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Optimization of X‑axis servo drive 
performance using PSO fuzzy 
control technique for double‑axis 
dicing saw
Weifeng Cao 1, Peiyi Zhang 1, Qingtao Mi 1*, Yahui Sun 2, Jun Shi 1,2 & Wanyong Liang 1

The dicing saw is a critical piece of equipment in IC processing, primarily used to cut wafers. Due to the 
high spindle speed, even small errors in the cutting process can result in wafer chipping or cracking. 
Therefore, the dicing saw requires a high degree of accuracy and stability. In this paper, the accuracy of 
the X-axis servo response was simulated using an Israeli ADT-8230 dual-axis abrasive wheel dicing saw. 
The study introduces a novel approach by using a fuzzy controller instead of the traditional position 
loop proportional integral (PI) controller. In addition, a two-input, two-output fuzzy rule is used for 
on-line correction of the position loop PI parameters. A heuristic algorithm is used to optimise the 
position loop fuzzy controller parameters. The quantization and proportionality factors are rectified 
using Particle Swarm Optimisation (PSO) algorithm and Genetic Algorithm (GA) respectively. By 
comparing the performance of the PSO fuzzy and GA fuzzy controllers, the optimal control method 
is derived. The proposed method is validated by simulation in the MATLAB/Simulink development 
environment using real ADT-8230 servo data. Experimental results show that the PSO-fuzzy 
structured controller reduces the position control error by 11.8%, improves the tracking performance 
by 26% and reduces the torque pulsation by 23%. Therefore, in future research, more advanced search 
algorithms should be further combined to improve the servo accuracy of the dicing saw.

Dicing saw is a process in the semiconductor back-end packaging, which is widely used in the field of optical, 
precision machinery, microelectronic devices1,2. The ADT-8230 is mainly used for cutting various semiconduc-
tor substrate materials3. As the spindle speed of the wafer dicing saw is very high, slight deviation will cause the 
wafer to chip and crack, so the cutting quality of the dicing saw will directly affect the chip quality. Therefore, 
the servo output control should be very accurate. Figure 1 shows the mechanical composition of each axis of 
the ADT-8230. The servo axes in the ADT-8230 dicing system are mainly X-axis, Y-axis and C-axis, which also 
include stepping system Z-axis and high-speed aerostatic electrical spindle. The role of the X-axis is to move the 
wafer back and forth to complete the cutting. Due to the advancement of manufacturing technology, physical 
breakthroughs and improved integration, the chip size is being reduced, and with the continuous reduction of 
chip size, the dicing saw needs to have higher cutting efficiency and more accurate cutting precision to meet the 
manufacturing needs of small-sized chips.

The X-axis servo system consists of various mechanical and electrical components. The mechanical compo-
nents include linear guides, ultra-precision ball screws, sliders and bases. These components provide stability 
and precision in the movement of the servo system. On the other hand, the electrical components of the X-axis 
servo system consist of a Yaskawa servo driver and a rotary AC servo motor. The servo motor is a three-phase AC 
permanent magnet synchronous motor (PMSM). This type of motor is widely used in high-precision industrial 
control applications due to its advantageous characteristics3,4, including relatively simple structure, light weight, 
small size, low loss and high efficiency5,6. However, it is important to note that the PMSM is a complex object 
with multiple variables, strong coupling, non-linearity and variable parameters. These characteristics can pose 
challenges in maintaining system performance, especially when the system is subjected to external disturbances7.

At present, the position control of the X-axis of the dicing saw mainly uses the proportional integral (PI) 
controller. The traditional PI control method, although the parameter adjustment is convenient, there is a cer-
tain degree of control accuracy, for the establishment of an accurate mathematical model of the system is very 

