
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20096  | https://doi.org/10.1038/s41598-023-47176-8

www.nature.com/scientificreports

Distribution and co‑occurrence 
patterns of charophytes 
and angiosperms in the northern 
Baltic Sea
Kristjan Herkül *, Kaire Torn , Tiia Möller‑Raid  & Georg Martin 

The distribution data of 11 soft substrate charophyte and angiosperm species were analyzed. Our 
study aimed to elucidate the co‑occurrence patterns among these sympatric macrophyte species 
and quantify their distribution areas. The central hypothesis of this study proposed that the 
observed co‑occurrence patterns among the studied species deviate from what would be expected 
by random chance. Macrophyte occurrence data was derived from an extensive field sampling 
database. Environmental variables available as georeferenced raster layers including topographical, 
hydrodynamic, geological, physical, chemical, and biological variables were used as predictor 
variables in the random forest models to predict the spatial distribution of the species. Permutation 
tests revealed statistically significant deviations from random co‑occurrence patterns. The analysis 
demonstrated that species tended to co‑occur more frequently within their taxonomic groups 
(i.e., within charophytes and within angiosperms) than between these groups. The most extensive 
distribution overlap was observed between Chara aspera Willd. and Chara canescens Loisel., while 
Zostera marina L. exhibited the least overlap with the other species. The mean number of co‑occurring 
species was the highest in Chara baltica (Hartman) Bruzelius while Z. marina had the largest share of 
single‑species occurrences. Based on the distribution models, Stuckenia pectinata (L.) Börner had the 
largest distribution area.

Marine ecosystems are hard to access and thus there are many knowledge gaps, especially regarding  biodiversity1,2. 
For example, in many cases we still lack spatially continuous data on the distribution area of marine benthic spe-
cies though information on the benthic community structure, composition, and environmental variables has been 
collected over decades. In the marine environment the species distribution models (SDM) have gained attention 
and popularity since the 1990s with significant increase through  time3,4; on the global scale the most studied 
groups have been fish, molluscs, and marine  mammals5. A seamless map of distribution gives a significantly more 
relevant insight into species’ spatial patterns than a simple plotting of sampling sites on a map. Particularly, when 
considering that field sampling sites are usually spatially unequally distributed over extensive areas. Distribution 
patterns and areal estimations of benthic habitat formers are also a viable part of successful nature conservation 
and marine spatial planning and serve the aims of many related conventions and directives, e.g., Convention on 
biological  diversity6, The Convention for the Protection of the Marine Environment in the Northeast  Atlantic7, 
The Convention on the Protection of the Marine Environment of the Baltic Sea  Area8, Council Directive 92/43/
EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, Directive 2008/56/EC 
of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action 
in the field of marine environmental policy (Marine Strategy Framework Directive), Recommendation of the 
European Parliament and of the Council of 30 May 2002 concerning the implementation of Integrated Coastal 
Zone Management in Europe.

Marine environment is under a severe human pressure and coastal benthic communities are not an 
 exception9–11. The shallow coastal waters are amongst the most productive ecosystems in the world and these 
habitats are also most affected by changes in oceanographic and atmospheric conditions and by various human 
 impacts12–16. For the shallow soft-bottom marine habitats the presence of submerged aquatic vegetation is crucial 
as it serves various structural and functional roles e.g., benthic primary production, enhancing biodiversity, habi-
tat provisioning, providing coastal protection, and stabilizing  sediments17,18. Charophytes and angiosperms are 
the most characteristic species on the soft bottoms in the brackish Baltic  Sea19; in total 23 species of charophytes 
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and 91 species of angiosperms have been reported from this  region20. Both monospecies and multispecies com-
munities of charophytes and angiosperms are  common21–23. Most of these species are of freshwater origin, 
somewhat adapted to brackish environments. Only Zostera marina L. represents the true marine species that is 
widespread also in lower salinity  conditions24,25. Charophytes and eelgrass Z. marina are considered to be most 
important habitat formers in the soft bottom shallow coastal areas of the Baltic  Sea21,26.

Decrease of submerged aquatic vegetation has been detected in both marine and freshwater ecosystems 
 worldwide27–30. Charophytes are sensitive to pollutants and eutrophication and on the European scale have 
undergone a severe  decline31. Similarly, in the submerged angiosperms group, seagrasses are affected by a wide 
variety of human activities and the accelerating loss of seagrass ecosystems across the globe is threatening coastal 
 ecosystems32,33. Despite their significant ecological importance and declining distribution, research on the dis-
tribution and ecological preferences of submerged aquatic vegetation remains notably limited in comparison to 
studies on terrestrial  vegetation34–38. More effort is needed to evaluate the status and trends of the benthic habitats 
and species in order to fully understand the mechanisms behind the  changes33. However, the information on 
distribution patterns of soft bottom plant species is scarce and mostly in grey literature.

