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Home‑based monitoring of persons 
with advanced Parkinson’s disease 
using smartwatch‑smartphone 
technology
Tsviya Fay‑Karmon 1, Noam Galor 2, Benedetta Heimler 2, Asaf Zilka 1, Ronny P. Bartsch 3, 
Meir Plotnik 2,4,5 & Sharon Hassin‑Baer 1,6*

Movement deterioration is the hallmark of Parkinson’s disease (PD), characterized by levodopa‑
induced motor‑fluctuations (i.e., symptoms’ variability related to the medication cycle) in advanced 
stages. However, motor symptoms are typically too sporadically and/or subjectively assessed, 
ultimately preventing the effective monitoring of their progression, and thus leading to suboptimal 
treatment/therapeutic choices. Smartwatches (SW) enable a quantitative‑oriented approach to 
motor‑symptoms evaluation, namely home‑based monitoring (HBM) using an embedded inertial 
measurement unit. Studies validated such approach against in‑clinic evaluations. In this work, we 
aimed at delineating personalized motor‑fluctuations’ profiles, thus capturing individual differences. 
21 advanced PD patients with motor fluctuations were monitored for 2 weeks using a SW and a 
smartphone‑dedicated app (Intel Pharma Analytics Platform). The SW continuously collected passive 
data (tremor, dyskinesia, level of activity using dedicated algorithms) and active data, i.e., time‑up‑
and‑go, finger tapping, hand tremor and hand rotation carried out daily, once in OFF and once in ON 
levodopa periods. We observed overall high compliance with the protocol. Furthermore, we observed 
striking differences among the individual patterns of symptoms’ levodopa‑related variations across 
the HBM, allowing to divide our participants among four data‑driven, motor‑fluctuations’ profiles. This 
highlights the potential of HBM using SW technology for revolutionizing clinical practices.

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder  worldwide1. When an indi-
vidual is diagnosed with PD, a substantial proportion of dopamine (DA) producing neurons in the nigrostriatal 
pathways have been lost, causing hypokinetic motor symptoms such as bradykinesia, rigidity, tremor and others. 
Most of these motor symptoms can be substantially improved with dopaminergic medications, especially levo-
dopa (l-dopa), the precursor of DA. Although initially effective for management of motor symptoms, chronic 
administration of l-dopa is eventually complicated by motor fluctuations (MF), including predictable or unpre-
dictable ‘OFF’ times (periods of recurrence of PD symptoms when the medication effects wear off). Another 
motor phenomenon observed with long-term l-dopa treatment is the emergence of abnormal involuntary move-
ments (typically choreiform or dystonic) commonly affecting the facial muscles, neck, upper and lower limbs 
and trunk, termed levodopa-induced dyskinesia (LID).

Accurate assessment of motor dysfunction in PD is challenging, especially when MF and LID are being 
evaluated. In clinical trials and clinical practice, the most common measurement instrument presently used to 
assess PD-associated motor impairment and dysfunction is the revised version of the Unified PD rating scale 
[the International Parkinson and Movement Disorder Society )MDS(-UPDRS]2. Specifically, sections III and 
IV address the severity of PD motor signs as well as the duration and severity of both off periods and LID. The 
drawbacks of this scale include its semi-quantitative rating; it is time-consuming and rater-dependent3. Fur-
thermore, it only assesses the patient’s condition in the last week and motor symptoms assessed during the clinic 
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visit, and thus cannot provide any reliable information on the long period in-between medical visits. Another 
standard instrument used to evaluate MF and LID is PD home diaries, in which patients report their motor state 
over a 24-h period using pen and paper. The most established patient diary is the Hauser  Diary4 where patients 
report every half hour during the day, if they were asleep, in ‘OFF’, in ‘ON’ without dyskinesia, ‘ON with non-
troublesome dyskinesia’ or ‘ON with troublesome dyskinesia’. Filling the diary requires rigorous patient training; 
therefore, this tool’s effectiveness depends on patients’ collaboration and meticulousness. Recall bias and fatigue 
may easily hamper the accuracy of the diaries. Furthermore, with this approach, LID often fail detection, as many 
patients are unaware of their  presence5. Finally, impaired cognition, impulsivity, apathy and depression may all 
contribute to inaccurate self-reporting, as they can lead to patients’ underestimation or overestimation of their 
motor symptoms and  MF6.

All the aforementioned issues are very problematic for clinical research as well as for clinical practice. The 
accuracy of patient report is critical, as clinicians rely on it to assess disease impact on his/her daily life, and 
monitor presence and severity of motor and non-motor symptoms along the day, adherence and response to 
medical treatment and more. Furthermore, the clinicians need the information in order to provide a proper 
recommendation for a modification of patients’ dopaminergic treatment for improving outcomes.

Due to shortage of medical resources, PD patients usually visit their neurologist at the clinic, no more than 
2–3 times a year. The visits are time-limited and may leave some issues unattended, regarding various PD symp-
toms and overall  health7–9. Moreover, the lack of continuity and objectivity of measures of PD symptoms and 
functionality during the period between clinic visits may lead to imprecision and potential biases in approaching 
clinical problems and goal definitions, particularly regarding PD-related motor states. This may adversely affect 
the decision-making process and the prescribed treatment plan.

Digital health technology, including wearable and environmental sensors, video cameras and other electronic 
tools, has provided new opportunities for measuring movement abnormalities of patients with  PD8,9. Sensors 
and ad-hoc algorithms for signal interpretation offer a real-time method to objectively and accurately measure 
motor symptoms and to provide continuous remote health monitoring of PD patients. Such collected data may 
capture a complete picture of PD motor symptoms and patients’ functionality over long periods, during real-life 
experiences, and following interventions. It can provide reliable information, which can be helpful in patients’ 
care and therapeutic or observational clinical studies.

Previous studies have shown that up to 50% of PD patients have uncontrolled motor  symptoms10,11, and 
there is hope that new monitoring technology may lead the way to more favorable outcomes. For this reason, 
the MDS Task Force on Technology suggested a roadmap for the implementation of wearable technology in the 
everyday life of PD patients, ultimately becoming common clinical practices aiming at improving the outcomes 
of PD  treatments11.