OPEN

1College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Henan  450000, 
China. 2Zhengzhou Guangli Ruihong Electronic Technology Co., Zhengzhou 450000, China. *email: 424134677@
qq.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-47663-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20719  | https://doi.org/10.1038/s41598-023-47663-y

www.nature.com/scientificreports/

suitable. But in actual industrial production is difficult to establish an accurate mathematical model, most of the 
non-linear and uncertainty. Conventional PI control due to model inaccuracy and other reasons, most of the 
cases are tuned by empirical method, which is time-consuming, and difficult to find the optimal parameters. 
In order to achieve better control performance and meet the requirement of cutting accuracy, the introduction 
of intelligent control theory and improved excitation controller are recognised as both reliable and economi-
cally efficient methods. In servo control systems, there are various control algorithms such as artificial neural 
networks, robust, iterative and adaptive control algorithms8,14. These control algorithms are widely used in the 
field of high-precision control. However, these control methods usually require accurate device models to ensure 
control performance, and most of them improve the robustness of the control system at the expense of control 
accuracy. Therefore, the above methods are not well suited to the needs of the X-axis servo system. Therefore, 
in order to achieve high-performance control of the X-axis of the scribing machine, it is necessary to explore 
a simple control method with a simple structure, which can ensure the control accuracy and has a good anti-
jamming ability of the system.

In recent years, fuzzy logic controllers (FLC) have been widely used in the field of complex nonlinear indus-
trial control. Unlike traditional PI control, fuzzy control does not depend on the precise mathematical model 
of the controlled object, and it is an easy to understand, less susceptible and more desirable nonlinear control-
ler. Therefore, fuzzy control has been widely used in a variety of scenarios, especially in the field of permanent 
magnet synchronous motor control. Kim et al.15 proposed a fuzzy PID control algorithm to solve the problem 
of PI control with large overshoot and long setting time when switching speed. Chao et al.16 developed the fuzzy 
PID controller with fewer parameters by combining traditional PID and optimal fuzzy PID controller design. 
Tavoosi et al.17 analyzed the fuzzy system rules and PID parameters so that the parameters can be adjusted online 
to minimize the fitness function. Dhandayuthapani18 demonstrated that the fuzzy controller system has better 
response than PI control. Wang19 studied the design of fuzzy adaptive PID control system is to avoid lengthy 
fuzzy system. Wang et al.20 combined the advantages of fuzzy PID and predictive function control to solve the 
undesirable performance of traditional PID control. However, there are drawbacks to fuzzy control; one of the 
main drawbacks of fuzzy controllers is that there are too many parameters to adjust. Especially when the param-
eters are set, it is very difficult for it to be given because there is no relevant reference.

In order to improve the transient and steady state behaviour of fuzzy controllers, several strategies and meth-
ods for parameter tuning have been proposed. One notable approach is the use of heuristics and meta-heuristics, 
which have greatly improved and simplified the optimisation of complex problems that were previously difficult 
or even impossible to solve. These heuristic and meta-heuristic algorithms are typically designed to simulate 
natural evolution by modelling the underlying principles of evolution found in nature. They use the concept of 
natural evolution to develop algorithms that efficiently search for optimal or near-optimal solutions within large 
solution spaces. These algorithms include simulated annealing algorithms, fuzzy control algorithms, genetic 
algorithms and neural network learning algorithms21,24, etc. Although these methods have improved the control 
effect to a certain extent, they also have shortcomings: genetic algorithms are slow to evolve and easy to mature 
prematurely; neural networks are prone to fall into the local optimum; simulated annealing algorithms are long 
in execution time, slow in convergence, and algorithms are affected by the initial value of the algorithm, there is 

Figure 1.   The mechanical composition of each axis of the ADT-8230 dicing saw and X-axis structure.
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parameter sensitivity and other problems. PSO and GA have the advantages of easy implementation, high accu-
racy, fast convergence, etc., can be a good match for PID excitation controller25. Zaway I et al, tuned fractional 
order proportional-integral-derivative (FOPID) controller using GA approach with two objective functions to 
minimise the error, energy and start-up torque to improve the control performance and robustness26. Razali et al, 
used GA to optimise the gains of fuzzy PID controller and the results proved that the fuzzy PID optimised by 
GA gives more accurate values27.Tang28 presented to optimize the control parameters of the controller using the 
PSO to obtain the optimal response error. Feng29 proposed optimizing the PID controller coefficients using an 
improved PSO algorithm to obtain the optimal trajectory tracking accuracy. Chang30 presented an improved PSO 
algorithm for find the optimal PID controller gain. Reath et al.31 analyzed the use of GA algorithm to improve the 
output response of fifth-order modes by tuning the PID controller in a feedback control system. So32 proposed an 
improved two-degree-of-freedom control framework using the GA algorithm for optimal rectification of the PID 
controller. After comprehensive analysis, we can deduce that due to the exemplary performance in maturity and 
stability, GA and PSO algorithms have garnered extensive implementation in practical problem-solving scenarios.