Set of abiotic environmental condition combined with biotic interactions, suitable for species to maintain the 
stable conditions in habitat, define the niche of the  species39,40. Niche width determines habitat specialization 
which may indicate the species vulnerability to global changes, as worldwide decline in specialist species has 
been  noticed41. Knowledge about species specialization enables a better understanding of the mechanisms and 
consequences of environmental change, especially in brackish and estuarine environments where species live 
close to their physiological  limits42. It is known that spatially and temporally variable salinity, underwater light 
environment, and availability of suitable substrate are the main drivers of submerged vegetation in estuaries and 
brackish water  ecosystems19,43,44. The distinct habitat preferences of charophytes and angiosperms along envi-
ronmental gradients have been previously described by Herkül et al.45. Although the abundance of charophytes 
and angiosperms increase proportionally with increase of soft  substrate19, the distributions of individual species 
along the salinity gradient are dependent on species specific salinity  tolerance43,45. Previously, analysis of the niche 
breadth of the submerged soft-bottom macrophyte species showed a substantial variation of the niche breadths 
among the species. Furthermore, the angiosperms showed higher species-specific variability of niche breadths 
compared to those of the  charophytes45. Most of the work so far has been done on species level e.g.,46,47, but 
studies comparing multidimensional niche overlaps of soft-bottom submersed vegetation are lacking. Further 
investigations involving the geographical aspects, for instance the species’ distribution areas and co-occurrence 
patterns, are needed to gain a more complete understanding of the patterns and the mechanisms of the regional 
coexistence of aquatic macrophytes. To date, only a limited number of studies have explored the co-occurrence 
of aquatic macrophytes while examining the hypothesis of non-random patterns. However, these studies focus 
on freshwater systems and make inferences at the community level as a whole, e.g.,48–50, rather than delving into 
species-specific pairwise patterns. There are only a few studies that investigate macrophytes to assess whether 
pairwise co-occurrence deviates from random  patterns51,52 but these are also from freshwater environments. This 
study aims to address the research gap concerning co-occurrence patterns of soft substrate macrophytes within a 
brackish water environment. We highlight the importance of conducting pair-wise co-occurrence analysis as it 
serves as a fundamental step towards deducing the potential inter-specific mechanisms influencing the observed 
co-occurrence patterns.

This study focuses on spatial distribution patterns of characteristic plant species of soft-bottom habitat in the 
northern Baltic Sea region. Our central hypothesis suggested that the observed co-occurrence patterns among 
the studied species deviate from those expected by random chance. More specifically, our objectives were: (1) 
to provide an overview of the geographic distribution of angiosperms and charophytes in the Estonian sea area, 
northern Baltic Sea; (2) to elucidate the co-occurrence patterns of the studied charophytes and angiosperms, 
both within and between these groups. To address these objectives, we employed an extensive database of field 
inventories and species distribution modeling  approach53. The use of species distribution modeling was crucial 
for transitioning from site-specific data to spatially continuous datasets. This transition, in turn, facilitated the 
creation of species distribution maps and the quantification of species distribution areas.

Methods
Study area
The Baltic Sea is a tideless brackish water body. The phytobenthos data for this study originated from the Estonian 
marine area, northern Baltic Sea (Fig. 1). The study area included the full extent of the Estonian marine area 
from the coastline to the outer border of the exclusive economic zone (36,800  km2). The study area includes three 
large sub-basins of the Baltic Sea: The Baltic Proper, the Gulf of Finland, and the Gulf of Riga. The western study 
area around islands Saaremaa and Hiiumaa and the Gulf of Riga is characterized by extensive shallow coastal 
zone with numerous islands, islets, bays, and peninsulas. Contrastingly, the shallow coastal zone is limited due 
to steep coastal slope in the Gulf of Finland. Strong gradients of water depth, salinity and wave exposure exist in 
all sub-basins. The westernmost region of the study area is exposed to the open Baltic Proper with a wave fetch of 
hundreds of kilometers while the inner reaches of bays of the mainland are very sheltered, both by the mainland 
and by the islands. Likewise, the salinity gradient generally follows an east–west direction: salinity reaches seven 
in the Baltic Proper, while it falls to almost zero in the inner parts of the bays with riverine inflow. Hard limestone 
bedrock and granite boulders prevail in the most exposed areas. Mixed sediments of sand, gravel, and pebbles are 
typical in the mid-range of the wave exposure gradient. Fine sand and mud dominate in the most sheltered bays.

