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Spatial‑temporal simulation 
for hospital infection spread 
and outbreaks of Clostridioides 
difficile
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Validated and curated datasets are essential for studying the spread and control of infectious 
diseases in hospital settings, requiring clinical information on patients’ evolution and their location. 
The literature shows that approaches based on Artificial Intelligence (AI) in the development of 
clinical‑support systems have benefits that are increasingly recognized. However, there is a lack 
of available high‑volume data, necessary for trusting such AI models. One effective method in this 
situation involves the simulation of realistic data. Existing simulators primarily focus on implementing 
compartmental epidemiological models and contact networks to validate epidemiological 
hypotheses. Nevertheless, other practical aspects such as the hospital building distribution, shifts 
or safety policies on infections has received minimal attention. In this paper, we propose a novel 
approach for a simulator of nosocomial infection spread, combining agent‑based patient description, 
spatial‑temporal constraints of the hospital settings, and microorganism behavior driven by 
epidemiological models. The predictive validity of the model was analyzed considering micro and 
macro‑face validation, parameter calibration based on literature review, model alignment, and 
sensitive analysis with an expert. This simulation model is useful in monitoring infections and in the 
decision‑making process in a hospital, by helping to detect spatial‑temporal patterns and predict 
statistical data about the disease.

In recent years, Artificial Intelligence (AI) techniques have demonstrated their potential to implement effective 
data-driven clinical decision support  systems1,2. These techniques are strongly dependent on the volume and 
quality of available clinical data. However, its development is limited due to the problems associated with the use 
of sensitive and sometimes incomplete clinical data and, for example in the case of machine and deep learning, 
the low interpretability of the models generated (“black box problem”)3,4. The growing concern of the medical 
AI community by the observed lack of reproducibility and interpretation of these models have entailed the study 
of more trustworthy and ethical guidelines for AI-based  systems5,6.

Some approaches have been proposed to address this issue. Among them, we find the anonymization of real 
health data and the development of digital twins - dynamic virtual representations of physical objects -. However, 
both of these techniques share many of the same issues and challenges faced by AI and data  analytics7,8, such as 
availability of quality data, risk of bias, the privacy of individuals (e.g., through data triangulation  techniques9), 
ethical behavior in the collection and use of data, confidentiality and consent, among  others7.

Realistic data simulations can be part of the solution to this problem. Although it is not possible to simulate 
all the real-world factors that can influence a parameter of study or a specific situation (e.g. changes in decision 
making, errors, etc.), they have a twofold benefit: from a public health perspective, they enable predictive analysis 
and an early evaluation of hospital policies; from a medical AI perspective, simulated datasets are helpful for 
building and evaluating future AI techniques in a more fair and trustworthy  way10.

The constant increase in the prevalence of healthcare-associated infections (HAIs) caused by multi-resistant 
microorganisms is currently posing a challenge and is one of the main concerns in public health. Bacteria and 
other pathogens are capable of evolving and becoming resistant to the drugs that are used to fight them, turning 
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into what is known as multidrug-resistant microorganisms (MDR-microorganism)11. This resistance complicates 
the treatment and increases its severity, mortality, and risk of  spread12. Therefore, a priority issue is to control and 
prevent MDR bacterial infections, since they involve rises in healthcare costs and a threat to society. Healthcare 
systems must have the necessary means to be able to evaluate the presence of these infections within hospitals. 
To this end, the spatial structure of a hospital and the physical distribution of patients over time play important 
roles in detecting outbreaks and preventing their spread.

The increasing need to study MDR-bacterial infections has led to a variety of computational model imple-
mentations of different types. The ones that stand out in the literature are network-based, agent-based, and 
compartmental models.

Network-based models are developed to study the movement and contact between patients, and therefore, 
the transmission of diseases, but space does not play any role other than  informative13–15. From an epidemio-
logical perspective, compartmental models are classic frameworks for quantifying disease transmission and 
studying the application of intervention  strategies16–18. The population is divided into labeled compartments, 
they can progress from one to another and, depending on the labels, there are different approaches (e.g. SIR, 
SIS, SEIR, etc.). However, these approaches do not represent explicitly individual contact within a population 
but rather show dynamics on a large  scale19.

In contrast to these, agent-based models are used to study the dynamic processes that involve agents’ interac-
tions with each other and with the  environment20. In such dynamic processes, both individuals and environments 
can change and adapt over time, which makes these models suitable for discovering spatial patterns derived from 
the results of interactions at individual  level20. They can also be applied to the study of dynamic processes related 
to the effects of space on health or to the specific processes that are believed to lead to the observed empirical 
regularities. In a study conducted by Willem et al.21, they identified 698 papers about agent-based implemen-
tations with infectious diseases, of which 89 worked with bacterial infections for different purposes. Another 
systematic  review22 studied 372 papers on different simulation approaches applied in COVID-19 research and 
found out that agent-based models were the most used and covered more research areas than the others.

Several studies have used agent-based approaches to analyze the transmissions of infectious diseases in hospi-
tals and the effects of control strategies. Codella et al.23 developed an agent-based model combined with a Markov 
model to study the transmission of Clostridioides difficile (CD) and analyzed the performance of several control 
measures in a mid-size hospital. Nelson et al.24 developed an economic analysis of the strategies applied in a 
hospital to control the transmission of CD and conducted probabilistic sensitivity analyses in which all parameter 
values were allowed to vary simultaneously through 2nd order Monte Carlo simulations. Lee et al.25 presented 
a software tool that generates an agent-based simulation to study the spread and control of infectious diseases 
in any healthcare ecosystem, and they evaluated the performance using real datasets. Haber et al.26 developed a 
simulation to explore different regimes that use second-line antibiotics - those given when the initial treatment 
is not effective or is no longer effective - to successfully treat and reduce the resistance frequency to other drugs. 
They evaluated this model with several runs to predict the effectiveness of various treatment strategies.

In this paper we present a simulation model with the aim of obtaining a reliable spatial-temporal dataset on 
the activity of hospitalized patients. This realistic simulator is a goal of a research project on eXplainable AI (see 
Acknowledgements) applied to the monitoring of infection spreads in hospitals caused by relevant bacteria. 
This intersection between spatial, temporal and epidemiological information is not easy to achieve by other 
means and is, in turn, necessary for studies in this field. The contribution of this work is a simulation model that 
combines (1) a compartmental model to represent the evolution of bacterial infections (macro-model); (2) an 
agent-based model for the dynamics and spread of the infection as well as the individual actions (micro-model); 
and (3) spatial-temporal constraints defined by the hospital infrastructure, through the representation of its 
layout, cleaning policies, and staff shifts.