Within this framework, the feasibility of using smartphones and their embedded accelerometer sensors for 
the assessment of PD motor symptoms has been demonstrated in previous  studies12,13. Zhan et al. developed a 
machine-learning approach that measured a smartwatch (SW)-derived objective ‘PD severity score’, using accel-
erometer data, from five different activities (e.g., the inter-tap interval from the finger-tapping activity)14. Further 
studies proved that combining wearable sensors with electronic diaries is feasible for monitoring PD patients 
in daily  life15. Furthermore, previous studies implemented home-based monitoring (HBM) of various motor 
symptoms (mainly tremor, bradykinesia and dyskinesia) in PD patients relying on these SW  technologies16–19. 
Across studies, the HBM period lasted for a variable amount of time ranging from 1 week to several months. 
One of these studies assessed the effectiveness of wearable sensors for determining the on/off state of PD patients 
suffering from  MF20. One platform called the  PKG® System consisting of a wrist-worn SW logger using propri-
etary algorithms, has been validated for the measurement of bradykinesia, rest tremor and dyskinesia as well as 
response to l-dopa21,22. The algorithm used in the PKG System recognized bradykinesia as movements made with 
lower acceleration and amplitude, and with longer intervals between movement, and dyskinesia as movements 
of normal amplitude and acceleration, but with shorter periods without movement. The algorithm predicted the 
UPDRS III score with a margin of error similar to the inter-rater limits. Moreover, the PKG System was shown 
to provide helpful information to the clinician, which was translated into statistically significant improvements 
in the MDS-UPDRS total, parts III and IV scores, compared to those with conventional  assessment23.

Another group developed the “Motor fluctuations Monitor for Parkinson’s Disease” (MM4PD) system, that 
used SW inertial sensors to continuously track fluctuations in resting tremor and dyskinesia. The MM4PD 
measurements correlated to clinical evaluations of tremor severity (ρ = 0.80), and matched to expert ratings of 
the presence of dyskinesia (P < 0.001) during in-clinic tasks. MM4PD captured symptom changes in response to 
treatment, that matched the clinician’s expectations in 94% of evaluated  subjects16. Another study successfully 
captured daily MFs and short- and long-term responses to therapy changes, using SW-based assessments and 
 sensors19.

In this work we implemented a 2-week HBM using the  Intel® Pharma Analytics Platform (i.e., SW with a dedi-
cated app, SWA; see “Methods” and Fig. 6 for the summary of the experimental protocol), allowing the analysis 
of accelerometer/gyroscope extracted data from the wrist of participants. Specifically, from this sensor we con-
tinuously collected passive data (tremor, dyskinesia, level of activity using dedicated algorithms; see “Methods”) 
and active data, i.e., three assessments (time-up-and-go, finger tapping, hand tremor and hand rotation) carried 
out every day twice: once in OFF and once in ON levodopa periods (see “Methods”). This platform has been 
already successfully used for monitoring PD  patients24,25. We enrolled a relatively homogeneous subgroup of 
advanced PD patients suffering from significant MFs and LID for the study. We aimed to characterize the prop-
erties of motor symptoms more thoroughly (i.e., rest and postural tremor; dyskinesia) and related fluctuations 
using the platform mentioned above and comparing accelerometer/gyroscope extracted data containing motor 
symptoms’ signatures with in-clinic assessments, home diaries, and a series of other patient-reported outcomes 
(PROs; see “Methods” for further details). Our final aim was to directly address the possibility of utilizing the 
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HBM approach to obtain detailed and personalized motor symptoms’ profiles, and related individualized MF 
signatures, across the day(s) and within real-life conditions, taking into consideration both l-dopa intakes and 
individual activity levels.

Results
Twenty-four patients were screened and recruited to the study. Three patients were excluded, and their data was 
not included in the analysis (two patients withdrew consent and did not start the HBM phase, and one patient 
did not have discernable ON–OFF episodes and did not complete the 2-week HBM period); Data obtained from 
21 patients (17 males, mean age: 66.1 ± 6.9) was included in the analysis. See Table 1 for details on demographics 
and clinical characteristics of participants.

Compliance with the study protocol and medication intake
Overall the compliance using the system during the 2-week HBM period was good, with most subjects (81%) 
wearing the SW for more than 12 h daily, throughout the tested period (see Fig. S1). Most patients (71%) filled 
their motor task reports with a small delay of up to 30 min. Furthermore, the majority (86%) had acceptable 
compliance regarding the execution of the daily motor tasks, with no more than 2 missed motor tasks during 
the HBM period. Most (76%) had good compliance with the daily questionnaire, with no more than 1 missed 
query. 81% also showed good compliance with the medication intake reports. According to the medication intake 
diaries provided by the SWA, most patients (86%) had very good compliance to medication intake and skipped 
only a few doses; however, most patients had a delay in intake time of some of the doses when compared to the 
recommended time set by the physician (see Fig. S1).

Compliance results are summarized in Table S1.

Algorithm validation (SWA vs clinicians)
Validation results are summarized in the table below (see Table 2). For additional details, see Supplementary 
Materials.

MDS‑UPDRS and sensor‑data‑correlations
The main results regarding the correlation between the MDS-UPDRS parts 2, 3, and 4 with the SWA scores for 
tremor, dyskinesia, and activity are described in Table 3. For more details, see Supplementary Materials.

Table 1.  Advanced Parkinson’s disease participant’s characteristics. Averages of all collected information 
during the clinic visits are summarized in this table. MMSE Mini-mental status examination, MoCA The 
Montreal Cognitive Assessment, MoCA MDS-UPDRS Movement Disorder Society‐sponsored revision of the 
Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS), PDSS2 score Parkinson’s disease sleep scale, ESS 
Epworth Sleepiness Scale, PDQ-39 Parkinson’s Disease Questionnaire.