The abiotic environmental gradients drive the structure of macrophyte communities in the study area. Species 
of marine origin are common in the areas of the highest salinity, while freshwater species dominate in coastal 
areas with strong freshwater inflow. The brown alga Fucus vesiculosus L. and the red alga Furcellaria lumbricalis 
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(Hudson) J.V. Lamouroux are the most important perennial habitat-forming algal species on hard substrate. 
Annual and perennial filamentous green, brown, and red algae like Ulva intestinalis L., Cladophora glomerata 
(Linnaeus) Kützing, Pylaiella littoralis (Linnaeus) Kjellman, Ceramium tenuicorne (Kützing) Waern, Vertebrata 
fucoides (Hudson) Kuntze are common on hard substrate. Several species of angiosperm plants are common on 
soft substrate, e.g., Zostera marina L., Stuckenia pectinata (L.) Börner, Potamogeton perfoliatus L., Zannichellia 
palustris L., Myriophyllum spicatum L. and Ruppia maritima L. The charophytes (Chara spp. L., Tolypella nidifica 
(O.F.Müll.) Leonh.) are common on sandy and muddy sediments in shallow waters of sheltered bays. As a result 
of eutrophication extensive growth of annual filamentous algae and formation of drift algal mats are common 
phenomena in the study  area54.

Biological sampling
Data for the study originated from a macrobenthos database of the Estonian Marine Institute, University of Tartu. 
The database stores an extensive amount of macrobenthos data starting from 1950s and including data from more 
than 55,000 benthic samples. The database incorporates georeferenced benthos data originating from various pro-
jects like basic scientific research, national marine monitoring, benthic habitat mapping studies, surveys related 
to environmental impact assessments etc. Data from the database was filtered to include only years 2005–2020 
because samples from that period represent methodologically coherent dataset with good spatial coverage. Both 
biomass and percentage coverage data were used in this study. The quantitative biomass samples were collected 
using Ekman and Van Veen type bottom grab samplers or by scuba divers, who collected all the flora and fauna 
inside a 0.04  m2 metal frame. The samples were stored deep frozen (−18 °C) until analysis. In a laboratory, the 
samples were sorted and all macrobenthic organisms were identified under a microscope. Dry weights of all taxa 
were measured after two weeks drying at 60 °C. Biomasses were calculated per square meter. Data from replicate 
biomass samples (n = 3) of each sampling station were averaged. Coverage estimates were done either by scuba 
divers who assessed the percentage cover of all plant species or by using the so-called drop-camera, which was 
let down above the bottom of the sea by a cable. Videos were later analyzed on computer screen by estimating 
the average percentage coverage of substrate types and coverage of benthic macrophyte species seen in a video 
recording. Both video estimates and in situ estimates by scuba divers covered an area of about 2 m radius. Data 
from visual estimates were used only if visual information was sufficient for species level determination or the 
species determinations were confirmed by biomass samples. For the purposes of this study, the biomass and 
percentage cover data of macrophytes was transformed into binary occurrence data (0—absence, 1—presence). 
Specifically, if a species was detected in a sample, it was recorded as a presence, irrespective of the species’ quantity 
(cover or biomass). Conversely, if a species was not detected, it was recorded as an absence.

Figure 1.  Study area and macrophyte sampling sites. The modeling area covered the full extent of the Estonian 
marine waters from the coastline to the outer border of the exclusive economic zone. ESRI ArcMap version 
10.8.1 (https:// esri. com) was used to generate this map.

https://esri.com
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As the aim of the study was to address the geographical distribution of macrophytes, the temporal replicates 
from sampling sites, that were visited several times, were removed and only the data from the most recent sam-
pling event were retained in the dataset. To eliminate spatial redundancy in the data, we applied a 25 m equirec-
tangular grid to the study area. In cases where multiple observations fell within the same grid cell, we retained 
the data from the sampling site with the most recent year of data collection. If there were multiple sampling 
occasions in the most recent year, we randomly selected one sample for inclusion in the dataset. The application 
of these temporal and spatial filters resulted in data from 14,356 unique field sites (Fig. 1), with a total of 20 cha-
rophyte and angiosperm species. The species with a very low occurrence rates (< 100 sites) were excluded from 
the dataset to ensure comparable analytical results. Altogether 11 species were included in this study (Table 1).