In view of the above study, this paper proposes a fuzzy controller based on an optimisation algorithm aimed 
at achieving high accuracy and stability of the servo system. A three-loop control simulation model of PMSM 
in synchronous rotating coordinate system is established from the actual data of ADT-8230 X-axis. The drive is 
given a position pulse signal command, and the PMSM is driven to the specified target position by the three-loop 
control model. The position offset command and feedback speed command are obtained by the forward and 
reverse motion of the motor in the specified range. Due to certain limitations in the traditional PI control method 
in terms of disturbance rejection and tracking accuracy, we have chosen to adopt fuzzy control as the position 
loop controller to enhance the system’s performance. Within the fuzzy controller, the proportional factor and 
quantization factor greatly influence the control effectiveness of the system. In order to achieve optimal control 
results, we have employed an optimization algorithm to fine-tune these two parameters. In practical machining 
systems, control involves numerous nonlinear issues, and PSO (Particle Swarm Optimization)/GA (Genetic 
Algorithm) algorithms are well-suited to handle high-dimensional and nonlinear optimization problems. Hence, 
we have selected the PSO/GA algorithm to optimize the fuzzy controller. Through the use of this optimization 
algorithm to adjust the proportional factor and quantization factor, we have effectively enhanced the control 
precision and stability of the system. The optimized fuzzy controller exhibits significant advantages, particularly 
in terms of high precision and stability. It demonstrates improved robustness and adaptability to environmental 
changes and external disturbances. By fine-tuning the proportional factor and quantization factor through the 
optimization algorithm, we have achieved a notable improvement in the system’s control precision, enabling the 
servo system to accurately track specified positions and achieve higher motion accuracy.

Mathematical modeling of X‑axis servo system
Extracting basic data for ADT‑8230
In the process of processing semiconductor chips, dicing error in the micron range is necessary. X-axis is a long-
stroke axis, and it carries different speeds for different materials. It brings vibration and response speed, and the 
size of the speed control range directly affects the dicing quality and processing efficiency. Therefore, in order to 
ensure the high-speed stability of the linear axis of the machine tool, the servo system is required to have a fast 
response, a large speed range and a small position tracking error.

The X-axis servo drive and motor are selected from Yaskawa Servo, and the mathematical modelling is 
mainly based on PMSM. The X-axis servo system adopts three-loop control, and the motion controller is not 
involved in motion-related instructions, and the three-loop controllers are all in the Yaskawa servo drive. The 
current loop parameters are not adjustable, and both the velocity and position loops use traditional PI control-
lers. When the motor is selected, the user does not know the motor’s built-in armature resistance and armature 
inductance. Therefore, RLC bridge measurements are required to derive this value. After calculating the inertia 
ratio, speed and torque, the X-axis motor power is 400 W, the encoder is a 24-bit linear encoder and the motor 
is a three-phase AC PMSM.

Dynamic behavior of PMSM
The three-phase permanent magnet synchronous motor is a strongly coupled, complex nonlinear system, and it 
is particularly important to establish a suitable mathematical model in order to be able to better design advanced 
PMSM control algorithms. In this paper, a three-phase PMSM mathematical model is established in a synchro-
nous rotating coordinate system.

The mathematical model of PMSM can be written in the following form: the stator voltage equation is

where, Ud , Uq are the d-q components of the stator voltage; Id , Iq are the d–q axis components of the stator 
current; R is the resistance of the stator; ωe is the electric angular velocity; Ld , Lq are the d–q axis components 
of the inductance; ϕf  represents the permanent magnet magnetic chain.