Group characteristics Range

Participants (males), N 21 (17)

Age, years (mean ± sd) 66.1 ± 6.9 52–78

Age at PD onset, years (mean ± sd) 55.8 ± 8.9 36–71

Disease duration, years (mean ± sd) 10.3 ± 4.6 5–22

Patients according to handedness (right/left), N 17/4

Patients motor symptom predominance (right/left/symmetrical), N 5/15/1

Hand with SW (right/left), N 6/15

MMSE score (mean ± sd) 28.6 ± 1.5 26–30

MoCA score (mean ± sd) 24.2 ± 3.2 19–30

Number of daily l-dopa doses (mean ± sd) (median) 5.1 ± 1.4 (5) 3–9

l-dopa daily dose, mg (mean ± sd) 813 ± 345 400–1590

l-dopa equivalent daily dose, mg (mean ± sd) 1013 ± 387 500–1990

Patients at Hoehn and Yahr stage—OFF 1/2/3, N 0/13/8 1–3

Patients at Hoehn and Yahr stage—ON 1/2/3, N 4/16/1 1–3

MDS-UPDRS part 1 (mean ± sd) 9.3 ± 6.3 1–22

MDS-UPDRS part 2—OFF (mean ± sd) 17.6 ± 8.1 5–29

MDS-UPDRS part 2—ON (mean ± sd) 8.5 ± 6.2 0–20

MDS-UPDRS part 3—OFF (mean ± sd) 44.5 ± 15.3 20–74

MDS-UPDRS part 3—ON (mean ± sd) 24.8 ± 12.4 1–57

MDS-UPDRS part 4 (mean ± sd) 7.8 ± 2.6 2.6–12

PDSS2 score (mean ± sd) 21.7 ± 11.8 3–47

PDQ-39 Score (mean ± sd) 54.9 ± 25.8 7–123

ESS (mean ± sd) 7.5 ± 5 1–17
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As can be seen in Table 3, positive correlations between the SWA obtained HBM-period daily measures, 
and the MDS UPDRS scores were found for tremor (high correlation), activity level and dyskinesia (moderate 
correlation).

Daily symptom diary
A summary of the analyses aimed at documenting potential differences in the motor symptoms scores recorded 
by the SWA based on the participants’ self-reported l-dopa state (i.e., ON vs OFF) is reported in Table 4 and 
Fig. 1. For detailed analyses, see Supplementary Materials.

Daily home motor tasks in OFF and ON
Results for the tremor motor tasks are summarized in Table 5, and the results for the finger tapping and TUG3m 
test are in Table 6. For detailed analysis, see Supplementary Materials.

Note that Table S2 shows detailed results regarding variation over time in the performance of the motor tasks 
across participants, during the whole HBM period. Results show the lowest variability in the TUG test and in 
the postural tremor test.

Individualized motor fluctuations’ patterns: raster plots
While visually inspecting the data, we observed that individual tremor fluctuations could be categorized in 
4 different patient groups. Group 1 includes participants that exhibited tremor fluctuating according to their 
medication intake (i.e., the SWA recorded tremor mainly around the time participants reported taking the 
medication when they were presumably OFF; n = 6; see Fig. 2). Group 2 included participants that systematically 
experienced tremor mainly in a specific part of the day, independently of the medication cycle (e.g., more tremor 
in the afternoon than in the morning; n = 2; see Fig. 3). Group 3 consists of participants with constant tremor 
throughout the day (n = 8; Fig. 4). Finally, Group 4 included participants that did not show any consistency in 
tremor-related fluctuations (i.e., their tremor-related fluctuations did not show any regularity across the days 
of the HBM; n = 5; Fig. 5).

Table 2.  In-clinic motor tasks results: correlations between clinician and SWA scores. In-clinic motor tasks 
results—correlations between the SWA scores and the clinician’s scores for tremor.

Correlation in OFF Correlation in ON

Rest tremor (clinician’s score vs SWA score) rho = 0.74 (p < 0.001) rho = 0.58 (p = 0.01)

Postural tremor (clinician’s score vs SWA score) rho = 0.64 (p < 0.001) rho = 0.57 (p = 0.01)

Table 3.  Correlation between MDS-UPDRS items and SWA tremor, dyskinesia and motor fluctuation 
measures.

MDS-UPDRS items SWA score Correlation

Score of item # 2.10 tremor over the past week Overall tremor rho = 0.64 (p = 0.003)

Combined score of items # 3.15, 3.16, 3.17: postural, 
kinetic and rest tremors, respectively Overall tremor rho = 0.62 (p = 0.004)

Score of item # 3.15 (postural tremor) Overall task tremor—posture rho = 0.49 (p = 0.02)

Score of item # 3.17 (rest tremor) score Overall task tremor—rest rho = 0.43 (p = 0.05)

Score of item # 4.3 (Time spent in OFF state) Overall activity rho = -0.47 (p = 0.04)

Score of item # 4.1 (time spent with dyskinesia) Overall dyskinesia rho = 0.4 (p = 0.09)

Score of item # 4.2 (Functional impact of dyskinesia) Overall dyskinesia rho = 0.47 (p = 0.04)

Score of item # 4.3 (Time spent in OFF state) Overall dyskinesia rho = − 0.35 (p = 0.14)

Table 4.  ON vs OFF comparisons of symptoms’ presence based on daily symptoms diary and corresponding 
SWA recorded signals. Comparing SWA recorded signals based on the subjective reports in the daily 
symptoms diary. The difference in tremor, dyskinesia and activity level recorded by the SWA between ON and 
OFF states as reported in the daily symptom diary.

t-test comparing overall symptoms’ 
scores in ON vs OFF states

Participants [%] with higher symptoms 
in either ON or OFF states

Participants [%] that had a significant 
difference between ON and OFF

Tremor p = 0.02 65% > OFF 38%

Dyskinesia p = 0.1 65% > ON 61%

Activity p < 0.01 90% > ON 45%
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Interestingly we saw variability also in the levels of activity but not necessarily related to tremor presence. 
In the participants for which tremor followed medication intakes, the activity levels increased when the tremor 
was lowest (so basically during ON periods, as expected; Fig. 2). We also observed cases in which the activity 
levels were higher when tremor was less present, even though the fluctuations did not follow medication intakes 
(Fig. 4). For the rest of the participants, there was no relation between tremor and activity levels (Figs. 3, 5).

As already mentioned, Figs. 3, 4, 5, 6 report four examples of tremor and activity level patterns of fluctuations 
across the 2-week HBM period representing the aforementioned 4 ‘tremor’ groups. In each figure, in the top 
panel, the daily tremor detection and activity level are depicted, while the bottom panel shows the averaged 
tremor score and average activity level score while scaling the medication intake times.

Figure 1.  Extracting the symptoms measured by the SWA based on the subjective reports regarding their ON 
vs OFF states in the daily symptoms’ diaries. In each graph, we depict the individual average SWA measures 
for tremor, dyskinesia and activity level according to the OFF (dark blue bars) vs ON states (light blue bars) 
reported by the participants. Top panel: average tremor score. Middle panel: average dyskinesia score. Bottom 
panel: average activity score. Error bars depict the standard errors.

Table 5.  Daily motor tasks results—tremor. Daily motor tasks—tremor results. The percent of participants 
that showed tremor in the rest and postural tremor tests separately, and the percent of participants that showed 
more tremor in OFF vs ON in the rest and postural tests separately.

