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Increased drought and extreme 
events over continental United 
States under high emissions 
scenario
Sagar Gautam 1,2*, Umakant Mishra 1,2, Corinne D. Scown 2,3,4,5 & Rajan Ghimire 6

The frequency, severity, and extent of climate extremes in future will have an impact on human well-
being, ecosystems, and the effectiveness of emissions mitigation and carbon sequestration strategies. 
The specific objectives of this study were to downscale climate data for US weather stations and 
analyze future trends in meteorological drought and temperature extremes over continental United 
States (CONUS). We used data from 4161 weather stations across the CONUS to downscale future 
precipitation projections from three Earth System Models (ESMs) participating in the Coupled 
Model Intercomparison Project Phase Six (CMIP6), specifically for the high emission scenario SSP5 
8.5. Comparing historic observations with climate model projections revealed a significant bias in 
total annual precipitation days and total precipitation amounts. The average number of annual 
precipitation days across CONUS was projected to be 205 ± 26, 184 ± 33, and 181 ± 25 days in the BCC, 
CanESM, and UKESM models, respectively, compared to 91 ± 24 days in the observed data. Analyzing 
the duration of drought periods in different ecoregions of CONUS showed an increase in the number of 
drought months in the future (2023–2052) compared to the historical period (1989–2018). The analysis 
of precipitation and temperature changes in various ecoregions of CONUS revealed an increased 
frequency of droughts in the future, along with longer durations of warm spells. Eastern temperate 
forests and the Great Plains, which encompass the majority of CONUS agricultural lands, are projected 
to experience higher drought counts in the future. Drought projections show an increasing trend in 
future drought occurrences due to rising temperatures and changes in precipitation patterns. Our 
high-resolution climate projections can inform policy makers about the hotspots and their anticipated 
future trajectories.

Global atmospheric concentrations of greenhouse gases (GHG) have significantly increased and far exceeded 
the pre-industrial level. These changes can be attributed to the increased use of fossil fuels and agricultural 
 emissions1, 2. The rise in GHG concentrations is altering the radiative balance of the Earth’s atmosphere, result-
ing in temperature and precipitation changes that have adverse effects on ecosystems and human well-being3. 
To understand the potential future climate scenarios, Earth System Models (ESMs) are used to simulate the 
trajectory of temperature and precipitation under different levels of radiative forcing, based on various possible 
development  pathways4–6. According to ESM projections, unless there are substantial reductions in emissions, 
we can expect an increase in extreme weather  events7, 8. Among these events, drought stands out as one of the 
most costly and devastating due to its far-reaching impacts across multiple sectors, including  agriculture7, 9, 10.

ESMs play a critical role in projecting long-term climate change as they provide valuable insights into the 
dynamics and evolution of the climate system over extended time scales. However, these models may not be 
suitable for site-specific applications, particularly at the field scale, because they generate outputs at a coarse 
resolution (~ 100 km) and exhibit biases compared to observational  data11. One area where biases are particularly 
prevalent is precipitation, where climate models often overestimate the frequency of rainy days and underestimate 
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rainfall extremes or fluctuations in seasonal rainfall and  temperatures12. While ESMs have improved in simulating 
large-scale atmospheric circulation, they lack representation of processes at the local  scale13. A common issue 
with ESM outputs is the precipitation bias in daily simulations. In these simulations, precipitation events occur 
more frequently (drizzle bias) but with lower intensity (muted extreme) compared to  observations14, 15 This 
bias has significant implications for future agricultural yield projections, as less frequent, heavy rainfall leads to 
increased runoff and reduced soil moisture accumulation compared to more frequent, lighter rainfall. Conse-
quently, future projections from ESMs require bias correction or downscaling to address the biases associated 
with high spatial resolution. This correction process is necessary to make ESM projections more plausible for 
impact assessment studies and to enhance our confidence in future projections.