Methods
Our proposal is funded on basic principles of computer simulation, and also on epidemiological modelling. We 
combine an agent-based model with an epidemiological compartmental model and the policies and structure 
of a healthcare environment to study the dynamics of a population within the hospital and analyze the spread 
and outbreaks of an infectious disease in that population. In this section, we describe the simulation model 
characteristics following the 7 steps of the Overview, Design concepts and Details (ODD)  protocol27:

Observed phenomenon and simulation assumptions
The phenomenon to simulate is a bacterial infection spread in a hospital setting. Due to the complexity because 
of the number of unknown interactions and the lack of a complete picture, there is no comprehensive ground 
of truth in the literature at the moment of submission.

This proposal is based on a discrete event time approach. The mathematical relations of the phenomenon 
to simulate are unknown and cannot be solved analytically. As far as we are concerned, there is no knowledge 
about continuous time description in the literature, thus differential equation models are not possible. For this 
research, we have made the following assumptions, which were validated by clinical experts and supported by 
recent medical literature:

• The simulation model concerns the dynamics of a single microorganism.
• Micro description of the phenomenon (agent’s level): simulation of the progress of infection dynamics of 

each patient’s disease and the transmission between them at an individual level.
• Macro description of the phenomenon: the simulation considers the population dynamics of the given 

microorganism.
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• Spatial-temporal constraints: defined by a specific hospital building, the infection cleaning policies, and the 
available resources.

• Discrete event time: the simulation follows an iterative process that is divided into pre-specified periods of 
time (steps).

Figure 1 summarizes the high-level framework of the simulation model, describing the different types of input 
parameters and outputs. The elements of this framework are explained in the following subsections.

Microscale simulation: infection dynamics at agent‑level
Agent-based systems are useful for the discovery of spatial and temporal patterns thanks to the analysis at a 
low level. In this model, patients are the only agents: this way, we are able to study the evolution of the infection 
process based on solid epidemiological models, without the intervention of contagion vectors that are not veri-
fied, such as adding more agent types with different behaviors. We have considered only adult patients, that are 
admitted to the hospital, they move through the different areas and, eventually, they can be discharged or die.

Each patient has a unique ID to be recognized, the localization where they are, and a set of attributes: age, 
gender, length of stay (LOS) in the hospital, health state, incubation period, duration of infection, and applied 
treatment. The LOS follows a lognormal distribution and the age follows a normal distribution based on the 
inferences made by Codella et al.23.

Contact transmission is the most important and frequent mode of transmission in the healthcare setting. 
Organisms are transferred through direct contact between an infected (or colonized) patient and another sus-
ceptible patient (patient to patient) with probability ppp , or by contact with the environment (patient to location). 
In this case, if an infected or colonized patient has spent enough time in the same place, they can contaminate 
it with probability ppl . Finally, a contaminated place can infect a susceptible patient (location to patient) with 
probability plp . At the moment of any interaction, a Bernoulli experiment with said probabilities will indicate 
whether or not there was a contagion (more details on these probabilities in Table 1).

Regarding recovery, infected patients may have a quick recovery without treatment or a longer one with the 
need for treatment. Both of them have a probability of success and duration. If the patient does not recover, they 
may die with probability pdeath.

Macroscale simulation: compartmental model
Among the types of compartmental  models28, the SEIRD model is the most suitable for our case since it allows 
us to represent a bacterial disease progression in a more exhaustive way. Thus, to represent the evolution of the 
disease, we have assigned each patient a state of health, that can take its value from an adaptation of the SEIRD 
epidemiological model. In this adaptation, we have added a new state: non-susceptible, which represents those 
patients that developed immunity to the disease. Patients can be in one state at a time, which could be: susceptible 
(S), exposed (E), infected (I), recovered (R), deceased (D), or non-susceptible (NS). Patients can arrive at the 
hospital in states S (i.e. normal or colonized), I or NS. The S state represents both people that can get infected, and 
patients who arrived colonized to the hospital (i.e. with a binary value indicating whether they are colonized or 
not). The latter are carriers of the bacteria and can infect others, but do not show signs of infection. An S patient 

Figure 1.  High scale representation of the simulation model with the types of input parameters and outputs. 
Dashed arrows represent where the input parameters are applied and solid arrows show the data flow in the 
simulation. The simulation (a) receives the patient’s health states evolution from the SEIRD epidemiological 
model (b) and the spatial constraints from the hospital topology information (c).
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can go to state E if they get infected, or if they are colonized and developed the disease, which can happen with 
probability pCI . They are going to remain in state E for a period of time, meaning that they are incubating the 
disease, but are not contagious. For each patient, the incubation period is a random value inside a predefined 
range that depends on the infection. Once this period is over, the patient goes to state I, during which they can 
infect others and contaminate the environment. If, after all, they survive the disease, they go to state R and if not, 
they go to state D. Patients can be discharged from the hospital once they accomplish their LOS, and if they are 
in state S, NS, E, or R. This progression of the states of health can be seen in Figure 1.

Hospital policies: spatial‑temporal constraints
The space has a pertinent influence on the transmission of a disease. For this reason, within the hospital that 
we represented, we have focused on the areas where an inpatient is usually more likely to move and become 
infected. These areas are: the emergency room (ER), operating rooms, rooms for performing medical tests (e.g. 
X-ray, endoscope), considered as “radiology rooms” from now on, wards with several patient rooms each, and 
an intensive care unit (ICU). The ER, the ICU and each patient room have a user-defined number of beds. Each 
bed and place have a unique ID and a state indicating if they are contaminated by the infection. In case a place 
has been contaminated, it can expose the patients within.

The places in the hospital are divided into two types: temporary and indefinite. Temporary places are those 
in which a patient is going to spend a short period of time (e.g. medical tests or surgery) and, therefore, they 
are updated in each step of the simulation. The indefinite places are those where a patient can stay for a longer 
period of time (e.g. a bed, the ICU) and they are updated once per day. In order to make the movements as 
realistic as possible, we have constrained them spatially and temporally by means of a series of rules following 
the suggestions of medical experts:

Table 1.  Input parameters. For triangular distributions, the mode, min. and max. parameters are presented as 
mode, [min, max]. EO = Expert Opinion.