Percent of participants showing tremor [%] Participants [%] that had significantly more tremor in OFF

Rest tremor 66.67% 21%

Postural tremor 28.5% 16%

Table 6.  Daily motor tasks results—finger tapping test and TUG3m. Results of the daily motor tasks: finger 
tapping test and the TUG3m test. The overall score of the motor tasks in OFF and ON, and the percent of 
participants that performed better in ON tasks vs OFF tasks.

Overall OFF score Overall ON score OFF vs ON
Participants that performed 
better in ON vs OFF

Finger tapping test—valid taps 24.6 ± 8.2 34.4 ± 6.6 p < 0.001 90.5% (N = 19)

Finger tapping test—time between taps [s] 0.4 ± 0.13 0.29 ± 0.06 p < 0.001 86% (N = 18)

TUG3m—time [s] 21.68 ± 4.42 17 ± 3.6 p < 0.001 95% (N = 20)
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More specifically, in the top panel of each figure, the x-axis represents the time in hours (from midnight to 
midnight), and the y-axis represents the day of the experiment (from day 1 until the last day for each participant). 
The bold green vertical lines represent the time the participants took their medications every day. The dark blue 
lines depict all the instances during which the free-living algorithm detected tremor. The light blue line shows 
all the instances during which the free-living algorithm detected some level of activity. Gray areas delineate the 
time periods the participants did not wear the SW during a given day; therefore, the SWA did not collect any 
signal. The 2 days that have a colored background are the days the participants filled the daily symptom diary: 
Green background means the participant reported (s)he was in ON state at that time, and red background means 
the participant reported (s)he was in OFF state.

In addition, for increased clarity, the bottom panel of each figure depicts the scaled medication intake times 
of the entire experiment, while dividing the times between 2 consecutive medications in 10 bins. Then, for each 
bin, we calculated the percentage of time the SWA detected tremor and the average activity level for that par-
ticipant. Finally, we averaged the score of each bin (of the tremor and activity level separately) through all the 
days of the experiment (e.g., the first bar in the figure presents the average tremor score calculated in the first 
bin after the first medication for all the days of the experiment). In the figure, the x-axis represents the periods 
of time between medications, the left y-axis represents the average tremor score and the right y-axis represents 
the average activity level score. Similar to the top panel, the dark blue bars are the average tremor score, the light 
blue line is the average activity level score and the green lines represent the medication intake time.

Figure 2.  Group 1: A participant whose tremor fluctuates with the times (s)he took his/her medications. (A) 
The raster plot, (B) the averaged tremor and activity level scores when scaling the medications intake times. As 
depicted in the figure, the participant had more tremor around the time of his/her scheduled medication intake 
(i.e., when l-dopa effects were wearing off) compared to the time between intakes (i.e., during the ON l-dopa 
state). Additionally, the activity level was the highest in the time between medications, though it tended to 
decrease throughout the day, reaching its lowest rate at the end of the day.
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Figure 3.  Group 2: A participant showing significantly less tremor in the morning compared to the rest of the 
day. (A) The raster plot, (B) the averaged tremor and activity level scores when scaling the medications intake 
times. As depicted in the figure, the tremor tended to fluctuate around the medications’ intake times in the 
mornings, but independently of the medications, this participant suffered from persistent tremor after mid-day. 
However, note that during the 2-days of the symptom diaries (s)he reported OFF periods only in the afternoon, 
therefore potentially confirming stronger symptoms during this part of the day. Additionally, the activity level 
of this participant did not change neither according to medications’ intake times nor to the tremor absence or 
presence.
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Figure 4.  Group 3: A participant with abundant tremor throughout the day (almost all the time). (A) The raster 
plot, (B) the averaged tremor and activity level scores when scaling the medications intake times. The tremor 
did not fluctuate around the times of medication intake, but there were periods between medications where 
the participant had no tremor. During these times, the activity level was at its highest rate. Note that also, when 
looking at the patient’s reports during the 2-day symptom diaries, we did not observe any relation between 
ON/OFF states and presence/absence of tremor. As depicted in (A) the participant did not wear the SW after 
the fourth medication intake during most of the HBM period. Hence, in (B) we averaged the tremor-detected 
percent and the activity level only including the bins between the first and forth medication intakes.
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Discussion
The current study aimed at further characterizing the dynamics of motor symptoms, including tremor, dyskinesia, 
and activity levels, during 2 weeks of continuous home-monitoring in 21 advanced PD patients who experienced 
significant MFs. Data were collected using the  Intel® Pharma Analytics Platform, comprised of an SW and a 
dedicated app (SWA), and provided additional validation that accelerometer and gyroscope based data and 
digitally assessed active tasks from a consumer SW can capture daily fluctuations in motor symptoms.

First, we showed high compliance with the protocol in all of its aspects in line with previous studies in the 
PD population using the same  platform24,25.

However, correlation analyses between the SWA scores extracted via dedicated algorithms for tremor and 
dyskinesia, and both the clinician assessments during Visit 1, and the MDS-UPDRS scores for these symptoms, 
showed significant results only for tremor.

The correlation of SWA tremor score and the clinician’s tremor score were better in the OFF time than in 
ON time, probably due to the fact that the SWA score was mainly based on tremor occurrence and not tremor 
severity; thus decreased tremor amplitude as occurs in the ON state does not show in the SWA score as it does in 
the clinician score. Additionally, the relatively small sample size, may contribute to the low correlations. Further, 
the relatively weak to moderate correlation values between the SWA objective measures and clinical scores 
obtained from the UPDRS parts 2 and 3, may stem also here from the fact that SWA tremor score was based on 
tremor occurrence and not tremor severity. Moreover, the SWA scores perhaps reflect more truly the day to day 
objective symptoms, than the subjective experience or the single evaluation of the patient by the clinician. False 
assignment of “dyskinesia” in patients that did not exhibit them could be an additional problem. To what extent 
the SWA measure truly reflected dyskinesia warrants further investigation.