Drought is a period of prolonged periods of abnormally low precipitation and its severity and occurrence 
depends on variety of factors including soil, plant and  topography16. Precipitation, soil moisture and streamflow 
are the variable which are commonly used to quantify  drought17. Observation-based drought monitoring in the 
United States has revealed an increased frequency of drought  events18. The global study based on climate model 
and observations has indicated an increased likelihood of the flash droughts across major global  croplands19. 
Another study has also indicated increase in global flash drought occurrences, with highest increase in Europe 
and North America under extreme emission scenarios. These increase in drought occurrence are associated to 
greater evapotranspiration and precipitation deficits caused by anthropogenic climate  change20. This type of 
monitoring is valuable for the development of adaptation strategies that are applicable at local and regional scales. 
Policymakers and stakeholders require more detailed projections encompassing the spatial and temporal distri-
bution of future drought, extreme precipitation events, and extreme temperatures. Additionally, it is important 
to note that drought primarily affects agriculture, as it refers to conditions in which plants experience specific 
levels of moisture stress, impacting both vegetative growth and crop  yield21. Translating climate projections into 
drought indices provides valuable insights into the severity and frequency of future extreme events, particularly 
in terms of their impact on agricultural systems. This information can assist decision-makers in formulating and 
implementing adaptation plans. By combining downscaled data with ground-truthing from observations, the 
accuracy of ESMs in projecting drought on a finer scale can be improved, enhancing their utility in assessing and 
predicting drought events. This study uses precipitation alone for drought projection as future datasets are readily 
available from ESMs, use of additional variable can help explore other land processes and its impact on drought.

The currently available downscaled climate data from CMIP5 and CMIP6, with a spatial resolution of 12 to 25 
 km2, are relatively coarse for site-specific  applications22, 23. To address this limitation, we propose downscaling the 
climate data to weather stations across the continental US, making it more suitable for point/field-scale applica-
tions. In this study, we employed a statistical downscaling approach to correct the existing bias in precipitation 
projections from ESMs. This approach involved two steps: (1) converting data values to probabilities based on 
the cumulative distribution function of weather station data and climate model grid simulations, and (2) map-
ping the distribution of historical weather station observations and future grid-scale projections to bias-correct 
the  projections24, 25. The statistical downscaling approach utilized in this study was modified to eliminate the 
drizzle bias observed in climate model  simulations15. Additionally, we used the Standardized Precipitation Index 
(SPI) to quantify future droughts using the downscaled precipitation data. The calculation of the Standardized 
Precipitation Index (SPI) evaluates droughts by analyzing the likelihood of precipitation occurrences, yielding 
standardized values wherein zero signifies the median condition. Negative values signal drought periods, while 
positive values indicate wet  periods26. Through the process of standardizing precipitation, we are able to gauge 
the intensity and occurrence frequency of droughts across various time scales, frequencies, and  durations24. 
Moreover, apart from assessing dry periods, the drought indices also encompass calculations for wet periods, 
which are pivotal in quantifying future flood  risks27. Projection of drought and calculation of extreme indices 
based on current and future climate variables (P and T) can provide valuable insights into changing trends and 
serve as crucial inputs for informing policy decisions. The Expert Team on Climate Change Detection and Indi-
ces (ETCCDI) has established a comprehensive set of indices for analyzing extremes related to precipitation (P) 
and temperature (T)  events28. These indices have gained broad acceptance and are extensively utilized to assess 
extremes in both current and projected future  climates17, 29, 30. In this study, in addition to drought indices, we 
have also incorporated ETCCDI-based extreme indices. The downscaled future trajectories of precipitation and 
temperature projected by ESMs can be utilized to assess and project future climate extremes, including precipita-
tion and temperature extremes. The bias-corrected precipitation data can be employed to estimate future drought 
conditions, which are crucial for policymaking and developing mitigation strategies.

