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Tailoring elastic and inelastic 
collisions of relativistic 
antiferromagnetic domain walls
Rubén M. Otxoa 1,2*, Gen Tatara 3, Pierre E. Roy 1 & Oksana Chubykalo‑Fesenko 4*

Soliton‑based computing relies on their unique properties for transporting energy and emerging intact 
from head‑on collisions. Magnetic domain walls are often referred to as solitons disregarding the strict 
mathematical definition requiring the above scattering property. Here we demonstrate the conditions 
of elastic and inelastic scattering for spin–orbit torque‑induced dynamics of relativistic domain walls 
on the technologically relevant Mn

2
 Au antiferromagnetic material. We show that even domain walls 

with opposite winding numbers can experience elastic scattering and we present the corresponding 
phase diagram as a function of the spin–orbit field strength and duration. The elastic collision requires 
minimum domain walls speed, which we explain assuming an attractive potential created by domain 
wall pair. On the contrary, when the domain walls move at lower speeds, their collision is inelastic and 
results in a dispersing breather. Our findings will be important for the development of soliton‑based 
computing using antiferromagnetic spintronics and we discuss their prospects for building NOT and 
XOR gates.

As particle-like highly localized objects, solitons can carry and exchange information, which make them unique 
entities for example, for unconventional  computation1,2. Robustness to perturbations and very importantly to 
collisions is an essential ingredient to build soliton-based nanoelectronics. Soliton-based information processing 
is typically discussed in relation to their technological applications to nonlinear  optics3,4, other possibilities such 
as semiconductor  waveguides5,6 or Bose–Einstein condensates also  exist7–9. Optical solitons are very localised 
and fast (typical temporal width corresponding to femto-picosecond timescale) and thus can potentially be used 
in ultrafast computing and electronics.

On the other hand, antiferromagnetic spintronics is currently attracting huge attention due to its energy 
efficiency, high speed, abundance of materials and invisibility to external magnetic  fields10–12. Importantly, anti-
ferromagnetic domain walls have solitonic nature and are not only  ultrafast13 (with velocities up to 40 km/s) but 
also relativistic and thus contract their length allowing their “charging” by exchange energy and its consequent 
 transport14–16. The “discharge” takes place when two domain walls with opposite topological charges  collide13,14. 
They can also exhibit multi-cascading processes useful for transporting information from one collision to the 
 next13. Being close to solitons and related to the well-known sigma-model17–19, antiferromagnetic domain walls 
of course do not obey the main property of mathematical solitons in exactly integrable systems which state that 
two (or more) wave packets when collide maintain their shapes. As we show in this article, these conditions, 
however, can be controlled by strength and duration of current pulses, making them very useful candidates for 
soliton-based applications.

In nano-magnetism a soliton is interpreted as a spatially localised perturbation whose stability is provided 
by the magnetisation field  structure20–22. Therefore, the elastic collision requirement is relaxed when referring to 
domain walls (DW), vortices, skyrmions, etc. as solitons. A more accurate way to coin magnetic domain wall is 
kink which connects two ground states but still allows for two objects to annihilate. However, for the recombina-
tion to occur one needs to attend for the topological character of the two magnetic  textures20,23. Distinct topologi-
cal textures are characterised by different winding number, w, which counts the number of times the magnetisa-
tion is wrapped onto  itself22. The winding number density at each point in time t, is w(x, t) = −∇xφ(x, t) , with 
the total winding number (topological charge) being 12π

∫

w(x, t)dx , which for a 180◦ domain wall takes values 
± 1

2 . Here φ(x, t) is the in-plane angle of the spin at location x at time t of the spin-configuration along the one 
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dimensional infinite line. Magnetic textures whose winding number (WN) do not change in time are usually 
called topological  solitons20,23. Topological character of domain walls is very advantageous from the point of view 
of applications such as soliton-based computing, since it conveys them the necessary stability against perturba-
tions and simple particle-like behavior.