Input type Parameter Value Explanation Source

Population

patients_rate 0.7 Daily occupancy rate 39–41

arrival_rate 18.603 Daily arrival rate 23

parrival_ER 0.7 Daily arrival rate at ER 42

occupancyICU 0.46 Occupancy rate of the ICU 43

population 170000 Hospital area of influence 30

age x = 54, σ = 22.52 Patient’s age distribution 23

LOS 4.254 Patient’s LOS mean 23

Epidemiological model

arrivalS 0.997 Prob. of arrivals in S state 31

arrivalI 0.002 Prob. of arrivals in I state 31

arrivalNS 0.001 Prob. of arrivals in NS state 31

arrivalC 0.076 Prob. of arrival in colonized 
state over the whole population

23

ppl 0.52, [0.14, 0.9] Prob. of patient infecting place. 
Triangular distribution

34

plp 0.435, [0.326, 0.544] Prob. of place infecting patient. 
Triangular distribution

23

ppp 0.24, [0.18, 0.3] Prob. of patient infecting 
patient. Triangular distribution

23

pCI 0.0114, [0, 0.0227]
Prob. of colonized patient 
becoming infected. Triangular 
distribution

23

incubation_time [48, 72] Min. and max. incubation 
period (hours)

44

pqr 0.115, [0, 0.23] Prob. of quick recovery. Trian-
gular distribution

35

plr 0.798, [0.599, 0.998] Prob. of long recovery. Triangu-
lar distribution

23

treatment_days 10, [5, 15] Treatment duration. Triangular 
distribution

23

pdeath 0.027 Prob. of death 45

Simulation configuration

step_time 8 Step duration (hours) Normal workday

max_patients_movements Depends on hospital beds Max. number of patients 
allowed by service per step EO

max_time_infected Depends on hospital beds Max. infection duration of each 
place EO33

steps_to_infect Depends on place Number of steps required to 
infect a place EO
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• In each step of the simulation, only a limited number of patients can move to each ward.
• Patients must have spent a minimum number of steps without having gone to a temporal place to go back. 

For example, if a patient has just undergone surgery, they will not go back into the operating room right away.
• Patients that have been in the ER or the ICU for a certain period of time can be transferred to a ward.
• When a patient goes to a temporary place, they return to the same bed where they were before, after some 

fixed time defined in the simulator for each place.
• Patients can change beds in the same ward in 1 step.
• Patients in a ward can change to another ward during 1 step.
• Patients in a ward or the ER might be transferred to the ICU.

Simulating Clostridioides difficile infection in a midsize hospital in Spain
The CD is currently the main cause of infectious diarrhea in hospitalized  patients29. In recent years, cases of 
CD infection (CDI) within hospitals have increased, with the incidence reaching values of up to 92 per 100.000 
residents in North America and  Europe29. A person can get CDI from a carrier or through contact with a con-
taminated surface.

The simulations take place in a hospital environment that is based on the structure of the Rafael Méndez 
General University Hospital in Murcia, Spain. Our hospital has an ER with 20 beds, 3 operating rooms, 5 radiol-
ogy rooms, 4 wards with 14 rooms each, 3 wards with 10 rooms each, 1 ward with 5 rooms, and an ICU with 10 
beds. Each room has 2 beds and there are 212 beds in total. By comparing the size of our hospital with other real 
 ones30, we have considered an area of influence of 170.000 people for this hospital.

The simulation model has a discrete time, divided into 8-hour steps, which allows us to differentiate between 3 
moments of the day: morning, afternoon, and evening. In this way, we make sure that admissions, ward changes, 
and discharges happen during the afternoon and only once a day. During the evening, patients can return to 
their beds from temporary places. Each day, a user-defined number of patients are admited through the ER or by 
admission to a ward in S (normal or colonized), I, or NS state. The proportion of each state was obtained from 
the  literature31,32. The changes in the health state of patients and the contamination and disinfection of places 
can happen in each step. This disinfection of places takes place by means of a cleaning system, in which places 
are disinfected after a predefined number of steps. This represents how often each area is cleaned, for example, a 
radiology room is cleaned once a day as well as the rooms and the ICU, but beds are cleaned every 8 hours. The 
cleaning assiduity is based on cleaning protocol guidelines of hospitals from  Spain33. In each step, a historic of 
the patients is saved with all the information about the patients and the places they are occupying at that moment 
(see Supplementary Tables S1and S2 online). This will be useful for the determination of epidemiological indica-
tors and other information.

The simulation starts with an exposed (E) patient and everyone else susceptible (S). When the patients 
become infected (I), all susceptible patients that interact with them can get infected too. Based on Sethi et al.34, 
when there are infected cases, the probability of environmental contamination via CD shedding ( ppl ) is going 
to be higher if the infected patient has not started the treatment yet, and lower if they have been on it for more 
than 3 days.

Regarding the recovery process, there can be a quick recovery of 2-3 days after acquiring the infection, with 
probability pqr of 23%35. In the case of a long recovery, a treatment is applied and, during this, they can recover 
with probability plr . This treatment is configurable, both in the probabilities of success and duration. We have 
chosen oral Vancomycin since it has one of the highest recovery rates with a probability of 97%36,37, and a dura-
tion of 5 to 15  days29. In case of decease, a patient may die with probability pdeath38.

Input parameters and outputs
Input parameters can be classified into three types: population, epidemiological-model, and configuration 
parameters.

Population parameters are those that represent the population and the hospital characteristics, i.e. occupancy 
rate, admission rate through ER, demographic data, the hospital structure (number of beds, rooms, and wards), 
etc. Among these parameters, we can find the patient’s age and LOS.

Epidemiological-model parameters are those that depend on the bacteria that is being represented. Both 
these and the population parameters were obtained or calculated from public access data and information from 
the literature. Those parameters for which there was not enough information to infer their distribution follow 
a triangular distribution defined by a mean value that represents its mode, a minimum and a maximum value, 
based on  Codella23.

Configuration parameters comprise the configuration for each run of the simulator, such as the cleaning 
frequency, the time that elapses before the movement of a patient depending on the place, etc. These param-
eters were defined based on the hospital size, data published by hospitals, and information obtained from the 
expert. Table 1 provides a representation of these parameters, where max_patients_movements encompasses the 
maximum number of patients’ movements allowed in the services each step, which includes Radiology, Surgery, 
wards, and from one room to another in the same ward; max_time_infected comprehends the maximum number 
of steps that a place is going to remain contaminated depending on the type of place and the service it belongs 
to; and steps_to_infect represents the number of steps required for an infected patient to contaminate a place, 
this also depends on the type of place and is provided by the expert. In Supplementary Table S3 online, these 
parameters are detailed with the values that we assigned for our experiments.

Regarding the outputs, the simulation model computes the following outputs: (1) statistics of the processes 
under study step by step and (2) the patients’ information. The first includes information on each patient and 
the places where they have been to in each step during their stay in the hospital. The second includes all the data 
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of each patient (e.g. gender, age, admission day, etc.). More details can be found in Supplementary Tables S1 and 
S2 online. With this information at low level of space and time abstraction, another output is the computation 
of any epidemiological indicator that can be calculated with these data (e.g. prevalence, incidence density, etc.) 
for the different areas from the hospital.