Previous studies have examined the potential future changes in drought frequency and severity at national, 
regional, and global  scales31–39. However, these studies were conducted at coarse spatial scales and did not down-
scale the projected climate data to the level of weather stations. Most of the previous drought projection studies used 
CMIP5 ESM  products36, 40, 41, which are known to exhibit drizzle biases as highlighted by previous  studies15, 17, 42.  
Few studies have also assessed future extremes using CMIP6 climate model output, including precipitation, 
temperature, soil moisture, and  runoff43. A recent study conducted in China systematically evaluated drought 
changes using downscaled data and found reduced uncertainty in drought projections when using site-specific 
downscaled  data44. In this study, we downscaled the data from CMIP6 ESMs to weather stations and used the 
downscaled data to analyze the future trajectory of climate extreme events. The specific objectives of this study 
were to: (a) quantify the bias in CMIP6 precipitation data and create a downscaled database of CMIP6 projections 
for the continental United States (CONUS), and (b) project the future trajectory of drought and temperature 
extremes using drought and extreme indices.
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Results and discussions
Climate model precipitation bias
Comparison of the historic observations and CMIP6 climate model projections for high emission scenarios (SSP5 
8.5) showed significant bias in yearly precipitation days and total precipitation amount. The results are presented 
as average bounded by positive and negative values in the upper- and lowercases represent uncertainty ranges 
based on an interquartile range. The spatial mean annual precipitation day across CONUS was 205+26

−17 , 184
+33
−29 

and 181+25
−21  days in BCC, CanESM and UKESM models respectively, compared to 91+24

−25 days in observations 
(Fig. 1a). The annual precipitation totals were 831+223

−240 , 896
+397
−390 and 913+329

−303 mm in BCC, CanESM and UKESM 
models respectively, compared to 791+308

−971 mm in observations (Fig. 1b). Similar biases in the total precipita-
tion and number of precipitation days (wet days) were found across different seasons (Fig. 1a,b). These biases 
in the historical simulations were corrected using statistical downscaling. The comparison of the downscaled 
data with observations are shown in Fig. 1c,d. The average numbers of precipitation days and their distribution 
across different seasons are appropriately matched, removing the drizzle bias in the model projections (Fig. 1c). 
A previous regional watershed scale study for the midwestern US reported similar bias in precipitation projec-
tions in the CMIP5-ESM  outputs17. The bias in total precipitation days was reported earlier for both CMIP3 and 
CMIP5 models; the bias was mostly on a large number of drizzle precipitation days and an underestimation of 
heavy precipitation days for different  regions15, 45. The bias is attributed to the spatial averaging across the large 
spatial grids with multiple weather stations within each grid resulting in increased probability or frequency of 
 precipitation46, 47. Analysis of CONUS using three different climate models with different spatial resolutions 
shows improvement in all aspects of simulated precipitation including spatial pattern, intensity and seasonality 
with the increased resolution of the  models48. Such studies are limited to a few models, mostly covering short 
temporal scales, as most of the computational resources are sourced for comprehensive physical representation 
and increasing size of  ensembles49. Downscaling climate data to local weather stations, as done in this study, will 
represent local scale variation. Downscaling the ESMs data are important before using these data in daily time 
scale models because the bias in ESM projections results in higher uncertainty in impact assessment  studies50.

Figure 1.  Comparison of number of precipitation days across uncorrected (a) corrected model (b) and total 
precipitation across uncorrected (c) and total precipitation across bias-corrected model (d). (Beijing Climate 
Center Climate System Model (BCC-CSM); Canadian Centre for Climate Modelling and Analysis (CanESM) 
and Met Office Hadley Centre (UKESM) outputs in different season with the observation during historic period 
(1989–2018).
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Historic and future drought projections for Continental US
The comparison of the drought across different CONUS ecoregions showed an increase in drought months in 
the future (2023–2052) under SSP5 8.5 emission scenarios of CMIP6 compared to the historic (1989–2018) 
count of drought months except for the Mediterranean California, which showed a decrease in drought months 
in the future (Fig. 2a,b). The highest increase in extremely dry months (2–3 folds compared to historic) was 
found in tropical humid forests, temperate sierras and northwestern forested mountain ecoregions (Fig. 2a,b). 
The North American desert ecoregion showed an increase in the wet months in the future periods compared 
to historic; extremely wet months increased by around 6 folds. The monthly trends of projected meteorologi-
cal drought by three ESMs (BCC, CanESM, and UKESM) showed variation in the count and distribution of 
monthly droughts across different ESMs for different ecoregions (Figure S1). The ensemble approach improved 
the drought projection by representing a range of future possibilities. Since drought impacts are more important 