The stator electromagnetic torque equation is

(1)Ud = Rid + Ld
d

dt
id − ωeLqiq

(2)Uq = Riq + Lq
d

dt
iq − ωe(Ldid + ϕf )

(3)Te = 1.5pniq(id(Ld − Lq)+ ϕf )
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where, pn stands for polarity logarithm.
Transforming the synchronous rotating coordinate system d-q to the natural coordinate system ABC, the 

variables have the following relationships:

where, Tc is the coordinate transformation matrix.

PMSM conventional three‑loop control model
The X-axis in this study uses the Yaskawa Σ-7 servo drive system, which has an auto-tuning function. Tuning is a 
function that optimises the responsiveness of the servo unit, and the responsiveness depends on the servo gain set 
in the servo unit. In general, for machines with high rigidity, responsiveness can be improved by increasing the 
servo gain. However, for machines with low rigidity, increasing the servo gain may cause vibration and therefore 
will not improve responsiveness. Servo gain is set by a combination of parameters that interact with each other. 
The block diagram of the PMSM three loop control is shown in Fig. 2.

The working principle of conventional three-loop control is explained as follows.
First, the upper computer gives the command pulse signal, and the difference between it and the feedback 

signal is the position error signal. The position loop uses a PI controller, which processes the given error and 
sends it to the speed loop PI controller. Finally, the signal is transmitted to the current controller for processing 
to drive the motor rotation. The motor feeds the position signal through a 24-bit linear encoder.

The scheme of optimization
In this paper, PSO or GA is combined with fuzzy control, mainly considering the following aspects: First, PSO 
and GA as optimisation algorithms can help the fuzzy control system to perform parameter optimisation and 
find the best parameter combinations to improve the control effect. Second, PSO and GA can adapt to the char-
acteristics of complex and nonlinear systems to find better control strategies and improve system performance 
through the global search capability33. Third, PSO and GA are adaptive and robust and can adjust the search 
strategy to maintain system stability in the face of system parameter changes and external disturbances34. Fourth, 
PSO and GA are suitable for multi-objective optimisation problems, and the optimal solution of the system can 
be obtained through the appropriate objective function trade-off. Therefore, combining PSO or GA with fuzzy 
control can fully exploit the capability of optimisation algorithms, improve the performance of fuzzy control 
systems, and adapt to the needs of complex and nonlinear systems35.

Presentation of fuzzy controller design technique
Fuzzy control technology broadly consists of three parts: fuzzification, fuzzy rules (knowledge base and fuzzy 
inference), and defuzzification36. The hybrid structure of the fuzzy position controller is shown in Fig. 3. In 
Fig. 3, Ke , Kd , α and β denoting the scaling factors associated to the inputs and outputs of this hybrid structure. 
The Membership function editor defines the shape of all the membership functions associated with each vari-
able (Fig. 4). Surface Viewer is used to seeing the dependency of one of the outputs on any one or two inputs. It 

(4)
[

fA fB fC
]T

= Tc
[

fd fq f0
]T

(5)Tc =

[

cos θe − sin θe 1/2
cos(θe − 2π/3) − sin(θe − 2π/3) 1/2
cos(θe + 2π/3) − sin(θe + 2π/3) 1/2

]
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Figure 2.   The PMSM three-loop control block diagram.
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generates and draws the output surface mapping of the system. (Fig. 5). The fuzzy rule list is given in Tables 1 
and 2.

The fuzzy control has two inputs and two outputs; the two inputs are the error and the rate of change of the 
error. The outputs are Kp and Ki . The inputs and outputs are represented as follows.

(6)e(t) = Pref − Pf (t)

(7)ec(t) =
de(t)

dt

(8)u = αKp + βKi

Ke

Kd

Fuzzy Logic 

Controller

PSO/GAITAE

PMSM

de/dt

REF.

-

Feedback

uPI

Controller

u

Figure 3.   The hybrid structure of the fuzzy position controller.