Environmental variables
Altogether 14 environmental variables including topographical (depth, slope of seabed), hydrodynamic (wave 
exposure, currents, ice conditions), geological (seabed substrate), physico-chemical (temperature, salinity, 
transparency, nutrients), and biological (water chlorophyll concentration) variables were used in this study 
(Table 2, Appendix 1). Long-term mean values were used for variables with time series, because general spatial 
distribution patterns not temporal variation (seasonal, annual) of macrophytes was addressed in this study. All 

Table 1.  List of the studied species. The environmental information (B—brackish water, F—fresh water) is 
given based on Estonian  data55,56.

Species Clade Environment Salinity range

Myriophyllum spicatum L. Angiospermae B/F 0–1044

Potamogeton perfoliatus L. Angiospermae B/F 0–1245

Ruppia maritima L. Angiospermae B 0–55 (65)46

Stuckenia pectinata (L.) Börner Angiospermae B/F 0–1947

Zannichellia palustris L. Angiospermae B/F 0–2048

Zostera marina L. Angiospermae B (2.5)5–35(40)24

Chara aspera Willd. Charophyta B/F 0–15 (20)49,50

Chara baltica (Hartman) Bruzelius Charophyta B 2–10 (18)51

Chara canescens Loisel Charophyta B 1.5–2152

Chara connivens Salzm. ex A. Braun Charophyta B/F 0–928

Tolypella nidifica (O.F.Müll.) Leonh. Charophyta B (0)4–2453

Table 2.  Environmental variables. See Appendix 1 for schematic overview maps of the general spatial 
patterns of the variables. Sources: 1—Bathymetric data by Estonian Maritime Administration (georeferenced 
depth raster with 10 m pixel size). 2—Databases of the Estonian Marine Institute, University of Tartu. 
3—COHERENS ocean circulation  model57. 4—Simplified wave model based of fetch and wind  data58,59. 5—
Copernicus Marine Environment Monitoring Service’s Baltic Sea Physics Reanalysis product BALTICSEA_
REANALYSIS_PHY_003_011 (https:// resou rces. marine. coper nicus. eu/ produ ct- detail/ BALTI CSEA_ REANA 
LYSIS_ PHY_ 003_ 011). 6—Copernicus Marine Environment Monitoring Service’s Baltic Sea Biogeochemical 
Reanalysis product BALTICSEA_REANALYSIS_BIO_003_012 (https:// resou rces. marine. coper nicus. eu/ produ 
ct- detail/ BALTI CSEA_ REANA LYSIS_ BIO_ 003_ 012). 7—Ice data developed by the Marine Systems Institute, 
Tallinn University of  Technology60.

Variable Abbreviation Source

Water depth (m) depth 1

Mean water depth in 2 km radius (m) depth_2km 1

Slope of seabed (°) slope 1

Slope of seabed in 2 km radius (°) slope_2km 1

Salinity (PSU): long-term (2002–2008) mean salinity 2,3

Wave exposure based on simplified wave model  (m2  s−1): based on long-term (2003–2019) mean wind speeds and directions wave 4

Current velocity (m  s−1): long-term (2005–2019) mean current 5

Water temperature in warm season (°C): long-term (2005–2019) mean in May–October temp_warm 5

Water temperature in cold season (°C): long-term (2005–2019) mean in November–April temp_cold 5

Concentration of nitrates (mmol  m−3): long-term (2005–2019) mean values in winter (December-February) nitrate 6

Concentration of phosphates (mmol  m−3): long-term (2005–2019) mean values in winter (December-February) phosphate 6

Chlorophyll a content of sea surface (mg  m−3): long-term (2005–2019) mean chl 6

Proportion of ice cover (0…1): long-term (2000–2016) mean ice 7

Proportion of soft sediment (0…1) sediment 2

https://resources.marine.copernicus.eu/product-detail/BALTICSEA_REANALYSIS_PHY_003_011
https://resources.marine.copernicus.eu/product-detail/BALTICSEA_REANALYSIS_PHY_003_011
https://resources.marine.copernicus.eu/product-detail/BALTICSEA_REANALYSIS_BIO_003_012
https://resources.marine.copernicus.eu/product-detail/BALTICSEA_REANALYSIS_BIO_003_012
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environmental variables were available as georeferenced raster layers in GeoTIFF format. The extents of raster 
layers fully covered the study area. Raster cell size was 10 m for depth and seabed slope and 50 m for all the other 
variables. The environmental variables were selected based on previous knowledge on potential relationships 
with the distribution of the studied macrophytes, e.g.45,55, and data availability.

Data analysis
R programming language version 4.2.261 in the development environment RStudio62 was used for data prepara-
tion, analysis, and modeling. In addition to the base R functionality, the following packages were used: raster63 
for handling spatial raster data, sf64 for handling spatial vector data, randomForest65 for fitting random forest 
models, caret66 for creating folds for cross-validation and for calculating Kappa coefficients, PresenceAbsence67 for 
converting probability of occurrence to presence-absence, tidyverse68 for tabular data manipulation and plotting. 
ArcMap  software69 was used to generate the map of the study area.