Figure 2.  Comparison of monthly standardized precipitation index across different ecoregions over 30-year 
period (a) 30-year (1989–2018) observed period and (b) 30-year (2023–2052) future period based on ensemble 
of three ESMs. Y-axis represent different ecoregion and colors in bar represent count of each drought class.
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for the crop growing seasons, we compared the seasonal droughts for spring and summer seasons. The results 
of seasonal drought indicated increase in wet periods in the spring season in the future compared to historic 
period across majority of ecoregions in CONUS (Fig. 3a,c). In contrast, summer season shows increased drought 
months for majority of the ecoregions (Fig. 3b,d). Plotting spatially interpolated maps based on the difference 
in the total count of drought months in ensemble future simulation and observation period to visualize spatial 
trends of drought across CONUS (Fig. 4a–c) showed increase in the total count of drought months (based in 
yearly) in future compared to the historic time period. The result showed an increase in drought months in the 
pacific northwest, central and northern Great Plains (Fig. 4a), eastern Texas, Arkansas, Louisiana and Missis-
sippi (Fig. 4a). For the spring season, majority of the U.S. states showed increases in the wet period except for a 
few southern states (Fig. 4b). The summer drought month counts showed a significant increase in the eastern 
temperate forest and great plains regions (Fig. 4c), which includes majority of agricultural land in the CONUS 
(Fig. 4c). In the Great Plains region, irrigated crop production relies on Ogallala Aquifer, one of the largest fresh-
water aquifers in the world. Depletion in water levels in Ogallala Aquifer has already affected crop production in 
the  region51. Increased drought during summer can add more stress to the limited water available for irrigation, 
negatively affecting the crop production and the rural economy of the region.

Our results indicate that the drought magnitude will vary across ecoregions. The results based on individual 
ESMs show some variation in the count and distribution of monthly drought across different ESMs for different 
ecoregions. However, there was a general agreement among ESM in trends of increased wet months in future 
spring and drought months in future summer (Figure S2). Previous regional studies conducted in the CONUS 
showed increased frequency and duration of drought and projected decline in summer precipitation amount 

Figure 3.  Comparison of monthly standardized precipitation index across different ecoregions for 30-year 
(1989–2018) observed period and 30-year (2023–2052) future period for different seasons. Upper two Figures 
for historic spring (a) and summer (b), and lower two figures for future spring (c) and summer (d). Y-axis 
represent different ecoregion and colors in bar represent count of each drought class.
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under extreme emission scenario of CMIP5  models17. These studies were conducted at the site scale, and future 
projections were determined based on the historical classification of precipitation, streamflow, and soil water 
content. However, our study provides new insight into the trajectory of drought across the CONUS using mul-
tiple models (BCC, CanEMS5, and UKESM) and their ensemble. The overall trends of meteorological drought 
projections are still incomplete, even though multiple studies have used data from CMIP1 to CMIP5. Our results 
demonstrated the use of quantile mapping to adjust the CMIP6 precipitation data can improve future representa-
tion of temporal and spatial patterns of drought across CONUS. Bias correction helps improve the accuracy and 
reliability of the model’s projections by adjusting the simulated precipitation to match historical observations or 
other high-quality datasets. Note that the drought projections in this study are based on changes in precipita-
tion alone and do not account for changes in temperature/evapotranspiration/soil moisture. Earlier study using 
Palmer drought indices (PDI) which uses evapotranspiration and precipitation, suggested an increase in future 

Figure 4.  Comparison of change in drought months over 30-year period based on observation (1989–2018) 
and ensemble mean from the Earth system models future (2023–2052); yearly comparison (a), spring 
comparison (b) and summer comparison (c).
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drought frequency and severity and indicated that the ensemble of multiple models will help better represent 
drought metric and climate  sensitivity52. Similarly, the SPI can be easily interpreted and better represents the 
drought phenomena compared to  PDI53. The future drought projections show a global increase in potential 
evapotranspiration driven by elevated temperatures, which leading to increased precipitation extremes, drought 
frequency and severity across the  globe54–57.

