of aggregation such as, for example, secondary nucleation.

We used PACT to predict the interactions of bacterial functional amyloid CsgA from different species with 
human alpha-synuclein and hIAPP. Although these interactions were not included in the training dataset, our 
results are in good agreement with recently published experimental data regarding these pairs of proteins. 
Importantly, PACT could also indicate which regions can drive the cross-interactions between both proteins, 
which was not previously studied. The identification of potentially interacting regions can provide important 
insight into the possible mechanism of the process and guide future experiments.

Apart from the identification of amyloid cross-interactions, the proposed method is also capable of reliably 
predicting amyloid-prone regions in proteins with accuracy comparable to that of the state-of-the-art methods. 
Furthermore, it overcomes their major limitations regarding the identification of functional amyloids. Unlike 
most of the currently available amyloid predictors, it does not rely on the scanning of a query sequence with a 
very short sliding window of traditionally used hexapeptides.

High-throughput identification of amyloid cross-interactions is an important step toward our understanding 
of its mechanisms. It can allow for a better understanding of the principles governing the process and can also 
be used to identify novel cases of amyloid interactions. Such capabilities can shed light on possible mechanisms 
responsible for the comorbidity of amyloid diseases.

Methods
The presented PACT method is based on the assumption that cross-interactions between amyloidogenic parts of 
proteins would result in a stable heterogeneous aggregate. Therefore, its model structure, obtained by threading 
into an amyloid fibril template, would be energetically more favorable than an equivalent model structure of a 
noninteracting pair. A somewhat similar assumption was successfully applied in our previous work to predict the 
aggregation of short amyloidogenic  fragments38. However, the current approach differs in other aspects of the 
method and its objectives. In PACT, we used the Modeller software to thread a query sequence on the structure 
of amyloid fibrils formed by the islet amyloid polypeptide (IAPP) of 37  residues43. To assess the obtained models, 
we proposed the use of the ndope score, which is a normalized version of the DOPE statistical potential that was 
implemented in the Modeller software.

Datasets
To develop and test the method computationally, we used the following datasets:

• the set of 86 amyloidogenic (amyloid) and 55 nonamyloidogenic (nonamyloid) peptides of lengths between 
14 and 45 from the AmyLoad  database44.

• the set of 119 pairs of peptides that enhance (faster dataset) and 73 that slow down (slower dataset) the 
aggregation of each other. Both sets were extracted from the AmyloGraph  database46. After the removal of 

Figure 4.  The lowest ndope scores indicate potential interactions of alpha-synuclein with R1-R5 repeats from a 
set of CsgA proteins.
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redundant records, we were left with 57 and 55 pairs of peptides that enhance or slow the aggregation of each 
other, respectively.

• the set of 10 noninteracting pairs of amyloids, selected from AmyloGraph; the instances were filtered out 
from a set of 152 redundant pairs (the selection procedure described in SI, Section 6)

The first two sets (amyloid and nonamyloid) were used to test the method on cases of homoaggregation, i.e., 
identifying amyloid-prone peptides. The third small set was used as a negative set for additional testing of PACT.

For the prediction of cross-interactions, we used faster, slower, and nonamyloid sets. The usage of the set 
of nonaggregating peptides, as the primary negative set in the interaction study, was caused by the lack of a 
sufficient number of negative examples of noninteracting amyloid pairs. This is a common problem in studies 
of protein–protein interactions since negative results are rarely published, which often creates a strong bias in 
biological  data51. The analysis of such a selected negative dataset, used by authors of the Tango method for iden-
tifying potential amyloid  proteins52, revealed that it is mostly composed of peptides with strong beta propensity. 
The proteins from this set could be mistaken for amyloid proteins by modeling methods; therefore, they provide 
the best available numerous negative datasets concerning amyloidogenicity. However, for the final validation, 
we used the small third set of amyloids that were experimentally shown to not interact. Importantly, the CsgA 
protein, which was used in our final validation studies and experiments, was not included in the datasets used 
in the development of PACT.

The datasets used in this study are available at the GitHub repository: https:// github. com/ KubaW ojcie chows 
ki/ PACT.