Strictly speaking a magnetic topological soliton (TMS) requires its WN to be a constant of motion. However, 
magnetic textures instabilities such us Walker-Breakdown (WB) for domain  walls24 or vortex core reversal for 
 vortices25 lead to a continuous change of the WN. Moreover, applications of sufficiently strong magnetic fields 
annihilate any magnetic texture. Thus, magnetic structures can be referred as topological magnetic solitons 
only in some limited sense. Here after, we focus on dynamical regimes far from these instabilities, i.e. when the 
topological charge is conserved. In this case, two magnetic textures with opposite winding number can annihilate 
each other to generate uniform ground state as both spin arrangements belong to the same topological  class22 
leading to inelastic collision. However, if both domain walls have the same winding number, the recombination 
is not allowed as there is no continuous deformation to reach the uniform state. Therefore, at first glance, one 
would expect that elastic collision property would be reserved only for textures with the same winding number 
elevating their fundamental character to topological solitons. This has been confirmed recently  experimentally26,27 
and  numerically28–30 for ferromagnetic textures. The scenario where the collision occurs between two magnetic 
textures with opposite winding number has always shown a non-soliton character both in  experiment31,32 and 
simulations so  far30,33 as a DW recombination was observed. The question we address in this work is whether 
recombination phenomenon between magnetic textures with opposite winding number can be avoided and if 
so under what specific conditions. Anticipating our findings, the proper tailoring of the current pulse duration 
in antiferromagnetic materials such as Mn2 Au can allow the control over elastic and inelastic scattering. The 
key property is the velocity achieved by domain walls during the current application. This provides some of the 
necessary ingredients for soliton-based computing and we discuss the possibilities to create NOT and XOR gates 
for possible nanoelectronics applications.

Results
In this work, we demonstrate that antiferromagnetic (AF) DWs with opposite WN can preserve their integrity 
after a head on collision moving above certain critical speed. To elucidate the control over the elastic scatter-
ing of antiferromagnetic domain walls (AF DWs), we use large-scale atomistic spin modelling of a layered 
antiferromagnet Mn2Au. We consider that Mn2 Au is arranged in an ultra-thin stripe so that DW would have 
a one-dimensional propagation. In order to induce magnetisation dynamics in Mn2 Au , we make use of the 
predicted staggered field-like torque in such crystal structures, where the effective magnetic field resulting from 
a staggered-induced spin-density, Hso , possesses opposite signs at each sub-lattice and gives rise to a spin–orbit 
 torque34. For the description of the atomistic model see Methods section. The DW mobility in Mn2 Au has been 
reported  elsewhere13,14,35. The maximum AF DW speed, vm can be obtained from the magnon dispersion relation 
and direct modelling and is circa 43.3 km/s for Mn2Au13.

In the continuum approximation and taking into account the relative values of anisotropy parameters (see 
Methods) one can obtain an equation for the in-plane component of the magnetisation Neel vector of the fol-
lowing  form35

Here �0 =
√

a/(8K2||) stands for the DW width at rest, h = 8γ�Hso/ a denotes the reduced scalar spin–orbit 
(SO) field related to the applied current, η = 8α�/a describes the DW dissipation, a = a20(J3 + |J1|/2) , 
where J1 and J3 are in-plane exchange parameters, K2|| is an in-plane anisotropy (see Methods), a0 is the lat-
tice parameter, γ represents the gyromagnetic ratio, α is the Gilbert damping parameter and � is the reduced 
Planck constant. The l.h.s. of Eq. (1) is the famous exactly integrable sine-Gordon equation. Its soliton (kink) 
solution ϕ = 2 arctan exp[(x − vt)/�] describes the AF DW having velocity v and velocity-dependent width 
� = �0

√

1− v2/v2m . Note that it is also solution of a complete Eq. (1) provided that the r.h.s is zero, i.e. AF DW 
moves with a stationary velocity v = (γ /α)Hso� . Thus, AFDW has solitonic nature in the sense that it propagates 
without changing the form but only moving at a stationary velocity, i.e. when the energy input provided by the 
external current is compensated by the dissipation.

When two solitons of any integrable equation collide, they form a breather. The breather is not a solution 
of Eq. (1) and thus, a priory one cannot expect that AF DWs emerge intact from the collision. In the condition 
when topological charge is conserved and when two AF DWs have the same topological charge, this is indeed 
the outcome of the collision. When the two topological charges are opposite, as we will see later in complete 
simulations, two scenarios are possible attending to the duration of the driving mechanism, as illustrated sche-
matically in Fig. 1. First, when the SO-field is present for long time, and the collision occurs, the Zeeman energy 
prevents the DWs to separate as the magnetisation orientation in between the DWs is polarised opposite to the 
SO-field. The resulting bound state is dispersing in time (Fig. 1a). In the second case, one can switch off the field 
at the right moment. Provided that the damping is small (which is indeed the case for magnetic systems) one can 
expect to find conditions that the resulting breather will not disperse before separating into two kinks (AF DWs).