Evaluation
For the evaluation process, we have followed the principles proposed by Banks et al.46. In their handbook, they 
divide the evaluation process into 2 phases: verification and validation. Verification consists in checking if the 
implementation of the conceptual model is correct. Validation consists in determining if the conceptual model 
is representative of a real-world system.

We implemented the simulator in Python, using the PyCharm IDE 2022.3.1 version. By means of this envi-
ronment, we carried out the following verification techniques:

• Syntax analysis: to ensure that the mechanics of the language were applied correctly.
• Debugging: through which we have checked errors in the coding that caused the simulator to fail.
• Execution testing: we analyzed the simulator behavior to find errors in the model representation. We traced 

the movements of the agents around the hospital, as well as the changes in their health states and the infection 
state of the places. To do this, we have implemented a 3D representation of the hospital in the game engine 
Unity and we have analyzed the patients’ behavior throughout their stay by means of animations. An example 
of these animations can be found in Supplementary File S3

With respect to validation, the main technique for the validation of a simulation model is the comparison with 
real data. As we have already mentioned, one of the big issues we face is the lack of access to them. Therefore, 
our validation process consisted of the following phases:

• Face validation: a domain expert confirmed whether the model was behaving reasonably, judged whether 
it was accurate  enough46, and advised us on the input parameters and the model assumptions that we have 
made.

• Calibration of input parameters: to test values for a parameter iteratively until the model is valid  enough46. 
We have adjusted the population and the epidemiological-model parameters regarding the data available in 
the literature, as well as the configuration parameters with the help of an expert, with the aim of getting a 
simulation model with behavior as close as possible to that of an already validated one.

• Model alignment with Bootstrapping: through which we compared the model results with those of another 
previously validated one using the same input  data46,47. If the results of both models are similar, then the 
generated model (i.e. our simulation model) produces the general dynamics that would be expected in the 
system to be  modeled48. In the simulation of infectious diseases, a standardized method for their represen-
tation are compartmental models, where the population dynamics are well  known48. To this end, we have 
compared the results derived from our model with the SEIRD (Susceptible, Exposed, Infected, Recovered, 
Deceased)  model28, which is a deterministic compartmental model that we had to adapt in order to represent 
the same behaviour as the population from our simulation model. Thus, we have added the non-susceptible 
(NS) state, obtaining the SEIRD-NS model, and we had to make the population dynamic: in the classic SEIRD 
model, the total population N is a constant value, i.e. N = S + E + I + R + D . In our case, as we worked 
with a hospital where there are admissions and discharges, the population is going to change. This model is 
presented in Eq. (1). The arrival rate per day (a), the proportions of arrivals in each state ( as, ai , ans ) and the 
mortality rate ( µ ) are explained in Table 1, while the discharge rate (d) is defined as the inverse of the length 
of stay (LOS)16. The recovery rate ( γ ) is defined as 1− µ , the average incubation period (Table 1) is defined 
as α−1 , and the contact rate ( β ) is defined as the inverse of the probability of getting infected (Table 1).

  To compare the output data of the SEIRD-NS model with the outputs of our simulator we have applied 
statistical techniques as indicated  by46. To do so, we have calculated the confidence intervals with as few runs 
of the simulator as possible in order to get the value range of each health state of the patients and to compare 
them with the SEIRD-NS model. In this way, we are going to see if the simulator output has a trend close 
enough to the SEIRD-NS model to be considered valid.

  To calculate the confidence intervals, we ran the model a high number of times (1000 executions) and 
made incremental groupings of runs (10, 20, 30, ..., 1000). For each group, we recorded the number of patients 
in each health state at different moments of the execution (on days 20, 40, 60, etc.). And for each of those 
moments and grouping of runs, we determined the confidence interval for the mean and compared it with 
the objective model. The equation of the confidence interval for the mean is CI = x ± z ∗ s√

n
 , where x is the 

mean of the sample we want to compare, z is 1.96 for a 95% confidence interval, s is the standard deviation 
of the sample and n is the sample size (in our case, the number of runs). In this way, we compared the simu-
lator output for the number of people in S, E, I, R, D, and NS states for each group of executions and each 
time partition with the SEIRD-NS model for the same partition of time.

• Sensitivity analysis:we observed how changes in certain input parameters affected the model and its output, 
and so inferred if the outcomes were realistic or not. To this end, we have obtained the incidence density 
(DI) from the output. The equation of the incidence density is DI = newCases/totalPerson− time , where 
totalPerson-time is the sum of the total time at risk among all the patients during the observation period.
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Results
In this section, we present the results of the calibration, the model alignment, and the sensitivity analysis pro-
cesses. In Figure 2 we can see part of the output from a run of our simulator with CDI, which represents the 
number of patients in each health state and the dynamics and evolution over time. In this Figure, we highlight 
the first outbreak to better demonstrate the evolution of the states.

Calibration of parameters
We have based on validated scientific literature for the calibration of the input parameters, and we have con-
ducted an iterative process of validation with an expert. The results from this process are presented in Table 1. 
To verify the adjustment of these parameters, we have compared the outputs of the simulator with published 
literature on CDI. In a study carried out by Barbut and  Petit49 on the epidemiology of infections associated with 
CD, they indicated that the LOS of patients infected with CD is increased between 8 and 21 days. In Figure 3 
(bottom right), we show the LOS of susceptible and recovered patients from our simulations: for those patients 
that recovered from the infection, their LOS has properly increased, reaching values between 8 and 22 days. The 
proximity of the LOS results to the values reported by Barbut indicates that the infection behavior in the patients 
in our simulation model is valid.

Model alignment
As the SEIRD-NS compartmental model represents the dynamics of a population when an outbreak occurs and 
the successive contagions until the situation stabilizes again, we have considered only the runs from the simula-
tor where at least an outbreak has happened since due to the stochasticity of agent-based models there can be 
executions without contagions. Thus, we have based on the definition of a CDI outbreak  by50, where they define 
a CDI outbreak as 3 or more epidemiologically linked cases that appear in a period of 7 days or less.