In this study we aimed to exclude patients with levodopa-resistant tremor, based mainly on a single on-site 
clinical assessment in the OFF and in the ON medicated state. Yet still the SWA algorithm detected “ON” 
tremor. This may be because a single assessment may have not reflected the true occurrence of tremor during 

Figure 5.  Group 4: A participant not showing any regularity in tremor fluctuations throughout the days of the 
experiment. (A) The raster plot, (B) the averaged tremor and activity level scores when scaling the medications 
intake times. The tremor did not fluctuate around the time of medications intake. Also the activity level 
appeared relatively constant and it was quite low across the day and during the whole HBM period.
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the day(s). Additionally, SWA tremor score was based mainly on tremor occurrence and not on tremor severity, 
thus potentially underlying the reported weak to moderate correlation between sensor measurement and 
clinical assessment. This may also explain why the SWA tremor score and the clinician’s tremor score were 
better correlated in the OFF time than in ON time; in other words, decreased tremor amplitude as predominantly 
occurring in the ON state would manifest in the clinician tremor score but not in the SWA score.

Furthermore, when correlating participants’ answers provided in the 2-days diaries (i.e., about their subjective 
feelings of being in OFF/ON states) with the SWA data, we found that, as expected, tremor was detected 
significantly more in self-declared OFF state. In line with the expectations, we also observed that activity levels 
were significantly higher in self-declared ON states. SWA dyskinesia tracing did not show an increase in the 
self-declared ON vs OFF states. However, dyskinesia can be a problematic measure for ON/OFF state estimation 
since it can also capture intentional fidgeting like finger tapping or foot knocking. In accounting for these results, 
it should be mentioned that patients recruited to this study had advanced PD with discernable ON and OFF 
episodes. However, as seen in Fig. 1 and in Table 4, the SWA detected a significant increase in tremor in 38% 
of the patients when in the OFF state. This is again probably due to the fact that the tremor was scored by the 
algorithm based on the time it was present and not based on its severity, which surely helps to define patients’ 
motor state. While the activity level was higher in the ON state in most patients, this was only significant among 
45% of the cohort. Overall, these results suggest that the algorithms for extracting tremor and activity levels were 
more reliable than those for dyskinesia. Alternatively, it is also possible that patients are more reliable at reporting 
ON and OFF states as indicated by tremor and less aware of ON and OFF states indicated by dyskinesia. Yet, in 
summary, to further characterize individual MF profiles, we focused on these last two parameters with the final 
aim of characterizing their fluctuations as a function of medication intakes.

We observed that less than a third of our PD sample (n = 6) exhibited an l-dopa-responsive tremor, namely 
tremor varying according to the medication cycle (i.e., increasing in OFF, and improving in ON; see Fig. 3); 
these patients represent the ‘classic’ tremor fluctuations’  dynamic16. For the remaining participants, l-dopa 
treatment either did not have a consistent beneficial effect on tremor or no effect at all (Figs. 4, 5, 6). In other 
words, through this 2-week HBM, we were able to objectively differentiate between PD patients with tremor 
responding to l-dopa, and those for which tremor could not serve as a marker for medication-associated MFs. 
Most interestingly, in certain patients, our results could set grounds for l-dopa dose augmentation or changes 
in their intake’s schedule: for instance, the patient’s tremor signature depicted in Fig. 4. showed that in the 
mornings the tremor symptom tended to follow the medication cycle, but in the afternoon the patient tended to 
experience persistent tremor, independently of the medication cycle. Thus, from this outcome, clinicians could 
conclude that this specific patient may need to re-adjust his/her levodopa intake/dosage during the afternoon.

Similarly, also activity levels may provide interesting insights into the medication cycle dynamics and 
participants’ habits. Figures 3 and 5, for instance, depict two participants that showed more activity between 
medication intakes, during the ON periods, (Fig. 3) or selectively when the tremor was not present (Fig. 5). 
Figures 4 and 6, however, showed activity levels that were not modulated by medication intakes nor tremor 
presence. Most participants show a decrease in activity levels towards the end of the day, most probably 
highlighting personal habits. The current data, therefore, suggests that monitoring of activity is an important 
aspect to capture during HBM as it can provide clinicians with more comprehensive information about the 
lifestyle of patients. Such data could be used to improve/direct to individualized rehabilitation strategies. Note 
however, that while our results suggest that the level of activity is important and can serve as an indirect reflection 
of the motor condition, the current data do not confirm that the Intel measure of activity is a good reflection of 
bradykinesia (as originally conceptualized). Indeed, bradykinesia is the main l-dopa-responsive symptom of PD, 
but our data did not show consistent activity and l-dopa fluctuations. This is a limitation of the Intel algorithm.

The current study represents our first attempt to characterize personalized MF dynamics in advanced 
PD, confirming that MF properties in this population, are not a “one shoe fits all” scenario. These initial data, 
capturing individual dynamics of tremor-related and activity-related fluctuations, highlight the natural variability 
of PD patients’ symptomatology, pointing to a need for more research on the crucial topic of HBM protocols 
with wearable sensors.

Comparison with other methodologies for monitoring at home activities in PD
Several home monitoring systems are available for persons with PD. For example, the  PDMonitor® is a system 
intended to be used for continues home monitoring of motor related symptoms of  PD26. PDMonitor demonstrated 
high correlation between the severity of the majority of the symptoms and the clinicians’ evaluation. Nevertheless, 
this system consists of 5 sensors and hence is more cumbersome as compared to the SWA. Another device is the 
STAT-ON that provides information about motor symptoms, gait and ON/OFF  stated27. The relative disadvantage 
of STAT-ON is that it does not measure tremor which is one of the most common symptoms of PD. Additionally, 
the Kinesia360 continuously monitors motor symptoms via wrist and ankle  sensors28 and demonstrated relatively 
high correlations with clinicians evaluations. Compared to all these sensors, SWA described in the present study 
is incorporated within a device which is primarily a SW with regular daily amenities such as fitness tracking 
general health related capabilities and, of course, wireless tele communication.

In addition to the mentioned systems, previous work used similar protocols to measure  MF16,21,22. These 
previous works, however, mainly focused on validating the HBM approach and the reliability of SW sensors 
to extract expected MF properties correctly, e.g., recording more tremor in OFF than in  ON16. This approach, 
albeit obviously needed to validate the methodology, entirely disregarded the characterization of individual 
differences. Such differences are nonetheless, the most crucial innovation potentially introduced by the HBM 
approaches with wearable sensors. Indeed, the final aim of these protocols should be to allow the capture of 
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the unique symptoms’ signature of each PD patient, eventually enabling the tailoring of the treatments to each 
specific profile with high level of accuracy.