We now present direct atomistic spin modelling results of AF DW dynamics under applied current producing 
SO-field based on Mn2 Au complete spin Hamiltonian (see Methods). Figure 2a–c shows the spatio-temporal 
evolution of magnetic configuration of a system with two DWs (having opposite winding numbers) colliding 
under application of Hso = 60 mT that is turned off at different instances. Figure 2a , shows the case where an 
inelastic collision is observed resulting in the breather dispersion. The reason for this is that the Hso has not been 
switched off after the collision and the associated Zeeman energy prevents AF DWs to separate as the region in 

(1)
1

v2m
ϕ̈ −

(

∂2xϕ
)

+
1

2�2
0

sin 2ϕ = −h sin ϕ − η ϕ̇,
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between the two DWs have the opposite polarisation to Hso . However, if the SO-field is switched off when the 
collision occurs (for 60 mT at the time moment around 20.1 ps), then an elastic collision takes place, see Fig. 2b. 
We observe a discontinuity in the trajectory of each DW at the moment of the collision and the reappearance 
of the DW after they tunnel through each other. Importantly, it is observed that while the winding number is 
preserved through the entire collision process, there has been a 180◦ phase shift for the DW internal spins for 
both DWs, i.e. kink has become and anti-kink. The third possible scenario Fig. 2c results when the two DWs 
elastically collide but the distance between them is within the exchange interaction range to observe a recombina-
tion in the simulation time-window. The emergence of this breather-like excitation is due to the excess of kinetic 
energy carried by each DW involved in the collision. Note that, as expected, the resulting breather frequency 
is monochromatic and independent on the previously applied SO-field. Figure 2d presents the phase diagram 
with the possible outcomes observed depending on the magnitude of the SO-field and its duration. The small-
est SO-field at which we observe soliton-like collision is 22 mT showing inelastic collision at 20 mT for for all 
investigated SO-field duration times.

From now on wards, we refer to AF DW of a given winding number as particle (p) and to that with opposite 
winding number as anti-particle (ap) indistinctly. Hence, one could interpret that each p (ap) behaves as an 
attractor for its ap (p). For an elastic collision to occur, p(ap) should escape from this potential, i.e. its kinetic 
energy, K p must be larger than the attractive potential, V ap provided by its own anti-particle. This potential at 
a given instance, t is given by the attractive exchange interaction between the two DWs with opposite winding 
number (see Appendix) and corresponds to

where xp and xap represent the particle and anti-particle position with respect to an external and inertial observer. 
For sake of simplicity, we will locate the observer at the antiparticle such that xap=0. Note that this picture assumes 
that the breather is separated into two “kinks” which is valid when |xp − xap| ≫ 4 ln (v/vm) . For domain walls 
moving with velocities close to that of the “light” c = vm , this condition is very loose. Hence, we only need to 
calculate the DW  mass36–38 in order to obtain the kinetic energy, K p

where N = π�/a0 is the number of spins that conform the DW and K2⊥ is the second order perpendicular 
anisotropy, see Methods.

We consider that the particle has escaped the anti-particle potential when it is at least at a distance of DW 
width from the anti-particle, i.e. xp = � giving the escape velocity

(2)E p-ap = 4A
(

x p − x ap

)
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,
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)
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� ≡ ξ�(ve).

Figure 1.  (a) Schematic illustration of two magnetic textures with opposite winding number driven by a 
SO-field which collide while the SO-field is present. In such a condition the inelastic collision gives rise to the 
excitation of breather. (b) Schematic illustration of two magnetic textures with opposite winding number driven 
by a SO-field which collide elastically in the absence of the SO-field. Each DW preserves its winding number 
after the collision however, there is a 180◦ phase-shift in the DW’s internal spins.
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where the coefficient ξ depends on material parameters only but note that due to the Lorentz invariance the AF 
DW width on the r.h.s. of this equation is velocity- dependent. Solving explicitly for the escape velocity as a 
function of SO-field gives:

where

The above equation tells us that the escape velocity depends upon the SO-field and implicitly on the distance 
the particle needs to tunnel through.