When comparing the output of our model with the SEIRD-NS model, another issue was the moment when 
we should start the comparison: if, for example, the outbreak started on day 100 of the simulation, it would not 
make sense to compare from day 1 to 100 with a SEIRD-NS model whose first outbreak was on day 10. Therefore, 
we had to align the beginning of the outbreak in the compartmental model with the beginning of the outbreak 
in the simulator outputs. To do this, we considered the first day of the run to be the first day on which an out-
break appeared, and from there we began to compare. Both models were initialized with a total population of 

(1)
dS/dt = −β ∗ S ∗ I/N + as ∗ a− d ∗ S dE/dt = β ∗ S ∗ I/N − α ∗ E − d ∗ E
dI/dt = α ∗ E − γ ∗ I − µ ∗ I + ai ∗ a dR/dt = γ ∗ I − d ∗ R
dD/dt = µ ∗ I − D dNS/dt = ans ∗ a− d ∗ NS

Figure 2.  (a) Macro-scale model output with several outbreaks of CDI. This figure shows the infection 
dynamics and number of patients in each health state. The first outbreak is highlighted. (b) Detailed description 
of the evolution of an outbreak.
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susceptibles and 1 patient exposed. The results of this comparison are shown in Figure 3. We can see that for 70 
runs, the sizes stay relatively the same and small enough in the number of individuals. This allows us to analyze 
the trends of the simulator runs with outbreaks and, though both models do not return the same number of 
patients in each state on each day, the infection dynamics are similar.

Sensitivity analysis
For the sensitivity analysis, we chose to alter the cleaning protocol and the time that patients spend in more 
crowded places to create the following scenarios: a) a scenario without cleaning service – the infected places will 
remain contaminated until the end of the simulation–; b) a scenario in which we increased the cleaning frequency 
so that each room, bed and ward is decontaminated once every step and the ER once a day; c) a scenario in which 
the patients spend more steps in the ER or the ICU; and d) a scenario in which the patients spend less steps in 
the ER or the ICU. As a comparative measure, we have obtained the DI from our simulator, which returned a 
value of 18.92 (16.96, 20.89) cases/10000 patient-days in the original scenario. As expected, in the scenario with 
no cleaning service, the DI increased significantly to a value of 1327.89 (1268.72, 1387.06) cases/10000 patient-
days, while when we increased the cleaning frequency, the DI decreased compared to the original situation to 
a value of 15.78 (13.81, 17.75) cases/10000 patient-days. This agrees  with51,52 about the need of sterilizing the 
environments to control CD outbreaks. With respect to the time spent in more crowded places, in the scenario 
with more time, the DI increased to 53.11 (44.48, 61.75) cases/10000 patient-days. While by spending less time, 
the DI was slightly decreased to 17.35 (15.44, 19.27) cases/10000 patient-days. As patients stay more time in 
places with more beds, the spread of the infection increases correctly.

Discussion
The need to access and use clinical data without risk or limitations is a long-term issue that has slowed down 
the development of AI innovations that could help in a large number of tasks in the healthcare field. Due to this 
problem, we have developed a simulator to generate synthetic data of inpatients in hospitals. The aim of this 
simulator is to allow the study of the spread and outbreaks of microorganisms of epidemiological relevance and 
other MDR-bacteria as CD infections within hospital settings. To this end, we have created a simulation model 
with which we could represent the dynamics between patients and the environment, and we gave special weight 
to the role that plays the topology of a hospital in the spread process. For this reason, we have highlighted the 

Figure 3.  (a) Model alignment of the simulation model outputs (scatter plot) with the SEIRD-NS 
compartmental model (line chart). The scatters show the mean of the outputs with 70 runs for each state of 
health and each point of time with their confidence intervals (CI). The SEIRD-NS compartmental model 
is obtained with Eq. 1. (b) Comparison of Length of stay of susceptible patients (blue) vs length of stay of 
recovered patients (purple) for the validation of the calibration parameter process.
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main areas and wards where there are usually contagions and outbreaks according to experts in the field, as the 
space must be a key element in the epidemiological investigation of an outbreak.

An advantage of using our agent-based model over the use of real data is the generation of information with 
a higher level of detail. This allows us to trace the patients spatially and temporally: thanks to the historic data 
of patients we can know their entire spatial, temporal and clinical chronology (i.e, where they have been at any 
moment and what infections or health states they have experienced since their arrival to the hospital). Therefore, 
we can simulate specific situations and obtain accurate results, for example, the DI, for which it is necessary to 
know the days that a patient spends without getting infected after admission. The latter cannot be monitored 
with that level of detail in a real situation normally, this is why the DI is usually determined considering the total 
stay of a patient or the total observation time. This is also the reason why we cannot compare our results with the 
literature, since, at least by the time of submitting this article, we could not find in the literature CDI outbreaks 
with continuous monitoring as in our model, and so the results would differ.

Besides accurate monitoring, another advantage of this simulation model is that it allows for predicting 
information and statistical data about the infection, namely, the exact duration of an infection depending on 
the treatment, how much this is going to increase the patient’s LOS, or the patients’ time-at-risk since they are 
hospitalized. Thanks to this simulation model, we can predict this type of data and perform sensitivity analysis 
that would help to measure the effects of control strategies and to plan the allocation of limited resources, such 
as isolated beds in a hospital and the types of isolation. For example, in the sensitivity analysis we studied several 
scenarios by varying the time patients spend in crowded places and the cleaning assiduity, which are fundamental 
factors in an infection spread. From this, we could infer that without isolation, a longer contact time with the 
source of infection has more weight in the process of contamination than the movement of patients or more 
occasional contacts. Other factors that affect patients within a hospital could be introduced and studied with 
this simulation model, such as viral infections.

Several aspects differentiate our simulation model from existing HAIs processes simulators in the literature. 
Codella et al.23 developed an agent-based with a Markov model to study the transmission of CD in a mid-size 
hospital. Unlike them, the principal goal of our simulation model is to generate realistic spatial-temporal datasets 
with individual information for their latter use in AI implementations. Lee et al.25 presented a software tool, where 
practically any healthcare facility type can be represented to help test different policies. Instead of this, we focus 
more on the role of space on an infection spread by studying the latter in the most common areas of a hospital 
environment (e.g. the ER, the ICU, etc.). Another difference is that they use subroutines to calculate the number 
of infected and susceptible agents in each ward, and based on that, they calculate the number of new cases by ward 
and day. Instead of this, we monitor all the agents present in the hospital, so that we can know when they shared 
a room and interacted at low level. Haber et al.26 combined an agent-based with a compartmental model and 
focused on the study of second-line drugs. They calculate the infection spread with differential equations and they 
do not consider patients movements in the hospital, nor give the same importance to space and time as we do. 
Despite Nelson et al.24 also carried out a model with interactions between patients and healthcare workers, room 
contamination, and patient infection, they focused on conducting an economic evaluation of different scenarios.

This work is not without limitations. As we mentioned, due to the lack of access to real data, some of our 
parameters are approximations made from a few data sources. Despite the fact that CDI is a well-studied and 
well-known infection, the literature is scarce for the level of information that we need for this model. Moreover, 
we did not consider relapses of the patients, in order to be able to adapt it as much as possible to the health states 
and transitions of a SEIRD model for the evaluation. For this reason, we have used an average mortality rate 
rather than differentiating by ranges of age, as happens in reality and as was indicated by Loo et al.38. Since there 
are few specific studies in the literature, we have relied in part  on23 and expanded it with respect to the role that 
space plays in the simulation and the movement rules.