Historic and future climate extreme projection for Continental US
The projection from different ESMs based on downscaled ESM data shows consensus on increased tempera-
ture and precipitation extremes in the future compared to historic observations. The spatial mean annual total 
precipitation (mm) across CONUS was 746+227

−255 , 793
+319
−347 and 867+311

−345  in BCC, CanESM and UKESM models, 
respectively, compared to 800+320

−400 mm in observations (Fig. 5a). The overall distribution of total precipitation 
across CONUS showed decrease in annual precipitation for Eastern temperate forests, Great Plains region, and 
the state of Texas and Louisiana (Fig. 6a and Figure S3). All three models show an increase in the total precipita-
tion in the western half of the CONUS (Fig. 6a and Figure S3). The detail comparisons of the total yearly precipi-
tation are presented in Figure S3. Previous studies using CMIP5 climate projection have showed an increasing 
drought trend in the western  US58, 59. The differences in our results are due to differences in future precipitation 
projections among CMIP versions and use of different variables for drought calculation. Notably, CMIP6 models 
indicate increased precipitation for the western  USA60. An earlier study using uncorrected CMIP6 data reported a 
higher total annual precipitation, more than 100% in certain ESMs within the western United  States61. Srivastava 
et al.61 evaluated the daily characteristics of precipitation in historical observations and CMIP6 model historical 
simulations. They noted an overestimation of wet spell duration across the western US and an underestimation of 
the dry spell occurrences in the southern US. We demonstrated that the multi-model mean performs better than 
individual models for capturing precipitation distribution and ensemble analysis helps to get robust inferences 
by including uncertainty. Results from earlier studies have shown that individual ESM model may be biased and 
have the potential to either overestimate or underestimate the distribution of  precipitation62.

The overall distribution of total precipitation (mm) greater than 95th percentile across CONUS showed a 
decrease in R95 precipitation in great plains and eastern temperate forests (Fig. 6b). The spatial mean annual R95 
precipitation (mm) across CONUS were 386+105

−136 , 399
+160
−205 and 506+158

−210  in BCC, CanESM and UKESM models, 
respectively, compared to 470+170

−210 mm in observations (Fig. 5b). The detail comparisons of the R95 precipitation 
across different ecoregions are presented in Figure S4. The overall distribution of total precipitation greater than 
99th percentile across CONUS showed a decrease in R99 precipitation in great plains and eastern temperate 
forests (Fig. 5c). The spatial mean annual R99 precipitation across CONUS were 140+56

−90 , 159
+76
−117 and 201+79

−132  in 
BCC, CanESM and UKESM models, respectively, compared to 180+70

−110 mm in observations (Fig. 5c). The overall 
distribution of R99 precipitation across CONUS showed decrease in R99 precipitation for Eastern temperate 
forest and great plains, the trend is similar to total precipitation and R99 (Fig. 6c). The detail comparisons of the 
R99 precipitation across different ecoregions are presented in Figure S5. The spatial mean annual comparison of 
consecutive wet days (CWD) across CONUS were 7+1

−2 , 8
+1
−1 and 7+1

−2  days in BCC, CanESM and UKESM models 
respectively, compared to 7+2

−1 days in observations (Fig. 5d). The overall distribution of CWD across CONUS 
showed a small increase in wet days across CONUS, with the highest increase in the western United States 
(Fig. 6d). The detail comparisons of the CWD across different ecoregions are presented in Figure S6. The spatial 
mean annual comparison of consecutive dry days (CDD) across CONUS were 37+7

−18 , 39
+4
−20 and 36+4

−17  days in 
BCC, CanESM and UKESM models respectively compared to 50+6

−32 days in observations (Fig. 5e). The overall 
distribution of CDD across CONUS showed a decrease in dry days across CONUS except for some locations in 
marine west coast forest (Fig. 6e). The detail comparisons of the CDD across different ecoregions are presented 
in Figure S7. The overall distribution of WSDI temperature showed an increase in warm spell duration across 
CONUS. The spatial mean annual WSDI across CONUS were 56+25