(5)ve(Hso) =
ξ�0[1−�(Hso)]

1/2

[

1+ ξ2

v2m
�(Hso)�

2
0

]1/2
.

(6)�(Hso) = v2m
(γHso�0)

2

(αvm)2 + (γHso�0)2
.

Figure 2.  (a) Spatio-temporal evolution of the sx component of the magnetisation when the SO-field is kept 
on during the entire simulation. Recombination event occurs and as a result there is a breather. (b) Spatio-
temporal evolution of the sx component of the magnetisation when the SO-field is turned off when the collision 
occurs. The two DWs behave as soliton appearing after the collision with the same winding number but with 
a 180◦ phase shift in its internal spins. (c) Spatio-temporal evolution of the sx component of the magnetisation 
when the SO-field is turned off at 18.5 ps. The two DWs carry v > ve but the attractive potential after the 
elastic collision recombine them in the simulation time window. (d) Phase diagram of the different outcomes 
from a collision event in terms of the amplitude of the SO-field and its duration. Green dots represent inelastic 
collisions at v>vcrit when the SO-field is still on at the collision instance. Orange dots correspond to elastic 
conditions. Blue dots consist of a first elastic collision followed by an inelastic collision. Red dots represent 
inelastic collisions at v<vcrit when the SO-field is absent at the collision moment. Black dots correspond to a 
situation where the SO-field is turned of so early that during the computational time window, no collision is 
observed.
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In the following, we present our numerical work which corroborates our conclusions. Figure 3 shows the 
DW speed as a function of the SO-field obtained by our theoretical prediction Eq. (5) (blue line) together with 
the DW velocity (red line) and its width (orange line) versus SO-field. The last two quantities follow Lorentz 
increase/contraction. It can be observed that for SO-fields larger than Hcr ≃ 20 mT the actual velocity of the DW 
is larger than the critical escape velocity and therefore an elastic collision is observed (Orange filled region). On 
the contrary for fields smaller than Hcr , the velocity of the DW is smaller than the escape velocity resulting in 
both particles being trapped by the attractive potential provided by the other particle. In such a case, an inelastic 
collision takes place resulting in a DW recombination (purple region). Note that the escape velocity decreases 
with the increase of the SO field while the DW velocity increases. The intersection is possible for large velocities 
only which also favors rapid tunneling and short leaving time of the bound state, providing non-decay conditions. 
The critical velocity is in a good agreement with what is observed by direct simulations in Fig. 2.

Hence, both our direct modelling and analytical approach demonstrate that the SO-field strength and duration 
can be tuned the way that the collision of AF DWs with opposite topological charges would result either in elastic 
or inelastic outcome. This result can be beneficial for building AF-based future electronic devices for example for 
constructing possible circuit outputs. In the following we present a possible scenario for two logical operations.

Outlook: proposal for NOT and XOR gates
Spintronic devices offer a high functionality such as: non-volatile memory, fast operational speeds, well devel-
oped routes for writing and reading data, stochastic and even chaotic dynamics for a wide range of magnetic 
 materials39–42. Moreover, there have been multiple proposals for logic networks, where the non-volatile nature of 
the magnetic encoded data would allow for the memory and processing to occur at the same medium. Specifically, 
topological magnetic solitons (and consequently AF DWs) could be useful for preserving information because 
of their topological protection. The so-called billiard ball  model43,44 showed that given a sufficient number of 
particles, which can collide elastically, any sort of computation can be achieved. Of particular interest is whether 
such solitons could emulate logic gates. In order to achieve this, a classification is necessary from the evolution 
space as it cannot be inferred from a local topological rule. As the energy of both logic AF DWs is the same while 
moving, the logic levels are distinguished by the twofold value of the associated WN in the computing region. 
Interestingly, this system emulates the so-called conservative  logic45, which conserves the physical quantities in 
which the digital signal is encoded. In particular the WN would be a conserved Boolean quantity. The binary 
values 1 and 0 are represented by the winding number of a given AF DW. As we previously discussed, the DW 
winding number is switched after an elastic collision event giving raise to a NOT-gate.