Figure 4.   Setup of e , ec , Kp and Ki Membership functions and domains.
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The fuzzy subset and its theoretical domains need to be determined based on the rectification of the conven-
tional PI parameters. The empirical adjustment method is usually used for the traditional PI parameter tuning: 
First, the adjustment is made in pure proportional action until the system is completely stable. Second, gradually 
adjust the integration time until stabilization.

The two outputs are Kp and Ki parameters, respectively. Error e and error rate of change ec can be taken as 7 
linguistic variables (NL, NM, NS, ZE, PS, PM, PL) corresponding to negative large, negative medium, negative 
small, zero, positive small, positive medium, positive large, and the theoretical domain can be determined as 
e ∈ (−6, 6) , ec ∈ (−6, 6) , according to the conventional PI parameter rectification. The theoretical domain of Kp , 
Ki can be set as Kp ∈ (0, 6) , Ki ∈ (0, 0.1).

Ke , Kd , α and β denoting the scaling factors associated to the inputs and outputs of this hybrid structure. 
Determine the argument domain, the quantisation factor and the scaling factor. Let the fundamental domains 
of e,ec be [−xe , xe],[−xec , xec] ; the fundamental domains of �Kp , �Ki be 

[

−yp, yp
]

,
[

−yi , yi
]

 ; the fuzzy domains of e
,ec be  [−m,m] , [−n, n] ; and the fuzzy domains of �Kp , �Ki be 

[

−up, up
]

 , [−ui , ui] . Then, the quantisation factor 
Ke of e , the quantisation factor Kd of ec , and the scaling factors α and β of the output control quantities can be 
obtained from the following equation:

Figure 5.   Surface Viewer of rules relationship e , ec and Kp , Ki.

Table 1.   Fuzzy rule list for Kp and e , ec.

Kp

ec

NL NM NS ZE PS PM PL

e

NL PL PL PL PM PM PS ZE

NM PL PL PL PM PM PS ZE

NS PL PM PM ZE PS ZE PS

ZE PM PS PS NS ZE NS NS

PS PS ZE ZE NS NS NM NM

PM ZE ZE NS NM NM NM NL

PL ZE NS NM NM NL NL NL

Table 2.   Fuzzy rule list for Ki and e , ec.

Ki

ec

NL NM NS NM PS PM PL

e

NL NL NL NM NM NS ZE ZE

NM NL NM NM NS NS ZE ZE

NS NM NM NS ZE ZE PS PS

ZE NM NS ZE ZE PS PS PM

PS NS ZE ZE PS PS PM PM

PM ZE ZE PS PM PM PM PL

PL ZE ZE PM PM PL PL PL
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The establishment of fuzzy rules is essential. Fuzzy rules are derived from expert knowledge, experience, etc. 
It is essentially a rule lookup table in the form of "if … and … then …", and given e , ec yields 49 different outputs 
Kp , Ki ; the key to fuzzy control is rule base, which establishes the rules of fuzzy control, membership function, 
and fuzzy inference. The minimum operation (Mamdani), which takes the minimal value of the membership 
function. The membership function using trimf, the output of Kp and Ki in NL adopts zmf, PL adopts smf, the 
Mamdani method is used for fuzzy inference, and the center of gravity method is used for defuzzification.

GA‑based fuzzy‑PI controller tunning
Because the quantization factor Ke , Kd size on the dynamic performance of the control system has a great impact. 
Ke selected large, the system overshoot is also larger, the transition process is longer, but it can make the rise 
time shorter; Kd selection of the larger, the system overshoot is smaller, but the response speed of the system 
will be slower, at the same time, Ke , Kd both also interact with each other. α , β selection of the small will make 
the system dynamics of the process will be longer, too large and will lead to increased system oscillation, so the 
determination of the quantisation factor is a cumbersome process. Determining the quantisation factor is there-
fore a tedious process. Therefore, an optimisation algorithm is introduced to adjust each parameter of the fuzzy 
control. The fuzzy controller still adjusts the PID parameters �Kp , �Ki ; the optimisation algorithm optimises 
the proportionality and quantisation factors of the fuzzy controller. Finally, through the objective function can 
calculate the adaptation value F, the adaptation value is to judge the current output of the optimisation algorithm 
PID control parameters is good or bad only standard, through the continuous adjustment of the output PID 
control parameters, used to reduce the output value of the objective function, so as to achieve the purpose of the 
optimisation system. The search process for the optimal solution in GA is implemented by using genetic opera-
tors that mimic the evolutionary process of living organisms. That is, selection operator, crossover operator, and 
variation operator37. The proportional method of fitness values proposed by Holland38 is one of the first selection 
methods proposed in genetic algorithms. It is a proportional-based selection. If the fitness of an individual i is 
fi, The population size is Np, Then the probability of it being selected is expressed as