−27 , 60
+29
−35 and 60+27

−28  days in BCC, CanESM and 
UKESM models respectively compared to 15+8

−0 days in observations (Fig. 5f). The overall distribution of WSDI 
across CONUS shows a significant increase in WSDI in all the ecoregions of CONUS (Fig. 6f). The detail com-
parisons of the WSDI are presented in Figure S7. Janssen et al.63 projected changes in the extreme precipitation 
trends using the Extreme Precipitation Index (EPI) based on CMIP5 projections for two emission scenarios (RCP 
4.5 and 8.5) over the CONUS. The study found an increasing trend of extreme precipitation over the CONUS, 
mostly an increased in wet periods in spring and dry periods in summer. Both of these seasonal extremes (wet 
spring and dry summer) will impact the soil water regime and ultimately crop productivity and agricultural 
 sustainability64, 65. The Midwest, South Great Plains, Northeast, and Southeast regions all showed an increasing 
trend in the EPI. The finding from our study based on CMIP6 and earlier study based on CMIP5 showed agree-
ment among model projections of the overall increase in extreme precipitation event frequency in the future. 
These increases are due to increased atmospheric water vapor and warmer surface  temperatures66. The study on 
the projection of temperature and precipitation extremes for CONUS showed a statistically significant increase 
in extreme events, i.e., decrease in cool nights, and increase in daytime temperature and changes precipitation 
across  regions67, 68. Using the generalized extreme value distribution, Lopez‐Cantu et al.69 observed increased 
extreme precipitation magnitude since 1950, and this will continue throughout the twenty-first century in many 
areas in the US. Kirchmeier-Young and  Zhang70 studied the extreme precipitation events in North America and 
found an increasing trend and suggested human emissions further contributed to the increase in these extreme 
events. The study on temperature extreme based on CMIP6 SSP5 8.5 emission scenario suggested increase in 
temperature over the northern US of up to 2 °C for 2021–2040, 3 °C 2041–2060 and up to 6 °C 2080–2099 
 period71. This trend was observed mostly in the upper and mid latitude in our study. Given the clear trend of 
increased precipitation and temperature extremes in future, research should focus on developing adaptation and 
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mitigation scenarios to reduce the impacts of climate extremes. The policy makers should direct their focus to 
help farmers and stakeholders to adapt more sustainable and regenerative agricultural practices which may be 
viable to buffer the impacts of future extremes.

Our study has limitation and assumptions. Our study focuses on drought projection using precipitation alone, 
use of additional variables (plant characteristics, soil moisture and meteorological variables) can help explore 

Figure 5.  Comparison of yearly count of extreme days for historic based on observed data (1989–2018) and 
future period (2023–2052) for three Earth system models and its ensemble.
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other interaction. One of the limitations of quantile mapping includes non-representation of precipitation values 
above the historic observations.

Conclusions
Our study used an ensemble of downscaled ESM outputs, drought indices, and extreme indices to assess historic 
and projected future droughts under a high emission scenario for the CONUS. Findings of our study demon-
strated the importance of employing a multi-index approach and utilizing site-specific downscaled climate 
data for accurate drought projections. When comparing historic observations with climate model outputs, we 
observed a significant bias in the number of yearly precipitation days and total precipitation amounts. Fur-
thermore, the comparison of drought occurrences across different ecoregions of CONUS revealed an increase 
in future drought months under the SSP5 8.5 emission scenarios of CMIP6, compared to the historic count of 
drought months from 1989 to 2018. Most states across CONUS displayed an increase in wet periods, except for 
a few southern states during the spring season. Notably, there was a notable rise in summer drought months for 
the Eastern temperate forests and Great Plains regions. The downscaled ESM projections consistently indicated 
increased temperature and precipitation extremes in the future when compared to historic observations. Across 
CONUS, the extreme precipitation indices showed a decrease in total precipitation, as well as in the number of 
very wet days (R95) and extremely wet days (R99) for the Eastern temperate forests and Great Plains regions, 

Figure 6.  Comparison of change in amount (mm) and count (days) of extreme days for historic (1989–2018) 
and future period (2023–2052) for three Earth system models and its ensemble.
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which encompass a significant portion of agricultural lands. Particularly, the state of Texas and Louisiana were 
identified as hotspots for these decreases. Additionally, the distribution of temperature extremes across CONUS 
exhibited a substantial increase in the WSDI across all ecoregions. These projected changes in climate extremes 
can have significant implications for agriculture and rural livelihoods. It is imperative for future studies to focus 
on developing adaptation and mitigation scenarios to minimize the impacts of these climate extremes.