This simulation model is implemented to endure high-scale data, different population sizes and hospitals. It 
serves as a starting point to create other more complex models that would allow richer analysis. For example the 
creation of input risk profiles of patients according to age or previous treatments; the implementation of different 
treatments that could vary in their success rate and duration, and allow for choosing one or another regarding 
the case; or the study of other CD strains or other MDR bacterial infections and the consequences of applying 
different strategies to mitigate them. The application of data with this level of detail in AI research has potential 
benefits, such as the reduction of subjectivity in decision-making and for helping to control risk situations.

Conclusions
We have designed a simulation model and implemented a simulator based on this, that coupled an agent-based 
approach with the infection dynamics extracted from an epidemiological compartmental model, with the aim of 
creating a generator of synthetic clinical data on microorganisms of epidemiological relevance as CD and other 
MDR-bacteria within hospitals. Thanks to the use of an agent-based method and the role that plays the hospital 
topology in the simulation model, we can leverage the detection of spatial and temporal patterns to help in the 
monitoring and in the decision-making process. We have carried out a thorough evaluation to ensure that it was 
correctly implemented, and had clinical meaning and utility. The capacity of tracing patients at a low level and 
to also obtain aggregate results from them can play a key role and be a step forward in the generation of higher-
quality synthetic data and the creation of a more trustworthy medical AI.

Data availibility
The simulation model source code and datasets generated are available in the Simulation Model repository at 
https:// github. com/ denis sekim/ Simul ation- Model.

https://github.com/denissekim/Simulation-Model


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20022  | https://doi.org/10.1038/s41598-023-47296-1

www.nature.com/scientificreports/

Received: 3 August 2023; Accepted: 11 November 2023

References
 1. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118. https:// doi. org/ 

10. 1038/ natur e21056 (2017).
 2. Macesic, N., Polubriaginof, F. & Tatonetti, N. P. Machine learning: Novel bioinformatics approaches for combating antimicrobial 

resistance. Curr. Opin. Infect. Dis. 30, 511. https:// doi. org/ 10. 1097/ QCO. 00000 00000 000406 (2017).
 3. Reddy, S. Explainability and artificial intelligence in medicine. Lancet Digit. Health 4, e214–e215. https:// doi. org/ 10. 1016/ S2589- 

7500(22) 00029-2 (2022).
 4. Ghassemi, M., Oakden-Rayner, L. & Beam, A. L. The false hope of current approaches to explainable artificial intelligence in health 

care. Lancet Digit. Health 3, e745–e750. https:// doi. org/ 10. 1016/ S2589- 7500(21) 00208-9 (2021).
 5. EPRS. 2023. EU AI Act: first regulation on artificial intelligence | News | European Parliament. https://www.europarl.europa.eu/

news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence. Accessed 4 July 2023.
 6. AI HLEG. 2019. Ethics guidelines for trustworthy AI | Shaping Europe’s digital future. https://digital-strategy.ec.europa.eu/en/

library/ethics-guidelines-trustworthy-ai . Accessed 4 July 2023.
 7. World Health Organization. 2021. Ethics and governance of artificial intelligence for health: Who guidance. https:// www. who. int/ 

publi catio ns- detail- redir ect/ 97892 40029 200 . Accessed 8 Mar 2023.
 8. Kamel Boulos, M. N. & Zhang, P. Digital twins: From personalised medicine to precision public health. J. Personalized Med. 11, 

745. https:// doi. org/ 10. 3390/ jpm11 080745 (2021).
 9. Rocher, L., Hendrickx, J. M. & de Montjoye, Y.-A. Estimating the success of re-identifications in incomplete datasets using genera-

tive models. Nat. Commun. 10, 3069. https:// doi. org/ 10. 1038/ s41467- 019- 10933-3 (2019).
 10. Bräm, D. S., Parrott, N., Hutchinson, L. & Steiert, B. Introduction of an artificial neural network–based method for concentration-

time predictions. CPT: Pharmacomet. Syst. Pharmacol. 11, 745–754. https:// doi. org/ 10. 1002/ psp4. 12786 (2022).
 11. O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations (Review on Antimicrobial Resistance, 

2014).
 12. World Health Organization. Antimicrobial resistance. https:// www. who. int/ news- room/ fact- sheets/ detail/ antim icrob ial- resis tance. 

Accessed 27 Sept 2022.
 13. Myall, A. C. et al. Network memory in the movement of hospital patients carrying antimicrobial-resistant bacteria. Appl. Netw. 

Sci. 6, 1–23. https:// doi. org/ 10. 1007/ s41109- 021- 00376-5 (2021).
 14. Rocha, L. E. C. et al. Dynamic contact networks of patients and MRSA spread in hospitals. Sci. Rep. 10, 9336. https:// doi. org/ 10. 

1038/ s41598- 020- 66270-9 (2020).
 15. Karkada, U. H., Adamic, L. A., Kahn, J. M. & Iwashyna, T. J. Limiting the spread of highly resistant hospital-acquired microorgan-

isms via critical care transfers: A simulation study. Intensive Care Med. 37, 1633–1640. https:// doi. org/ 10. 1007/ s00134- 011- 2341-y 
(2011).

 16. Lanzas, C., Dubberke, E., Lu, Z., Reske, K. & Gröhn, Y. Epidemiological model for Clostridium difficile transmission in health-care 
settings. Infect. Control Hosp. Epidemiol. : Off. J. Soc. Hosp. Epidemiol. Am. 32, 553–561. https:// doi. org/ 10. 1086/ 660013 (2011).

 17. Hazard, D., von Cube, M., Kaier, K. & Wolkewitz, M. Predicting potential prevention effects on hospital burden of nosocomial 
infections: A multistate modeling approach. Value Health: J. Int. Soc. Pharmacoecon. Outcomes Res. 24, 830–838. https:// doi. org/ 
10. 1016/j. jval. 2021. 02. 002 (2021).

 18. Bergstrom, C. T., Lo, M. & Lipsitch, M. Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resist-
ance in hospitals. Proc. Natl. Acad. Sci. U.S.A. 101, 13285–13290. https:// doi. org/ 10. 1073/ pnas. 04022 98101 (2004).

 19. Bedson, J. et al. A review and agenda for integrated disease models including social and behavioural factors. Nat. Hum. Behav. 5, 
834–846. https:// doi. org/ 10. 1038/ s41562- 021- 01136-2 (2021).

 20. Auchincloss, A. H. & Diez Roux, A. V. A new tool for epidemiology: The usefulness of dynamic-agent models in understanding 
place effects on health. Am. J. Epidemiol. 168, 1–8. https:// doi. org/ 10. 1093/ aje/ kwn118 (2008).