Species distribution modeling (SDM)  framework53 was used to generate seamless distribution maps of the 
studied macrophyte species. Random forest (RF) was chosen as the modeling method because it offers many 
advantages over alternative methods: a) RF has proven to be one of the most accurate methods in SDM; b) RF 
boasts a minimal number of user-settable parameters, with default settings consistently producing reliable results; 
c) random selection of predictor variables at each node mitigates the risk of overfitting; d) RF excels at directly 
handling the modeling of binary, continuous, and nominal  variables65,70–79. RF is a machine learning method that 
generates a large number of regression trees, each calibrated on a bootstrap sample of the original  data58. Each 
node is split using a subset of randomly selected predictors and the tree is grown to the largest possible extent 
without pruning. RF can handle both regression and classification type of modeling. For predicting a value of a 
new data point, the data are run through each of the tree in the forest and each tree provides a value. The model 
prediction is then calculated as the average value over the predictions of all the trees in the forest in regression 
model and by majority vote in classification model.

The species presence-absence data from the 14,356 field sampling sites (Fig. 1; see the section Biological sam-
pling) was used as a response variable in RF models. We employed both regression-type and classification-type 
RF models as candidate models for each species. The motivation for fitting both regression and classification 
models was to identify the optimal RF model type based on their performance characteristics. The values of 
the 14 environmental variables (Table 1; see section Environmental variables) served as predictor variables. A 
separate model was built for each macrophyte species. The models were then used to generate spatial distribu-
tion prediction for each species. Using the trained RF models, species’ predictions were calculated for each data 
point in the prediction dataset (n = 3,685,338) covering the whole Estonian marine area from the coastline to the 
outer border of the exclusive economic zone (36,800  km2) with 100 m rectangular equispaced grid (see modeling 
area in Fig. 1). The values of all environmental variables (predictor variables sensu predictive modeling) were 
available for each point in the prediction dataset. Given the binary nature of the input data (0 for absence, 1 for 
presence), the RF regression-type model generated probability estimates of occurrence as predictions, falling 
within the range of zero to one (encompassing any decimal value between zero and one). Conversely, in the 
classification-type RF model, the prediction outcome was a binary classification, with values of zero and one. The 
predictions of regression-type models (probabilities of occurrence) of each species were separately converted to 
binary presence-absence classes (1—presence, 0—absence) using the sensitivity–specificity difference minimizer 
method that has been found to produce more accurate results compared to other  methods80–82. The conversion 
of regression-type RF outcome to binary presence-absence was done in order to estimate the distribution area 
of the species and to compare the predictive performance with that of classification-type RF outcome.

In RF model fitting, the function randomForest in package randomForest was used. Two parameters must 
be set in randomForest: the number of predictor variables to be randomly selected at each node (mtry) and 
the number of trees in a forest (ntree). The mtry parameter was retained at its default values: one-third of the 
number of predictor variables for regression-type RF and the square root of the number of predictor variables 
for classification-type RF models, in accordance with the recommendations provided by Liaw and  Wiener65. 
ntree was set to 1000 as already 500 trees usually yield stable  results65. In all models, we verified the adequacy of 
using 1000 trees to achieve stable results by employing the plot function within the randomForest package. The 
importance of predictor variables was calculated using the permutation test inside the randomForest function 
by specifying importance = TRUE and nPerm = 10. All other arguments in the randomForest function were left 
as default values. Further information on the R code is shown in Appendix 2.

The predictive performance of the models was evaluated using tenfold cross-validation (CV)83,84. Using CV, 
area under the receiver operating curve (AUC)85 and Cohen’s  kappa86,87 were calculated for regression-type RF 
models and only Cohen’s kappa for classification-type models. For calculating kappa in regression-type models, 
the probability of occurrence was converted into binary classes (1—presence, 0—absence) using the sensitiv-
ity–specificity difference minimizer  method82. Stratified random sampling without replacement was used to 
generate data folds for each species using the presence-absence of a given species as strata to ensure equal 
proportions of presences in all  folds83. Using ten folds resulted in a division of 90% data for model training and 
10% of data for validation at each iteration. Tenfold cross-validation was done only to estimate the predictive 
performance of models. Final models for generating the spatial predictions were trained using 100% of the data. 
Mean AUC and kappa values over ten folds were used as the estimate of predictive performance. AUC values 
vary between 0.5 and 1. AUC value of 0.5 indicates that a model performs the same as random chance while 
the value of 1 indicates perfect model  prediction85,88. There is no universal evaluation criteria of AUC values 
between 0.5 and 1, but often the values 0.5–0.6 are considered “poor”, 0.6–0.7 “fair”, 0.7–0.8 “good”, 0.8–0.9 
“very good”, 0.9–1 “excellent”74,89. Following Landis and  Koch87, the Cohen’s kappa coefficient value below zero 
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indicates “poor”, 0–0.2 “slight”, 0.21–0.4 “fair”, 0.41–0.6 “moderate”, 0.61–0.8 “substantial” and 0.81–1 “almost 
perfect” strength of agreement.