In order to select crossover individuals, multiple rounds of selection are required to select enough individuals 
to reach the population size. Generate a uniform random number r within [0,1] in each round. Use r as a selection 
pointer to determine the selected individual. If r ≤ qi, then individual i is selected; If qk − 1 < r ≤ qk(2 ≤ k ≤ Np)

, then individual i(i = k) is selected. The calculation formula is shown below

where, qi(i = k) is called the accumulation probability of individual i.
In this paper, ITAE and is used as a performance index to evaluate the merits of fuzzy controllers, where ITAE 

is the time multiplied by the integral of the absolute value of the error, expressed as

The search range for each parameter is;Ke ∈ [0, 150];Kd ∈ [0, 180];α ∈ [0, 250];β ∈ [0, 250] . Figure 6 shows 
the flowchart for GA-fuzzy-PI structure.

PSO‑based fuzzy‑PI controller tunning
In the process of finding the optimal values, the update rate and position solution of each particle are given by

where vk is the velocity vector of the particle, xk  is the position of the particle, pbestk is the optimal solution 
position found by the particle itself, and gbestk is the optimal solution position currently found by the whole 
population. w is the inertia weight. c1 and c2 are two learning factors, called the "self-knowledge factor" and 

(9)
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∫

0
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(13)vk + 1 = w · vk + c1 · (pbestk − xk)+ c2 · (gbestk − xk)

(14)xk + 1 = xk + vk + 1



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20719  | https://doi.org/10.1038/s41598-023-47663-y

www.nature.com/scientificreports/

"social-knowledge factor" of the particle, respectively. These two factors are used to adjust the strength of pbestk 
and gbestk on particle attraction. c1 and c2 are in the range of [0,2]. vk , pbestk − xk and gbestk − xk are used as 
the sum of vectors, which is denoted by vk + 1 . The maximum value of particle velocity in each dimension is 
less than vmax . Due to the PSO algorithm has fallen into a local optimal solution. Shi and Eberhart39 introduced 
the inertia weight formula

where g generation index represents the current number of evolutionary generations, and G is predefined maxi-
mum number of generations. The search range for each parameter is consistent with GA. The flowchart of the 
PSO-fuzzy-PI structure is shown in Fig. 7.

Comparison of algorithms
In order to find the optimal algorithm, we selected four sets of test functions to test these two algorithms40, the 
table of test functions is shown in Fig. 9. For both algorithms we set the same number of iterations (1000) and 
population size (50). In the PSO algorithm the weight factor W was set to 0.6 and the speed factors C1 and C2 
were set to 1.414 and 1.632 respectively. In the GA algorithm, the crossover probability, the variation probability 
and the number of elites were set to 0.6, 0.2 and 5, respectively. The test results are shown in Fig. 8. From the 
figure we can see that PSO converges faster than GA under either kind of test function, and the time spent.

Results and discussion
The Matlab/Simulink platform is used for the implementation of the PSO/GA algorithm combined with the 
fuzzy controller. The design and analysis of the simulation model relies on M-code and Simulink for offline 
simulation. To better capture the changes in the system, we set the sampling time to 1e−6. The data of PMSM 
are given in Table 3. The results of the optimisation search are given in Table 4. The performance evaluation of 
the PSO-fuzzy/GA-fuzzy structure controllers are shown in Figs. 9 and 10. According to the torque ripple Eq. 
(16) 41, the torque ripple under different control modes is shown in the Fig. 11. The simulation of X-axis servo 
motion position-velocity curve results in actual engineering is shown in the Fig. 12. Position-velocity response 
characteristics under different controllers is shown in Table 5.