 21. Willem, L., Verelst, F., Bilcke, J., Hens, N. & Beutels, P. Lessons from a decade of individual-based models for infectious disease 
transmission: A systematic review (2006–2015). BMC Infect. Dis. 17, 612. https:// doi. org/ 10. 1186/ s12879- 017- 2699-8 (2017).

 22. Zhang, W. et al. Using simulation modelling and systems science to help contain COVID-19: A systematic review. Syst. Res. Behav. 
Sci.https:// doi. org/ 10. 1002/ sres. 2897 (2022).

 23. Codella, J., Safdar, N., Heffernan, R. & Alagoz, O. An agent-based simulation model for Clostridium difficile infection control. Med. 
Decis. Mak.: Int. J. Soc. Med. Decis. Mak. 35, 211–229. https:// doi. org/ 10. 1177/ 02729 89X14 545788 (2015).

 24. Re, N. et al. An economic analysis of strategies to control Clostridium difficile transmission and infection using an agent-based 
simulation model. PLoS ONEhttps:// doi. org/ 10. 1371/ journ al. pone. 01522 48 (2016).

 25. Lee, B. Y. et al. The regional healthcare ecosystem analyst (RHEA): A simulation modeling tool to assist infectious disease control 
in a health system. J.Am. Med. Inform. Assoc.: JAMIA 20, e139-146. https:// doi. org/ 10. 1136/ amiaj nl- 2012- 001107 (2013).

 26. Haber, M., Levin, B. R. & Kramarz, P. Antibiotic control of antibiotic resistance in hospitals: A simulation study. BMC Infect. Dis. 
10, 254. https:// doi. org/ 10. 1186/ 1471- 2334- 10- 254 (2010).

 27. Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126. https:// 
doi. org/ 10. 1016/j. ecolm odel. 2006. 04. 023 (2006).

 28. Brauer, F. Compartmental models in epidemiology. Math. Epidemiol. 1945, 19–79. https:// doi. org/ 10. 1007/ 978-3- 540- 78911-6_2 
(2008).

 29. Meyer, L., Espinoza, R. & Quera, R. Infección por Clostridium difficile: Epidemiología, diagnóstico y estrategias terapéuticas. Revista 
Medica Clinica Las Condes 25, 473–484. https:// doi. org/ 10. 1016/ S0716- 8640(14) 70064-1 (2014).

 30. Consejería de Salud Región de Murcia. Murciasalud. Hospital Rafael Mendez. Datos generales. http:// www. murci asalud. es/ pagina. 
php? id= 6275& idsec= 977. Accessed 6 June 2023.

 31. DePestel, D. D. & Aronoff, D. M. Epidemiology of Clostridium difficile infection. J. Pharm. Pract. 26, 464–475. https:// doi. org/ 10. 
1177/ 08971 90013 499521 (2013).

 32. Barcán, L. et al. Intersociety guidelines for diagnosis, treatment and prevention of Clostridioides difficile infections. Medicina 
80(Suppl 1), 1–32 (2020).

 33. Fungueiriño, R. et al. Guía de procedimientos de limpieza en el medio hospitalario. https:// www. sergas. es/ Saude- publi ca/ Docum 
ents/ 1168/ proce demen tos_ limpe za. pdf. Accessed 22 May 2023.

 34. Sethi, A. K., Al-Nassir, W. N., Nerandzic, M. M., Bobulsky, G. S. & Donskey, C. J. Persistence of skin contamination and environ-
mental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect. Control Hosp. Epidemiol. 31, 
21–27. https:// doi. org/ 10. 1086/ 649016 (2010).

 35. Teasley, D. et al. Prospective randomised trial of metronidazole versus vancomycin for Clostridium difficile-associated diarrhoea 
and colitis. Lancet 322, 1043–1046. https:// doi. org/ 10. 1016/ S0140- 6736(83) 91036-X (1983).

 36. Surawicz, C. M. et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Off. J. Am. Coll. Gas-
troenterol. 108, 478. https:// doi. org/ 10. 1038/ ajg. 2013.4 (2013).

https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1097/QCO.0000000000000406
https://doi.org/10.1016/S2589-7500(22)00029-2
https://doi.org/10.1016/S2589-7500(22)00029-2
https://doi.org/10.1016/S2589-7500(21)00208-9
https://www.who.int/publications-detail-redirect/9789240029200
https://www.who.int/publications-detail-redirect/9789240029200
https://doi.org/10.3390/jpm11080745
https://doi.org/10.1038/s41467-019-10933-3
https://doi.org/10.1002/psp4.12786
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://doi.org/10.1007/s41109-021-00376-5
https://doi.org/10.1038/s41598-020-66270-9
https://doi.org/10.1038/s41598-020-66270-9
https://doi.org/10.1007/s00134-011-2341-y
https://doi.org/10.1086/660013
https://doi.org/10.1016/j.jval.2021.02.002
https://doi.org/10.1016/j.jval.2021.02.002
https://doi.org/10.1073/pnas.0402298101
https://doi.org/10.1038/s41562-021-01136-2
https://doi.org/10.1093/aje/kwn118
https://doi.org/10.1186/s12879-017-2699-8
https://doi.org/10.1002/sres.2897
https://doi.org/10.1177/0272989X14545788
https://doi.org/10.1371/journal.pone.0152248
https://doi.org/10.1136/amiajnl-2012-001107
https://doi.org/10.1186/1471-2334-10-254
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1007/978-3-540-78911-6_2
https://doi.org/10.1016/S0716-8640(14)70064-1
http://www.murciasalud.es/pagina.php?id=6275%20idsec=977
http://www.murciasalud.es/pagina.php?id=6275%20idsec=977
https://doi.org/10.1177/0897190013499521
https://doi.org/10.1177/0897190013499521
https://www.sergas.es/Saude-publica/Documents/1168/procedementos_limpeza.pdf
https://www.sergas.es/Saude-publica/Documents/1168/procedementos_limpeza.pdf
https://doi.org/10.1086/649016
https://doi.org/10.1016/S0140-6736(83)91036-X
https://doi.org/10.1038/ajg.2013.4


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20022  | https://doi.org/10.1038/s41598-023-47296-1

www.nature.com/scientificreports/

 37. Zar, F. A., Bakkanagari, S. R., Moorthi, K. M. L. S. T. & Davis, M. B. A comparison of vancomycin and metronidazole for the 
treatment of Clostridium difficile–associated diarrhea, stratified by disease severity. Clin. Infect. Dis. 45, 302–307. https:// doi. org/ 
10. 1086/ 519265 (2007).