Limitations, implications and future directions
This study provides useful insights into symptoms and fluctuations in activity and symptoms throughout the 
day. However, the current results are not fully conclusive and reliable. In particular, the estimation of dyskinesia 
did not prove to be robust. As for tremor, the correlations with clinical assessment were not sufficiently high. 
On the other hand, this study demonstrates the ability to identify individual ‘signatures’ of the daily cycles of the 
tremor occurrences with respect to medication consumption, and activity levels (compare Figs. 2, 3, 4, 5). Yet, 
the low number of participants prevent us, at this point, to define clear sub classifications with the PD cohort.

As discussed above, there are some limitations to the use of the SWA. Importantly, it is obvious that an inertial 
measurement unit (IMU) that is located only in one place on the body (i.e., wrist) is limited in providing a 
comprehensive picture of the kinematics of a patient, including, e.g., gait and balance functioning, or information 
about tremor or dyskinesia severity in different body parts. Furthermore, gait and balance related impairments, 
e.g., freezing or balance lost, are not addressed. Multiple sensors recording multiple motor behaviors in diverse 
body sites can enable a more detailed personalized sensing approach.

Our work, however, in particular the analytical approach (e.g., daily symptom fluctuations—c.f. Figs. 2, 3, 4, 5) 
is a first important step in this direction but more work is needed. For instance, future research should consider 
continuous monitoring of tremor severity and not just tremor presence, as was the case here, ultimately refining 
the results further, and the work should be extended to other PD-related motor symptoms, including dyskinesia 
and bradykinesia, to characterize more comprehensive individual profiles in particular to fully capture all aspects 
of the motor OFF and ON conditions.

An emerging approach is to train an IMU-based device with machine learning (ML) algorithms for extracting 
and identifying individual patient’s typical and personalized subtle clinically related features, that are not easily 
detectable even by movement disorders  experts29. With continuous monitoring protocols, that rely on ML 
algorithms, we will be able to more precisely recognize each advanced PD patient’s specific features for ON and 
OFF conditions, and will enable optimal identification of the patient’s motor state and daily MF. We believe this 
may be the key to utilizing the HBM approach at its fullest potential (provided that such multiple, smart sensors’ 
set-ups will be easy to wear and simple to use by participants in a fully independent manner at their home). 
Eventually these data sources along with artificial intelligence models may be further combined with controllers 
that respond to extracted data with operational suggestions via the treating neurologist or directly provided to 
patients, to improve the patient outcomes and quality of life.

MFs and LID are common clinical problems affecting the everyday lives of up to 80% of patients with  PD30 
contributing to progressive disability and decrease in quality of life. Continuous remote monitoring of fluctuating 
PD patients with wearable sensors is an advancing technology that has already been shown to provide authentic 
and useful information on daily OFF and ON  conditions16,19–24. In a few of these studies improved decision-
making processes and patient outcome have also been  achieved16. Furthermore, the use of these technologies 
has the potential to reduce the high healthcare costs and have a facilitatory impact on the medical resources’ 
shortage by combining it with telemedicine and other Digital Health  tools29. Along these lines this technological 
development has the potential to promote a revolution in PD clinical practices and research.

Methods
Participants
Inclusion criteria consisted of male or female patients, over 30 years old, diagnosed with PD, according to the 
Movement Disorders Society (MDS) PD diagnostic  criteria31, for at least 5 years. Patients had to be treated with 
three or more daily oral l-dopa doses and report significant MFs and (preferably) also LID, and on Hoehn and 
Yahr  stage32 1–3 while ON. Patients were to report moderate to severe functional impact of fluctuations according 
to question 4.4 of the MDS-UPDRS31 score of 3 or above. Additionally, all participants were to have the ability 
to operate smartphone technology.

Exclusion criteria consisted of a score of less than 20 on the  MMSE33 or report of significant cognitive decline, 
psychiatric impairment, or additional major comorbidity that would preclude study participation, as determined 
by the principal investigator. Furthermore, patients with l-dopa resistant tremor (tremor during ON), l-dopa 
resistant freezing (freezing during ON) or previous functional neurosurgical procedure and/or chronic treatment 
with levodopa-carbidopa intestinal gel infusion administered via percutaneous endoscopic gastrojejunostomy 
(PEG-J) tube, were excluded.

The experimental protocol was approved by the institutional review board (IRB) of the Sheba Medical Center. 
All methods were carried out in accordance with relevant guidelines and regulations.

The home‑based monitoring (HBM) apparatus
The home-based monitoring (HBM) apparatus used in this study consists of a SW (Apple watch, AW, series 4, 
40 mm with operating system watch OS 6–7) and a smartphone (SP, Apple iPhone 8, with operating system iOS 
11–14). An application, which is part of the  Intel® Pharma Analytics Platform, was installed in advance on the 
iPhone.

Apple watch
The AW has various sensors, such as an accelerometer and a gyroscope, the data from these sensors were sam-
pled at a frequency of 50 Hz. The AW contained Apple’s Health Kit that collects various gait and physiological 
measures (step count, walking distance, heart rate, etc.) and a heart rate monitor sensor. The AW also collected 
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passive data from the sensors analyzed by the  Intel® Pharma Analytics Platform using in-built algorithms (see 
sections below).

Intel® pharma analytics platform
The  Intel® Pharma Analytics Platform is an edge-to-cloud artificial intelligence platform for continuous data 
collection and analysis using sensors, wearables, and mobile technologies.

Intel’s platform is a full end-to-end service that includes devices for sensory data collection, a dedicated 
mobile application and secured cloud storage. This includes a library of machine-learning algorithms developed 
specifically for PD that have the capability to detect and quantify the presence of various PD-related symptoms. 
The platform is device-agnostic and supports multiple types of medical and consumer grade devices. Beyond 
wearables, the platform supports data collection from sensors that are placed at the patient home.

All sensor data are collected in a stringent, secure, fault-tolerant manner. All data are securely stored in the 
cloud and are de-identified. The Intel platform does not collect any Potentially Identifiable Information (PII). 
Intel applies highly strict security, privacy and quality management procedures and complies with the healthcare 
industry standards as well as regulations (e.g., General Data Protection Regulation).

Algorithms
The Intel platform is equipped with a compendium of algorithms to extract clinical insights from the raw 
sensor data. These solutions enable the tracking of disease-specific symptoms as well as Quality of Life (QoL) 
parameters. The algorithms were validated to quantify PD tremor, bradykinesia, and dyskinesia in various tasks 
and everyday life  situations34–36. More specifically, two different algorithms were used in this protocol for HBM 
of PD symptoms: (1) the free-living algorithm and (2) the motor tasks algorithm.