(15)w = wmax − (wmax − wmin)g/G

Figure 6.   Organigram for GA-fuzzy-PI structure.
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Figures 9 and 10 illustrate the performance evaluation by combining the proposed GA/PSO algorithm with 
a fuzzy controller. The two methods are determined using the same set of fitness function. Table 4 is the formula 
for the fitness function, after 100 iterations, the fitness of the fuzzy control optimisssed by PSO is 5.6437e−4 and 
the fitness of the fuzzy control optimised by GA is 6.161e−4. Table 4 shows the optimisation results of the two 
control methods. From the illustration, it is apparent that the GA fuzzy control has achieved convergence after 
18 iterations, whereas the PSO fuzzy control is capable of escaping local optima even after multiple iterations. 
This observation signifies that the PSO algorithm possesses superior global search capabilities in solving opti-
mization problems, enabling it to efficiently avoid the constraints of being trapped in local optima. In contrast, 
the GA algorithm demonstrates convergence in relatively fewer iterations and may be more suitable for simpler 
optimization problems.

From the Fig. 11 it can be seen that the torque changes at 0.2 s and both have torque pulsation. Under PI 
control42, the torque fluctuation range is 6.15–7.4 N m with a torque pulsation of 1.25 N m; Under GA fuzzy PI 
control43, the torque fluctuation range is 6.308–7.296 N m with a torque pulsation of 0.988N.m; Under PSO fuzzy 
PI control, the torque fluctuation range is 6.412–7.202 N m with a torque pulsation of 0.792 N m. A disturbance 
of 3 N m is applied at 0.28 s, so the torque starts to increase from 0.28 s. From the figure it can be seen that the 
torque response is fastest under PSO fuzzy control, with a torque fluctuation range of 0.732–1.46 N m and a 
torque pulsation of 0.728 N m; Under GA fuzzy control, torque fluctuation range is 0.592–1.462 N m and torque 
pulsation is 0.87 N m; Under PI control, the torque fluctuation range is 0.4–1.6 N m and the torque pulsation is 
1.2 N m. In summary, PSO fuzzy control has a fast response time and low torque pulsation compared to other 
control methods.

Figure 12 shows the control action of the three position controllers. The PMSM is set to move back and forth 
at a given speed of 1200 rpm, with a travel distance of 167,772,160 bit command units and an acceleration and 
deceleration time of 100 ms. It can be seen that with conventional PI control, the response is slow, reaching 
the specified speed in 0.26 s and then overshooting. By using GA to tune the fuzzy control parameters, a better 
dynamic response can be obtained than the conventional PI control, but again with a large overshoot. By using 
the PSO algorithm to adjust the quantisation factor and the proportionality factor, a good control effect can be 
obtained with no speed overshoot, good dynamic response and smooth speed. At 0.28 s, an external disturbance 
of 3N.m is introduced. Based on the observation of the curve graph, the following conclusions can be drawn: 
traditional PI control method exhibits significant fluctuations during the control process, leading to a substantial 

(16)Torque ripple (% ) =
Tmax − Tmin

Tavg
× 100

Figure 7.   Organigram for PSO-fuzzy-PI structure.
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Figure 8.   Convergence curve of test function.

Table 3.   PMSM parameters.

Parameter Value

Nominal power/KW 0.4

Stator phase resistance (Rs/ohm) 3.965

Stator phase inductance (Ls/H) 10.42e−3

Flux linkage ( ϕ/Wb) 0.239473

Pole pairs (P) 1

Inertia (J/Kg m−2) 4.86e−5

Viscous damping (Kg m−2 s−1) 3.82e−3

Voltage (V) 400

Rated speed (Rpm) 3000

Table 4.   Results of the search for excellence.