However, in order to implement universal logic gates such as XOR-gates one requires to add further com-
plexity to the system. Figure 4 shows a schematic proposal for a XOR-gate which consists of two free DWs with 
opposite WNs and a pinned DW with an arbitrary WN. One input to the XOR is associated to magnetic texture’s 
central spin polarization, mx > 0 and mx < 0 which correspond to logic values 1 and 0 respectively. The second 
input concerns the SO-field value. The logic value 1 is associated with the critical SO-field, H > Hcrit at which a 
proliferation of DW-pairs with overall WN=0 is  observed13. The logic value 0 corresponds to H < Hcrit , see Fig. 4, 
panels a and b. The output signal after the second collision (see Fig. 4 panels c–f) corresponds to binary values 1 
and 0 characterised by the presence or absence of a DW in the output region. Figure 4c shows that after an elastic 
collision among the two free DWs the resulting DW is accelerated (SO-field increases, see Fig. 4a) towards the 
pinned DW where another elastic collision occurs due to the fact that both DWs have the same WN. The output 
of this collision is therefore a texture which represents logic value 1. Figure 4d represents once again first an 
elastic collision among two DWs with opposite WN but, this time after the collision, the SO-field is increased 

Figure 3.  DW velocity, vdw , DW width, � , and escape velocity, vdw , a as a function of the SO-field. Red dashed 
line represents the maximum speed velocity extracted from the dispersion relation, ∼ 43.3 km/s. For SO-fields 
larger than the Hc 20 mT, the DW velocity induced by the SO-field is larger than the escape velocity (light 
orange region). However, for SO-fields lower than Hc , the DW can not escape from the attractive potential 
provided by the other DW as the vdw < ve (light blue region).
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above a value larger than Hcrit resulting in the nucleation of a DW pair with opposite WN. It is known that there 
is a specific arrangement of the two generated  DWs13. The one further away from the initial DW has an opposite 
to it WN. This DW is then accelerated towards the pinned DW but this time, both DWs suffer an inelastic colli-
sion and annihilate each other representing a logic value 0. Figure 4e represents the same situation as in Fig. 4c 
but now the pinned layer has opposite polarization than the one in Fig. 4c. In this situation, under the action of 
the SO-field represented (see Fig. 4a), the second collision is inelastic as both DWs have opposite WN resulting 
in a 0 in the logic output. Figure 4f, shows the same situation as in Fig. 4d but with opposite polarization for the 
pinned layer and same temporal evolution of the SO-field as in panel b. Once again, as the spin–orbit field is 
lager than Hcrit after the first collision a nucleation event occurs. The generated DW this time has the same WN 
as the pinned one and the collision is inelastic. Therefore, the output region contains now a magnetic texture. If 
we associate the presence or absence of a magnetic texture by binary values 1 and 0 respectively, we obtain the 
standard XOR-gate logic table, see Fig. 4g. We emphasize that the reason why the XOR-gate can be created is due 
to the conservation of overall WN even when multiple AF DWs are generated. Hence this proposal is related to 
the so-called conservative  logic45 which is characterized by the conservation of certain physical quantities. In 
our case, the overall topological winding number is associated to the spin space.

Discussion
In this work we have shown that antiferromagnetic DWs moving at relativistic speed can behave as solitons even 
in the presence of damping. We have provided a phase diagram for the output of two DWs collisions in terms 
of the SO-field (current) duration and strength. Importantly, the classification of these scattering events cannot 
be inferred from a local topological rule as we show that the collision of AF DWs with opposite topological 
charges can produce a variety of different scenarios, including elastic and inelastic outcomes. So far, studies in 
ferromagnets have shown that DWs with opposite winding numbers always recombine. Those studies kept the 
external magnetic field turned on preventing DWs to separate from each other due to the Zeeman energy penalty. 