 38. Loo, V. G. et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity 
and mortality. N. Engl. J. Med. 353, 2442–2449. https:// doi. org/ 10. 1056/ NEJMo a0516 39 (2005).

 39. OECD European Union. Health at a Glance: Europe 2020: State of Health in the EU Cycle (Organisation for Economic Co-operation 
and Development, 2020).

 40. Consejería de Salud Región de Murcia. Indicadores hospitalarios de la Región de Murcia 2019. http:// www. murci asalud. es/ publi 
cacio nes. php? op= mostr ar_ publi cacio n& id= 2871& idsec= 88. Accessed 27 June 2022.

 41. Ministry of Health. 2019 Annual Report National Health System. https:// www. sanid ad. gob. es/ estad Estud ios/ estad istic as/ sisIn 
fSanS NS/ tabla sEsta disti cas/ InfAn ualSN S2019/ Execu tiveS ummary_ 2019. pdf . Accessed 27 June 2022.

 42. Augustine, J. J. Latest Data Reveal the ED’s Role as Hospital Admission Gatekeeper. https:// www. acepn ow. com/ artic le/ latest- data- 
reveal- the- eds- role- as- hospi tal- admis sion- gatek eeper/. Accessed 27 June 2022.

 43. Ministerio de Sanidad. Datos abiertos de capacidad asistencial. https:// www. sanid ad. gob. es/ profe siona les/ salud Publi ca/ ccayes/ 
alert asAct ual/ nCov/ capac idadA siste ncial. htm. Accessed 27 June 2022.

 44. CDC. Vital Signs: Preventing Clostridium difficile Infections. https:// www. cdc. gov/ mmwr/ previ ew/ mmwrh tml/ mm610 9a3. htm. 
Accessed 1 June 2022.

 45. Feuerstadt, P. et al. Mortality, health care use, and costs of Clostridioides difficile infections in older adults. J. Am. Med. Dir. Assoc. 
23, 1721-1728.e19. https:// doi. org/ 10. 1016/j. jamda. 2022. 01. 075 (2022).

 46. Handbook of simulation: Principles, methodology, advances, applications, and practice, 18 (1999).
 47. Kleijnen, J., Cheng, R. & Bettonvil, B. Validation of Trace-Driven Simulation Models: Bootstrap Tests. Manag. Sci.47, https:// doi. 

org/ 10. 1287/ mnsc. 47. 11. 1533. 10255 (2001).
 48. Hunter, E. & Kelleher, J. A framework for validating and testing agent-based models: A case study from infectious diseases model-

ling. Conference papershttps:// doi. org/ 10. 21427/ 2xjb- cq79 (2020).
 49. Barbut, F. & Petit, J. C. Epidemiology of Clostridium difficile-associated infections. Clin. Microbiol. Infect. 7, 405–410. https:// doi. 

org/ 10. 1046/j. 1198- 743x. 2001. 00289.x (2001).
 50. West Virginia Bureau for Public Health. Guidelines for Clostridium difficile (C. diff) Outbreaks in Long-Term Care Facilities 

(LTCFs). https:// oeps. wv. gov/ toolk its/ docum ents/ cdi/ CDiff- Guide lines. pdf. Accessed 13 Feb 2023.
 51. Gerding, D. N., Muto, C. A. & Owens, R. C. Jr. Measures to control and prevent Clostridium difficile infection. Clin. Infect. Dis. 46, 

S43–S49. https:// doi. org/ 10. 1086/ 521861 (2008).
 52. Cohen, S. H. et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare 

epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect. Control Hosp. Epidemiol. 31, 
431–455. https:// doi. org/ 10. 1086/ 651706 (2010).

Acknowledgements
This work was partially funded by the CONFAINCE project (Ref: PID2021-122194OB-I00) by MCIN/
AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, by the “European Union” or by the 
“European Union NextGenerationEU/PRTR”, and by the GRALENIA project (Ref: 2021/C005/00150055) sup-
ported by the Spanish Ministry of Economic Affairs and Digital Transformation, the Spanish Secretariat of State 
for Digitization and Articial Intelligence, Red.es and by the NextGenerationEU funding. This research is also 
partially funded by the FPI program grant (Ref: PRE2019-089806).

Author contributions
D.K., M.C., JM.J and B.C.S designed the model and the experiments, D.K. conducted the implementation and 
the experiments, D.K., M.C., JM.J. and A.J. analysed the results. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 47296-1.

Correspondence and requests for materials should be addressed to D.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1086/519265
https://doi.org/10.1086/519265
https://doi.org/10.1056/NEJMoa051639
http://www.murciasalud.es/publicaciones.php?op=mostrar_publicacion&id=2871&idsec=88
http://www.murciasalud.es/publicaciones.php?op=mostrar_publicacion&id=2871&idsec=88
https://www.sanidad.gob.es/estadEstudios/estadisticas/sisInfSanSNS/tablasEstadisticas/InfAnualSNS2019/ExecutiveSummary_2019.pdf
https://www.sanidad.gob.es/estadEstudios/estadisticas/sisInfSanSNS/tablasEstadisticas/InfAnualSNS2019/ExecutiveSummary_2019.pdf
https://www.acepnow.com/article/latest-data-reveal-the-eds-role-as-hospital-admission-gatekeeper/
https://www.acepnow.com/article/latest-data-reveal-the-eds-role-as-hospital-admission-gatekeeper/
https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/capacidadAsistencial.htm
https://www.sanidad.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/capacidadAsistencial.htm
https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6109a3.htm
https://doi.org/10.1016/j.jamda.2022.01.075
https://doi.org/10.1287/mnsc.47.11.1533.10255
https://doi.org/10.1287/mnsc.47.11.1533.10255
https://doi.org/10.21427/2xjb-cq79
https://doi.org/10.1046/j.1198-743x.2001.00289.x
https://doi.org/10.1046/j.1198-743x.2001.00289.x
https://oeps.wv.gov/toolkits/documents/cdi/CDiff-Guidelines.pdf
https://doi.org/10.1086/521861
https://doi.org/10.1086/651706
https://doi.org/10.1038/s41598-023-47296-1
https://doi.org/10.1038/s41598-023-47296-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Spatial-temporal simulation for hospital infection spread and outbreaks of Clostridioides difficile
	Methods
	Observed phenomenon and simulation assumptions
	Microscale simulation: infection dynamics at agent-level
	Macroscale simulation: compartmental model
	Hospital policies: spatial-temporal constraints
	Simulating Clostridioides difficile infection in a midsize hospital in Spain
	Input parameters and outputs
	Evaluation

	Results
	Calibration of parameters
	Model alignment
	Sensitivity analysis

	Discussion
	Conclusions
	References
	Acknowledgements