The free-living algorithm evaluates the tremor, dyskinesia, and activity level separately and continuously 
throughout the day (i.e., whenever the participant wore the watch). The tremor and dyskinesia free-living 
algorithm samples the raw accelerometer data every 30 s and assigns a score (either 0 or 1) for each symptom. A 
score of 0 indicates an absence of the symptom (tremor or dyskinesia) in the past 30 s, while a score of 1 indicates 
that the algorithm detected the symptom within the past 30 s. The activity level free-living algorithm samples 
the raw data every 5 s and assigns a score between 0 and 1 that evaluates the participant’s level of activity in the 
past 5 s.

The motor tasks algorithm evaluates the tremor, dyskinesia, and bradykinesia while the participants perform 
their daily motor tasks (see “Experimental protocol”). At the end of the motor task, the algorithm assigned one 
score for each symptom, which refers to the severity of that symptom during the whole motor task. The motor 
task scores, termed smartwatch and algorithm (SWA) scores, ranged between zero and two (see the equivalent 
clinician score in Table 7).

Smart phone and mobile application
Intel’s platform includes a customizable mobile application. The mobile app was designed by usability experts 
and was previously tested with patients to ensure ease of use by an elderly population with PD and already used 
in multiple international studies and clinical  trials24,25,34,37. The mobile app supported translations to various 
languages and was presented in Hebrew in this study.

The application includes several modules, which allow the collection of passive sensor data using the free 
living and motor tasks algorithms described above, electronic patient-reported outcomes (ePROs). ePROs are 
captured with electronic daily symptom diaries, daily questionnaires, and reports on the ongoing medication 
stage, guided structured motor tasks, and medication intake reminders and reporting (based on the participant’s 
medication schedule)—see section Experimental protocol below for details on all the measures collected during 
the experimental procedure.

Experimental protocol
Each patient attended two clinic visits, the first of which was before and the last after the 2-week HBM period 
using the SWA and patient-related outcomes (see Fig. 6 for a summary of the experimental protocol).

Table 7.  SWA score vs clinician’s score. The SWA range of scores (left column) provided by the motor tasks 
algorithm together with the clinician’s range of scores (right column) supplied during the in-clinic motor tasks 
(see Experimental protocol section for further details). The clinician scores ranged between 0 and 4, but we 
slightly modified them for analysis purposes to make them comparable to scores provided by the SWA.

SWA score Clinician score

0 0

1 1

2 2 and above
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First clinic visit
During this visit, the neurologist provided the patients with a comprehensive review of the study purpose and 
methods and the anticipated patient obligations, followed by their signing of the informed consent form. Medical 
and PD-related history, as well as the exact present PD medication schedule, are recorded. For inclusion, patients 
underwent a cognitive function screening using the Mini-Mental State Examination (MMSE)33 for inclusion. 
Then the participants were observed and assessed, in OFF and ON states, using the MDS‐UPDRS2, part II (motor 
activities of daily living) and part III (motor examination), during the ON-state and the OFF-state, and part 
IV (motor complications), to confirm the presence of significant, recognizable MFs (i.e., one of the inclusion 
criteria for the study) and LID. Participants were also trained on the experimental protocol, data acquisition, 
and input and handling of the study device. This was followed by supervised in-clinic motor tasks during OFF 
and ON conditions (as to be done daily during the HBM period) wearing the SW. These in-clinic motor tasks 
had two functions: training participants on the tasks they were required to repeat daily during the HBM period 
(see Fig. 1) and collecting in-clinic ratings (of tremor, dyskinesia, and bradykinesia and gait) by the neurologist.

The motor tasks (both in-clinic and during the HBM period)

(1) Static postural test—participants must outstretch their hands for 30 s (SWA measures tremor and 
dyskinesia).

(2) Static rest test—the participants are required to sit with their hands resting on the armrest for 30 s (SWA 
measures tremor and dyskinesia)

(3) Pronation-supination—the participants must stretch the hand with the watch forward and rotate their 
wrist as fast as possible for 15 s (SWA measures bradykinesia).

(4) Finger tapping—performed on the iPhone Intel system app. In this task, the participants must tap on the 
circles that appear on the app as fast as possible, once with their right hand and once with their left hand 
(SWA measures the time between each tap and the number of valid taps (i.e., taps inside the circle).

(5) Timed up and go (TUG)—the participants are required to rise from a chair, stand up, walk 3 m, turn 
around, walk and sit back on the chair (SWA measures the time it takes the participant to complete the 
test).

The neurologist rated the participant’s tremor, dyskinesia, and bradykinesia using a standardized scale (see 
Table 1).

Figure 6.  Experiment flow chart: the experiment started with a clinic visit during which participants received 
their kit for the HBM (i.e., AW and iPhone with the Intel App installed), were explained about the protocol, 
went through various cognitive and motor tests (e.g., MMSE, MDS-UPDRS) and performed a series of motor 
tasks; it continued with the 2 weeks of HBM in which participants were required to follow the HBM protocol 
described in the figure. The experiment ended with another clinic visit in which participants answered several 
questionnaires and returned the HBM kit.
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The participant’s PD medication schedule was fed into the mobile application so the participants would 
receive reminders to take their medication according to their exact schedule. The participants were to report 
when taking the medication on the app.

At the end of the clinic visit, the participants take the devices (iPhone and SWA) home and begin the 2-week 
HBM period, and a time for visit number 2, 2 weeks later, is set.

Home-based monitoring (HBM) period
During this 2 weeks phase, participants were required to wear the SWA 12-h per day and to communicate daily 
with the Intel HBM App (see Fig. 1).

Each day, patients were required to perform motor tasks (described in the previous section), both in the 
ON state and OFF state, and to answer short questions about their symptoms. These questions popped up on 
the mobile phone app at different times every day, asking the participants to rate their symptoms (tremor and 
dyskinesia) and state (ON or OFF) in the past 10 min. Patients had to report each medication intake on time. In 
addition, they were required to fill a 12-h (from 8 AM to 8 PM) ‘PD daily symptom diary’ on two non-consecutive 
days, assigning the following motor states—ON, ON with dyskinesia, OFF, or asleep, every 30 min.

Two conditions had to be met to end the HBM period. The first was to complete 14 daily motor tasks in the 
ON state and OFF state (totaling 28 motor tasks). The second condition was to have complied with the request 
of two self-written, complete daily symptom diaries (we considered a ‘complete diary’ if the participant filled 
at least 75% of the required time windows within a maximum of 2 h delay in the reporting). Participants who 
did not meet these requirements within 14 days extended their experiment until completing the required tasks.