Figure 4.  (a) Temporal evolution of the spin–orbit field, H so . (b) Temporal evolution of the spin–orbit field, 
H so , which will results for a different output when H so >Hcrit. . (c) shows an elastic collision among two free 
domain walls (DWs) with opposite winding number, followed by a second elastic collision with a pinned DW 
in the output region represented in orange. (d) shows an elastic collision among two free DWs with opposite 
winding number, followed by the nucleation of another domain wall, with overall WN=0. A second inelastic 
collision occurs among one of the nucleated DWs and a pinned DW. (e) Same scenario as in panel c but with 
a pinned DW with opposite polarization. (f) Same scenario as in panel d but with a pinned DW with opposite 
polarization.
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However, a more fundamental reason why DWs in ferromagnets do not show elastic collisions under normal 
conditions is the fact they cannot move at speeds required to escape the interaction potential. This is due to the 
fact that unless extreme conditions are meet concerning the biaxial anisotropy  values46, the DW always enter 
in the so-called Walker Breakdown. For instance, for parameters extracted  from36, and typical speed of 100 m/s 
the corresponding DW kinetic energy is about 5 orders of magnitude lower than the strength of the attractive 
interaction potential, preventing an elastic collision to occur. Estimations show that in ferromagnets the required 
speed to have elastic collision would be several orders of magnitude larger than the maximum group velocities 
of the magnons (‘effective speed of light’). Thus, even if the Walker breakdown could be prevented, this becomes 
impossible to achieve. Therefore, the ultimate reason for the elastic collision is that antiferromagnetic DWs 
obey relativistic dynamics. Thus, this soliton character of DWs seems to be reserved only for antiferromagnets 
irrespective on the overall winding number of the system.

Combining soliton intrinsic stability with topological protection provides an indestructible approach to 
transmit information or store energy even when collisions occur. Due to the fact that AF DWs can show elastic 
collision behavior while preserving the overall winding number, they can act as the building block for soliton-
based unconventional  computing1,2. The application of current effectively “charge” them with relativistic exchange 
 energy14 which can be transported on a long distance and be released by inelastic collisions. As shown, logic 
conservative computation performed by AF DWs does not required any hard-wiring as in conventional com-
puting. Instead, the wiring is provided by the spin medium in the sense that it does not need any fixed hardware 
structures. Moreover, spintronic-based soliton computing would share the advantages of several schemes such 
as neuromorphic and reservoir  computing47,48 since the memory and computation are located in the same pro-
cessing unit. Comparatively to these applications, antiferromagnetic domain walls are smaller (with sizes down 
to several nanometers) and can reach velocities circa 35 km/s (35 nm/ps) in timescale of 5-10 ps offering faster 
clocking times. Multiple additional advantages could be envisaged: the AFM-DW based computing could be 
parallel (not-sequential), energy-efficient and have large quality factor (see more details in Supplementary Mate-
rial). Thus, topological solitons in AF materials could be a good alternative for high speed and dense integrated 
circuits in technologies based on the application of conservative logic principles of solitons.

Methods
We consider a magnetic stripe located in xy-plane with a long dimension in x-direction. The domain wall dynam-
ics are solved on a spin-atomic cell structure of Mn2Au. Mn2 Au lattice cell is composed of totally 10 Mn-sites. In 
our convection, 4 occupied basal-planes are located in the xy plane with anti-parallel magnetisation orientations 
along z direction. Upon passing a current along the x-direction, the alternating polarisation of spin-accumulation 
takes place which gives rise to the corresponding staggered magnetic field, Hso acting locally on each atomic 
site and oriented along ±y-direction. The computational domain is 7500 cells long, one cell wide with periodic 
boundaries along the stripe width (y-direction). The time evolution of a unit vector spin at site i, si , is simulated 
by solving the Landau-Lifshitz-Gilbert equation:

where α is the Gilbert damping set here to 0.001 and Heff
i  is the effective field resulting from all of the interaction 

energies. The energies include the three exchange interactions (two antiferromagnetic and one ferromagnetic), 
magneto crystalline energy contributions and the SO-field. The total energy, E is given by

The first term on the right-hand side is the exchange energy where Jij is the exchange coefficient along the con-
sidered bonds. The second and third terms are the uniaxial hard and easy anisotropies of strengths K2⊥ and K2‖ , 
respectively, while the fourth and fifth terms collectively describes tetragonal anisotropy. For the in-plane part 
of the tetragonal anisotropy, u1=[110] and u2=

[

11̄0
]

 . Finally, µ0 and µs are the magnetic permeability in vacuum 
and the magnetic moment, respectively. We have used µs = 4µB with µB being the Bohr magneton (see Table 1 
for material parameters). The tetragonal anisotropy was included for sake of completeness as it is present in 
this material but its role in the high speed dynamics is negligible due to the weak magnitude of its anisotropy 
constants.

(7)
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Table 1.  Literature values for material parameters relevant for modelling the spin dynamics. kB is Boltzmann’s 
constant.
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