Relationships between species richness (number of species) and the environmental variables were depicted 
using generalized additive models (GAM)90 with cubic regression splines. The degrees of freedom were limited 
to five in GAMs to avoid overfitting. Separate GAM fits were produced for each species richness–environmental 
variable pair for plotting purposes.

Two different methods were applied to assess the distribution overlap among the studied species: Schoener’s 
D index and proportion of co-occurrence in sampling sites. Species occurrences in the field data was used as 
the input for both methods. Schoener’s D can vary between zero and one: zero indicates no distribution overlap 
while one indicates full distribution overlap (i.e. identical distributions) between species. While there are several 
metrics available for estimating distribution overlap, Schoener’s D was chosen due to its good performance, 
simplicity, and long history of  use91,92. While Schoener’s D enables to generate a single value for estimating the 
spatial overlap of each pair of the studied species, it cannot give full insight into the overlap patterns because 
a distribution overlap between two species is seldom symmetrical and the sizes of distribution areas vary. For 
example, the Schoener’s D value of 0.5 may mean that the distribution area of a species A is fully (100%) inside 
the distribution area of a species B while only 50% of the distribution of the species B coincides with that of A. 
This is possible given that the distribution area of B is twice the size of A. To account for the asymmetry, for 
each species, percentage overlap of distribution with all the other species was also calculated. Permutation  test93 
with 100,000 permutations was conducted for each pair of species to assess whether their co-occurrence, as 
measured by the Schoener’s D value, deviated significantly from what would be expected by random  chance94. 
By randomly shuffling the field sites and calculating the Schoener’s D based on the 100,000 iterations, the so 
called null  distribution95 of D values for each pair of species was produced. The permutationally generated null 
distribution of D values was subsequently compared to the observed D value. The null hypothesis of random 
co-occurrence was rejected when the observed D value fell outside a predefined percentile range (e.g., 2.5% to 
97.5% with a p-value threshold set at 0.05), signifying a substantial departure from random  chance93. To account 
for multiple comparisons, the p-values were corrected using the Benjamini–Hochberg  method96. R code for 
the permutation test is shown in Appendix 2. Kruskal–Wallis  test97 was used to assess statistical differences of 
overlap both within and between the species groups based on the pair-wise D values with the following group 
levels: within charophytes, within angiosperms, between charophytes and angiosperms.

Research involving human and/or animal participants
The study did not involve animal or human participants.

Results
Based on the Cohen’s kappa coefficients of tenfold cross-validation, the average prediction accuracy of regression-
type RF models was marginally higher than that of classification-type models (Table 3) and subsequently the 
regression-type RF models were selected to produce the maps of species distribution. The AUC values of all 
species were over 0.89 indicating high prediction accuracy while the model performance measured using kappa 
coefficients indicated mainly fair to moderate agreement between predicted and observed species occurrences 
(Table 3). Notably low Cohen’s kappa coefficient of 0.15 was found in T. nidifica. Depth was the most influential 
environmental variable in the regression-type RF models, followed by proportion of soft sediment and slope of 
seabed (Appendix 3).

Table 3.  Results of tenfold cross-validation of regression-type and classification-type RF models. Average 
values of the statistics over all species are shown in the last row. AUC—area under the receiver operating curve, 
kappa—Cohen’s kappa coefficient.

Species

Regression RF Classification RF

AUC kappa kappa

C. aspera 0.963 0.529 0.498

C. baltica 0.943 0.274 0.213

C. canescens 0.95 0.36 0.288

C. connivens 0.947 0.275 0.236

T. nidifica 0.894 0.156 0.127

M. spicatum 0.948 0.507 0.469

P. perfoliatus 0.955 0.462 0.424

R. maritima 0.926 0.348 0.309

S. pectinata 0.948 0.645 0.632

Z. palustris 0.901 0.323 0.285

Z. marina 0.943 0.427 0.351

Average 0.938 0.391 0.348
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The species richness of charophytes sharply decreased with increasing depth while the richness of angio-
sperms exhibited the highest values between 0 to 2 m. However, generally, the species richness of both angio-
sperms and charophytes followed similar patterns along the environmental gradients (Fig. 2).