Controller name Ke Kd α β

GA-fuzzy 74.6458 9.6122 212.248 139.8779

PSO-fuzzy 111.2026 143.6381 40.1157 174.9451
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decrease in rotational speed, indicating its weak disturbance rejection capability. In contrast, the GA fuzzy control 
method demonstrates relatively smaller fluctuations. However, the PSO fuzzy control method exhibits the least 
oscillation, smallest decrease in rotational speed, and shortest stabilization time. The superior performance of 
the PSO fuzzy control method can be attributed to its combination of fuzzy control and PSO techniques. Fuzzy 
control enhances the system’s disturbance rejection capability, while the PSO algorithm discovers the optimal 
parameters for the fuzzy controller, further enhancing system stability. Therefore, compared to the traditional PI 
control method and GA fuzzy control method, the PSO method possesses stronger disturbance suppression abil-
ity. It effectively reduces system fluctuations and achieves smaller decreases in rotational speed and shorter stabi-
lization time during the control process. This makes the PSO fuzzy control method an effective control strategy.

According to Table 5, rise time is the time taken for the system to reach the peak state from the initial state. 
Peak overshoot is the maximum extent to which the system response exceeds the setpoint. Stabilisation time 
is the time taken for the system to stabilise from the start of the disturbance. Position error is the difference 
between the system output and the setpoint. PSO-based fuzzy PI controllers have the fastest response, 8% faster 
than GA fuzzy controllers and 26% faster than conventional PI controllers, and PSO fuzzy controllers have no 
overshoot, minimise torque ripple and minimise position error. In terms of stabilisation time, there is not much 
difference between the three controllers, with the PSO fuzzy controller taking the least time and recovering 
stability the fastest.

Conclusion
This study presents a strategy for optimizing the X-axis servo system of the dicing saw by replacing the traditional 
PI control scheme with advanced control strategies. By combining the GA/PSO algorithm with fuzzy logic con-
trol, the optimal performance of the position controller is achieved using heuristic optimization techniques. The 

Figure 9.   Performance evaluation of the PSO-fuzzy structure: scaling factors and fitness function.

Figure 10.   Performance evaluation of the GA-fuzzy structure.
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Figure 11.   Torque response curve under different conditions.

Figure 12.   Position-velocity response curve under different conditions.

Table 5.   Position-velocity response characteristics under different controllers.

Controller name Rise time (s) Peak_value (rpm) Peak_overshoot (%) Torque_ripple (%) Position error (bit) Settling time(s)

PI 0.068 1202.7 0.225 36.5 3.48e+4 0.268

GA-fuzzy 0.0549 1201.47 0.1225 30.14 3.18e+4 0.259

PSO-fuzzy 0.0502 1199.98 0 27.98 3.06e+4 0.253
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real data from the ADT-8230 experimental platform is used for modeling, and online simulation experiments are 
conducted to evaluate the performance of the fuzzy logic and GA/PSO optimized controller. The experimental 
results demonstrate that the proposed PSO fuzzy structure controller outperforms the traditional PI control 
method in multiple performance indicators. Compared to PI control, the PSO fuzzy structure controller exhibits 
better rectification performance, tracking characteristics, and reduced torque ripple. Specifically, the PSO fuzzy 
structure controller reduces position control error by 11.8%, improves tracking performance by 26%, and reduces 
torque ripple by 23%. The effectiveness of the proposed method is validated through simulation experiments.

However, as the number of variables in the problem increases, the accuracy and stability of the PSO algorithm 
may deteriorate. This is because when dealing with more complex optimization problems, the PSO algorithm 
may quickly converge and get trapped in local optima, failing to find the global optimum. Therefore, in order 
to enhance the performance of the algorithm, improvements are necessary. In future research, we can integrate 
the PSO algorithm with other optimization algorithms, leveraging their strengths to further enhance the opti-
mization performance.

Furthermore, due to the confidentiality of the parameters involved in the dicing saw, there are currently some 
limitations that prevent practical experimentation. In order to overcome these limitations, a potential future 
research direction is the development of an independent device for the motor controller of the dicing saw, which 
can be connected to the saw through an Ethernet cable for external control. Through this approach, researchers 
will be able to manipulate the dicing saw more conveniently and conduct experiments on a broader scale. This 
will provide researchers with greater flexibility and freedom in their work.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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