Second clinic visit
At the end of the HBM period, the participants visited the clinic to return the SWA and mobile phone and for 
an additional short assessment. The neurologist evaluated participants using the MDS-UPDRS questionnaire 
(part II regarding ON-state and OFF-state and part IV). Patients were assessed additionally regarding cognitive 
functions and filled-in questionnaires regarding sleep quality, daily sleepiness, and quality of life, using the 
Montreal Cognitive Assessment,  MoCA38, the Parkinson’s disease sleep scale (PDSS2)39, the Epworth Sleepiness 
Scale (ESS)40 and the Parkinson’s Disease Questionnaire (PDQ-39)41, respectively.

Data analysis
Compliance with the study protocol and medication intake
We measured the adherence to protocol of the participants in four ways: (1) overall use of the SWA, (2) delay 
in symptoms report collected from the daily questionnaires and the daily symptom diaries, (3) motor tasks 
completion, and (4) medication intake report and medication intake compliance. For a detailed description of 
the computed analyses, see Supplementary Materials.

Algorithm validation (SWA vs clinician)
To validate the SWA outcomes, we considered data collected during the first clinic visit (i.e., before the beginning 
of the HBM). Specifically, we correlated the scores assigned by the SWA during the practice of the daily motor 
tasks performed during the visit and the scores to these same motor tasks assigned by the clinician (for more 
details, see Supplementary Materials).

MDS-UPDRS and sensor-data correlations
During the first (i.e., before the start of the HBM period) and second clinic visit (i.e., at the end of the HBM 
period), the clinicians evaluated participants using the MDS-UPDRS  questionnaire2. Spearman correlations 
were calculated between the overall tremor, dyskinesia and activity scores during free-living conditions 
measured by the SWA, as well as tremor scores also measured by the SWA obtained during the motor tasks (see 
section Experimental protocol) with the MDS-UPDRS scores rated by clinicians (Items # 2.10, 3.15, 3.16, 3.17, 
4.1, 4.3, 4.4 vs the SWA tremor scores, items # 4.1, 4.2, 4.3 vs the SWA dyskinesia score, items # 4.1, 4.2, 4.3, 4.4 
vs the SWA activity score).

Specifically, the amount of daily tremor was derived from the tremor of the free-living SWA, which detected 
either the absence (scored as 0) or presence of tremor (scored as 1) on the participant’s wrist every 30 s. The 
daily tremor prevalence was then calculated as the percent of time during which tremor was detected by the SW 
each day. The patient’s overall tremor was computed as the average of all their daily tremor prevalence scores.

Similar calculations were used to assess the overall dyskinesia of each participant. Similarly, the overall activity 
for each patient was calculated as the average of all daily activity scores (as described in the section Algorithms).

Finally, the overall motor tasks tremor score derived from the SWA motor tasks’ algorithm was calculated as 
the average of all tremor scores collected during all daily motor tasks that each participant performed, separately 
for OFF and ON states (see the sections on the clinical and daily motor tasks for further details).

Daily symptom diary
The participants filled out a daily symptom diary for 2 days during the HBM period. The participants were 
required to report their state (ON, ON with dyskinesia, OFF, asleep) every 30 min, referring to the past 30 min. 
We calculated the tremor, dyskinesia and activity level for every report entry as recorded by the SWA. Specifically, 
the tremor and dyskinesia were calculated as the percent of time the SWA recorded each of the symptoms (during 
the 30 min slot), and the activity level was calculated as the average activity level score measured by the SWA 
during the 30 min slot.
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Unpaired t-tests were performed separately for each SWA measure (tremor, dyskinesia and activity level), 
comparing the presence of the aforementioned symptoms in slots the participants reported they were in ON 
state vs slots the participants reported they were in OFF state.

Daily home motor tasks in OFF and in ON
Every day of the HBM period, participants performed a series of motor tasks (see section The motor tasks (both 
in-clinic and during the HBM period) for a description of each task). Each task was performed twice, once during 
the ON and once during the OFF state. At the end of each task, the participants reported in the smartphone app 
whether they were ON or OFF their l-dopa medications during the performance.

For each daily motor task, an overall OFF and ON score was calculated as the average of the scores collected 
during all the tasks performed by each patient.

T-tests were performed between the SWA score of each test in ON vs OFF conditions (according to the 
participant’s report) to quantify the benefits of being ON medications in these tasks. The t-tests were conducted 
on the following variables: tremor—average tremor score for each participant (derived from the sum of the rest 
and postural tremor scores that the motor tasks algorithm provided for each task); finger tapping—average time 
between taps in the finger tapping test (calculated as the average time of all taps for each motor task separately); 
the number of valid taps (taps inside the circle) for the finger tapping test; TUG 3m test—average time of the 
TUG3m test.

Finally, we also wanted to obtain a measure of the variability of the scores for each participant in each motor 
task during the whole HBM period. To this end, we calculated the average score and the standard deviation (SD) 
for each task (i.e., for each relevant dependent variable collected in each task, as described in the paragraph above) 
and for each participant separately. We considered as a signature of variability all scores that differed ± 1 SD from 
the average score for that individual in that given task/per dependent variable.

Individualized motor fluctuations’ patterns: raster plots
One inclusion criterion for participation in the study was the presence of MF. Even though PD-related motor 
symptoms are traditionally expected to fluctuate with the medication cycle, in practice these symptoms often 
fluctuate differently among patients. Therefore, to be informed about the individual trend of fluctuations 
throughout the day, one needs to consider each participant separately. To obtain an individualized signature 
of the MF of our participants, we extracted from our data individual variations in tremor and activity levels.

Specifically, data are presented by creating individual raster plots that depict the collected SWA scores for the 
two aforementioned measures throughout the days of the experiment by Intel’s free-living algorithms. We added 
to the raster plots the times the participants took their medications (according to their report) and their daily 
symptom diary reports. Additionally, in order to improve the visualization of participants’ symptom fluctuations 
according to medication schedule, we averaged data over the days of the HBM and scaled the time according to 
medication intakes. This can provide a clearer overview of the individual variations in the tremor experienced 
by each patient during the day, and the activity level can allow us to further characterize the extent to which 
l-dopa medications affect the patients’ daily lives.

Data availability
The data sets generated and analyzed in this study are available from the corresponding author upon reasonable 
request.
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