Based on the modeled species distributions, S. pectinata had by far the largest distribution area with 1125  km2. 
C. aspera ranked the second with 451  km2, all other species had distribution area below 400  km2. C. baltica had 
the smallest area with 26  km2 (Fig. 3). The majority of the species were spread along the whole coastline while C. 
baltica and C. connivens were mainly restricted to western Estonia. Unlike the other species, the presence of Z. 
marina in the Gulf of Riga was limited. Compared to angiosperms, the distribution of charophytes was limited 
to shallower areas (except for T. nidifica) and sheltered bays (Fig. 4).

Figure 2.  Variability of the species richness of angiosperms and charophytes along the environmental gradients 
as fit by GAMs. 95% confidence interval is shown in gray. Data from sampling sites with water depth exceeding 
10 m is excluded.

Figure 3.  Distribution area of the studied species based on distribution modeling. Colors indicate the 
distribution area of a species occurring alone (single species) or together with at least one other studied species.
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SDM predictions showed that 29% of the modeling area was occupied by co-habitation of charophytes and 
angiosperms (i.e., at least one charophyte and one angiosperm present in a grid cell). 61% of the modeling area 
was occupied exclusively by angiosperms (i.e. at least one angiosperm present and no charophytes) while only 
10% was occupied exclusively by charophytes (i.e. at least one charophyte present and no angiosperms).

Based on the field data, the highest distribution overlap was between C. aspera and C. canescens (Schoener’s 
D = 0.39) followed by C. aspera and Z. palustris (Schoener’s D = 0.35). C. aspera also had the largest mean overlap 
with all the other species. Z. marina had the smallest overlap with the other species (Fig. 5). Based on permutation 
tests, it was found that 41 out of the 55 unique pairs of species exhibited D values that were statistically different 
(p < 0.05) from what would be expected by random chance. The group-wise mean D values showed statistically 
significant differences among the species groups (Kruskal–Wallis test, p < 0.05). Specifically, the mean D value 
within charophyte species was the highest at 0.24, followed by a mean D value of 0.16 within angiosperms, and 
the mean D value between charophytes and angiosperms was the lowest at 0.11.

Figure 4.  Modeled distributions of the studied species. Blue color represents the occurrence of a species. The 
size of the blue symbols of occurrence is increased compared to the original 100 × 100 m pixel size to improve 
readability. R programming language version 4.2.2 (https:// www.r- proje ct. org/) in the development environment 
RStudio (https:// posit. co/ produ cts/ open- source/ rstud io/) was used to generate this map.

https://www.r-project.org/
https://posit.co/products/open-source/rstudio/
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Charophytes C. baltica, C. cansecens, and C. connivens almost exclusively (> 99% of their distribution area) 
co-occurred with other species (Fig. 3). Most frequently the studied species had 2–3 co-occurring species (Fig. 6). 
Notable deviations from this pattern were S. pectinata, Z. palustris and Z. marina that most frequently had none 
or only one co-occurring species. The mean number of co-occurring species was the highest in C. baltica. The 
proportions of co-occurring in field sites were most evenly distributed in S. pectinata and T. nidifica while S. pec-
tinata itself was the most common co-occurring species for all the other species (Fig. 6). Z. marina had the largest 
share of single-species occurrence (Fig. 3) and coexistence with charophytes was almost lacking (Figs. 5, 6).

Discussion
The level of co-occurrence of the studied species varied along the environmental gradients (Fig. 2). This means 
that the potential rate of competition between the species depends on the environmental conditions. The high-
est rate of competition of the studied macrophytes can be expected in shallow depth, low wave exposure, soft 
seabed sediments and salinity around five (Fig. 2). According to previous studies, the distribution of charo-
phytes and angiosperms is mainly controlled by depth that reflects light availability as well as hydrodynamic 
 activity19,98,99. Likewise, depth was the most influential environmental variable in the distribution models of the 
studied macrophytes in this study. In the brackish Baltic Sea region, soft sediments are inhabited by charophytes 
and angiosperms of fresh, brackish, and marine water origin. Living close to their physiological limits amplifies 
the effect of abiotic environmental gradients and even small changes in salinity can cause significant changes in 
species’  distributions100,101. Most of the studied species can tolerate wider salinity range than the range present 
in the study area. However, Z. marina, T. nidifica, and C. baltica are more common in areas with salinity over 5. 
Eelgrass Z. marina also differs from the other species by preferring greater water  depth45,102.