Materials and methods
Study area and climate data
Our study area includes the CONUS which has a large number of National Oceanic and Atmospheric Admin-
istration (NOAA) weather stations (Figure S9). The modeling approach used for the calculation of droughts is 
presented in Fig. 7. There are over 4,161 weather stations with 30-year (1989–2018) datasets across the CONUS. 
The average annual long-term daily temperature and annual precipitation for the US weather stations is presented 
in Figure S9 and ecoregion map is presented in Figure S10. The observed historic long-term daily precipitation, 
and minimum and maximum air temperature data were extracted from the NOAA-Global Historical Climatol-
ogy Network (GHCN) datasets of National Centers for Environment Information, and used for downscaling 
and future extreme analysis.

We downloaded and aggregated precipitation, and temperature data from 3 ESM projections for extreme 
emission scenarios. Data on climate projections used in this study are based on SSP5-8.5, fossil-fueled developed 
SSP with 8.5 W  m−2 radiative forcing. The climate models used in this study include Beijing Climate Center Cli-
mate System Model (BCC), Canadian Earth System Model (CanEMS5) and UK Earth System Model (UKESM). 
The selection of ESMs was based on the available spatial variability data range in the CMIP6 deck. We used mul-
tiple climate model datasets to represent the range of predictions and uncertainties among CMIP6 models. The 
SSP5-8.5 scenario was selected to analyze drought occurrences under a projected extreme future emission sce-
nario. SSP5 8.5 represent a high fossil fuel-intensive global trajectory throughout the twenty-first  century72. The 
climate model resolutions were 100  km2 for BCC, 310  km2 for UKESM and 207  km2 for CanESM5. Climate data 
from 1989 to 2018 was used for the historical period, while the future period for analysis was from 2023 to 2052.

Statistical downscaling of precipitation
Quantile mapping (QM), also known as “probability mapping” and “distribution mapping” were used to adjust 
the statistical distribution of CMIP6 precipitation  data15, 73, 74. The quantile mapping corrects the bias in the model 
projected precipitation values by transforming its statistical distribution to match the observed distribution 
using a mathematical function. One of the major assumptions of quantile mapping is that the climate distribu-
tion doesn’t change over time, i.e., stationarity in the variance and skewness of distribution with only change in 
 mean75. For the bias correction, cumulative distribution functions (CDFs) were constructed for both CMIP6 
and observed daily historical precipitation data on a monthly basis. The transfer function was used to convert 
the CMIP6 precipitation values to probabilities based on the model distribution. Finally, their probability was 
transformed into precipitation values using the quantile function of the observation. The quantile mapping can 
be mathematically expressed as:

Figure 7.  Schematic of approach used in this study for drought and future extreme analysis.
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where Puncorr esmi,j  , Pcorr esmi,j  and Pcal esmmax,j  are the projected uncorrected CMIP6 and corrected CMIP6, respectively. 
The CDF−1

obs,j is the inverse CDF of the observed precipitation and CDFhistesm,j is the CDF of an individual ESM. These 
values were computed using historical observed precipitation and ESM simulated historical precipitation data.

Quantile mapping was modified to address a major limitation in CMIP6 P data: the P frequency. The CMIP6 
model outputs exhibits a relatively high precipitation frequency or dry bias. This dry bias is characterized by a 
large number of very low P days, often referred to as “drizzle days” that occur in CMIP6 model outputs due to 
spatial aggregation. To correct this bias for each model, we compared the historical observed dataset with histori-
cal ESM data. We identified a monthly threshold for the ESM data, and values smaller than this threshold were 
excluded to align the number of ESM precipitation days with historical observations. However, it’s important to 
note that our approach has limitations, including the inability to accurately represent precipitation values exceed-
ing those observed in historic observations. SPI incorporates the changes in frequency of precipitation events and 
shift in precipitation pattern in the future which are critical for the projection of drought. For each of the climate 
model grid nearest weather station from the centroid of the grid was assigned based on Euclidean distance.