Modeling
A query pair of sequences was threaded on the structure of amyloid fibrils formed by  IAPP43. We decided to 
use this structure template, as it was one of the longest available structures when we started developing PACT. 
Since then, higher-quality templates have appeared, but their application did not improve the performance of the 
method (SI, Section 5). To allow the method to deal with sequences of varying lengths, sequences shorter than 
the template are threaded only on the main part of its structure. In such cases, a shorter sequence is aligned to 
the middle of the template sequence (Fig. 5A). The choice can be justified considering that most of the currently 
known amyloid fragments, which are longer than a few amino acids, share a similar beta-sheet turn architec-
ture, commonly known as the beta arch. This assumption was successfully applied by Ahmed and coworkers to 
develop the ArchCandy method for the prediction of amyloidogenic  regions53. PACT allows for sequences to be 
marginally longer than the template and, as a result, can be used to study cross-interactions between peptides 
of lengths between 14 and 45. Considering the presence of stochastic steps in the modeling procedure, for each 
of the tested pairs, 10 different models consisting of two chains of each interacting peptide (Fig. 5B) were built 
using the Modeller 9.24 model-multichain.py procedure with default  parameters42. Then, the model with the 
lowest DOPE value was chosen for further analysis. Since the dataset consisted of fragments of varying lengths, 
we proposed to use the normalized DOPE score (ndope) defined as follows:

(1)ndope =
DOPE

L

Figure 5.  Schematic representation of the modeling procedure. (A) When a query sequence is shorter than the 
template, only a part of it is used in modeling. (B) The model of a heterogeneous fibril consists of two chains of 
each interacting peptide.

https://github.com/KubaWojciechowski/PACT
https://github.com/KubaWojciechowski/PACT
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where L is the average length of sequences used to build a given model. Then, ndope scores were compared 
between amyloids and nonamyloids, as well as between pairs of amyloids interacting with nonamyloids.

To choose the ndope threshold for the classification, the ROC curve was calculated by applying different score 
thresholds and recording the false-positive ratio (FPR) and true positive ratio (TPR). The threshold closest to the 
(0,1) point (representing perfect classification) was chosen. The whole procedure is schematically summarized 
in Fig. 6.

We also tested a variant of the method that utilized three different structural templates (PDB: 2nnt, 2e8d); 
however, it did not improve the accuracy of the method but significantly increased the computational time. 
Therefore, this approach was finally abandoned.

Assessment of performance and data analysis
All data analyses were performed using Python 3.8 with the  Matplotlib54,  NumPy55,  Pandas56, Scikit-Learn57, 
and  Seaborn58 packages.

To test the performance of the proposed method, a dataset was randomly split into a training set and a test 
set, which consisted of 30% of the data. Additionally, k-fold cross-validation (with k=5) was performed on the 
training data. The area under the ROC curve (AUC), accuracy (ACC), sensitivity (Sens), specificity (Spec) and 
Matthew correlation coefficient (MCC) were used to assess the performance of the method.

Effect of amyloid‑beta variants
For analysis of the effect of overrepresented Abeta pairs, we divided the faster dataset into two subsets: one 
containing only pairs where both interacting peptides were variants of Abeta (16 pairs) (abeta), and the set of 
remaining pairs (39 pairs) (no Abeta).

Interactions between bacterial amyloids and hIAPP or alpha‑synuclein
Modeling the interactions with between alpha-synuclein and CsgA proteins was performed using the human 
amylin protein hIAPP(UniProt id: P10997, fragment 34-70), the human alpha-synuclein sequence (UniProt 
id: P37840) and CsgA protein from five different organisms found in the human microbiome: Escherichia coli 
(EC) (UniProt id: P28307), Hafnia alvei (HA) (UniProt id: G9YN6), Yokenella regensburgei (YR) (UniProt id: 
A0A6H0K4L9), Citrobacter youngae (CY) (UniProt id: A0A549VPM7), and Cedecea davisae (CD) (UniProt 

Figure 6.  Schematic procedure of PACT.
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id: S3IYN9). The sequence of alpha-synuclein was divided into overlapping subsequences of lengths 20. This 
window length was chosen because it is similar to the length of repeated units in the CsgA protein, which is 
responsible for its aggregation. CsgA variants were split into nonoverlapping fragments R1-R5 corresponding to 
five imperfect repeats observed in their sequences. Interactions of each CsgA fragment with all alpha-synuclein 
fragments were studied.

Data availability
The datasets used in this study are available at the GitHub repository: https:// github. com/ KubaW ojcie chows ki/ 
PACT.
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