Precipitation and temperature based extreme indices
The drought indices and extreme values were calculated on a monthly basis to estimate the future trajectory of 
drought and extreme conditions over CONUS. The drought index was calculated using the observed historic 
data sets and future drought was quantified based on the threshold precipitation values identified in the historic 
drought estimation. The extreme indices were used to characterize the temperature and precipitation related 
extremes, e.g., prolonged dryness, wetness, coldness and hotness (Table 1). Monthly drought and extreme indi-
ces were calculated using daily precipitation and temperature data. The projections were made for CONUS 
ecoregions over a 30-year observed period (1989–2018) and a 30-year projected period (2023–2052). Moreover, 
temperature and precipitation trends were also used to investigate climate extremes. Note all the drought and 
extreme calculation were made at point scale (for each weather stations) and the spatial map presented in the 
result are geographically weighted kriging of those prediction.

Standardized precipitation index
The meteorological drought was computed using the precipitation data using well established standardized pre-
cipitation index (SPI)76, 77. The SPI gives the relative measure of the dryness and wetness based on the long-term 
precipitation records. Precipitation generally follows gamma distribution as its empirical distribution tends to 
have positive skewness. The SPI calculation is done on a monthly basis, where the precipitation data for each of 
the 12 months are fitted to a two-parameter gamma distribution. The gamma distribution is fitted using maxi-
mum likelihood estimation of its parameters α and β (Eq. 3). The inverse function is then applied to the cumula-
tive probability to calculate the SPI values for each month (Eq. 4). The standardized indices for the future were 
counted based on the threshold range of precipitation values for each of the drought class for different months. As 
the SPI calculation are normalized to the time period, we used the threshold value from the historical calculation 
for the estimation of future drought. Positive SPI values imply higher median precipitation or wet conditions, 
while negative values suggest dry conditions; thus, monthly SPI is critical for understanding the association of 
soil moisture and crop stress during the growing season since it is a more short-term value. The SPI values and 
respective drought class is presented in supplement table The SPI was calculated using the following equations:

(1)Pcorr esmi,j = CDF−1
obs,j

[

CDFhisesm,j

(

Puncorr esmi,j

)]

(2)Puncorr esmi,j (d) =

{

0, ifPuncorr esmi,j < Pthreshold,j
Puncorr esmi,j , otherwise

}

(3)g(x) =
1

βαŴ(α)
xα−1e

−x
β , for x > 0

(4)Ŵ(α) =
∞

∫
0

xα−1e−xdx

Table 1.  List of extreme temperature and precipitation indices used in this study.

Short name Indicator Definition Unit

CDD Consecutive dry days Maximum number of consecutive days without PRCP days

CWD Consecutive wet days Maximum number of consecutive days with P days

R95 Very wet days Annual total PRCP when RR > 95th percent mm

R99 Extremely wet days Annual total PRCP when RR > 99th percent mm

PRCPTOT Annual total wet-day precipitation Annual total PRCP on wet d mm

WDSI Warm spell duration indicator Annual count of days with at least 6 consecutive days when TX > 90th percent days
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where x is the monthly precipitation, Ŵ(α) is the gamma function, and g(x) is the probability density function 
of the gamma distribution. The shape and scale parameters α and β are estimated by the maximum likelihood 
method as shown in Eqs. (5) and (6).

where A, n, x are precipitation factors for calculating shape parameters, number of months and mean precipita-
tion. The resulting parameters are then used to find the cumulative probability of precipitation for the given 
month as follows:

The cumulative probability G(X) is transformed to standard normal random variable z with a mean of zero 
and variance of one, which is named SPI.

Extreme indices of precipitation and temperature
The trend and statistics of the precipitation and temperature values can be used to explore the climate extremes. 
The extreme calculation using multiple variables can give meaningful conclusion on actual impact assessment. 
The extreme indices were calculated using the downscaled climate datasets. In this study, we standardized indi-
ces from Expert Team on Climate Change Detection and Indices (ETCCDI) using the daily precipitation and 
temperature  data78. Similar to the future drought calculation, the threshold value from the historical data was 
used to compute future extreme for very wet days (R95p) and extremely wet days (R99p), and warm spell dura-
tion indicator (WSDI). The consecutive dry days (CDD), consecutive wet days (CWD), and total precipitation 
(PRCPTOT) calculations were done independently for the historic and future periods (Table 1).

Data availability
All the data that support the finding of the study is presented in the paper, including Figure and supplement 
materials and data supporting the findings of this study are available on DRYAD [https:// doi. org/ 10. 5061/ dryad. 
bzkh1 89g].
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