The most wide-spread soft-bottom species in the coastal waters of Estonia, northern Baltic Sea, was sago 
pondweed (S. pectinata) with an estimated distribution area of about 1100  km2. The species is globally widespread 
and is also one of the most common species in the brackish Baltic Sea  region25. S. pectinata is of freshwater 
origin and can tolerate salinity fluxes up to  1947. The species is regarded as tolerant to  eutrophication103 and has 
relatively wide niche  space45. Angiosperms Z. palustris, M. spicatum, and P. perfoliatus and charophyte C. aspera 
had also large distribution area of about 300  km2 (Fig. 3, 4). Although regarded as relatively common species 
in the Estonian coastal waters and with relatively wide niche  space45, the charophyte C. baltica was estimated 
to have the smallest distribution area of less than 50  km2. The salinity tolerance of C. baltica is probably the key 
factor: the species prefers salinity over  two104 and does not penetrate the low-salinity estuaries which are common 
habitats for all the other studied charophyte species. Z. palustris and Z. marina have been shown to have the wid-
est niche space followed by C. aspera, T. nidifica, and S. pectinata while R. maritima, P. perfoliatus, M. spicatum, 
and C. connivens had narrow niche  space45. This shows that neither the numerous findings nor the large niche 
space directly translate into large distribution area in a given regional scale. Generally, realized distributions of 
generalist species tend to be wider than those of specialist species but there is a lot of variability and it cannot be 

Figure 5.  Occurrence overlap between the studied species based on field observations. Higher Schoener’s D 
value indicates larger overlap. The numbers in the diagonal represent average D values of the species. Asterisks 
indicate statistically significant D values (p ≤ 0.05, corrected using Benjamini–Hochberg method for multiple 
comparisons). A statistically significant value indicates that the observed D value differs from what would be 
expected by random chance.
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considered as a strict  rule41,46,105,106. Several earlier studies e.g. 46,107–109, support our findings about discrepancy 
between niche width and distribution area.

The aspect of abundance (biomass, percentage coverage, shoot density or other measure) was not addressed 
in this study but it must be noted that in addition to distribution area, the abundance is an important feature 
when estimating the status and viability of a species and need to be taken into account in marine spatial planning 
and nature conservation activities. In regard to variation in plant abundance, it has been shown in terrestrial 
environment (especially in agriculture) that an optimal density is required for healthy plants. It has also been 
shown in eelgrass that positive interactions among shoots in the early stage of colonization are more important 
than competitive  processes110: increased plant density has positive effects on shoot growth, areal expansion of 

Figure 6.  Proportions of occurrences with different number of co-occurring species (A) and proportions of 
occurrence overlap between the studied species (B) based on species’ field observations. The numeric values in 
each panel represent mean value ± standard deviation. For uniform x-axis among all plots, the focus species is 
also included with 100% value in panel B.
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patches and rate of increase of shoot density. In the low-salinity areas of the Baltic Sea eelgrass reproduces asexu-
ally through growth of rhizomes that creates patches and meadows. In a multispecies angiosperm community, Z. 
marina has been shown to be more resistant to shading, but at the same time the monocultures of eelgrass showed 
faster recovery after  disturbance111. However, the number of studies on interspecific interactions of submerged 
soft-bottom species in the Baltic Sea region is  limited111 and no information exists for stress-tolerance of e.g., 
T. nidifica in mono- or multispecies communities. The revealed co-occurrence patterns of the studied species 
provide an important insight for the future targeted research on interspecific relationships.

The level of co-occurrence was higher inside the charophytes species group than inside the angiosperms spe-
cies group. While the charophytes commonly co-exist with both charophytes and angiosperms, the angiosperms 
were more commonly associated with other angiosperms rather than charophytes. Moreover, three species of the 
Chara genus (C. baltica, C. canescens, C. connivens) showed very low proportion (less than 4%) of single-species 
occurrences while four angiosperm species out of six formed single-species communities in 17–34% of their 
field occurrence sites. Contrasting to our findings in the brackish water, formation of single-species meadows 
is noted to be characteristic of charophytes in  freshwater112. T. nidifica differed from the other charophytes by 
exhibiting higher proportion of single-species occurrences and co-occurrence with Z. marina (Fig. 6). T. nidifica 
is found in low coverage both within charophyte and vascular plant communities, however, it is also often found 
as a single specimen on bare sand. It is a brackish water species and grows mostly in salinities over four, but can 
tolerate large range of  salinity21,113. In Estonia the species is found growing in depth from 0.1 to 9.5 m, but it is 
most common in shallower area with depth range 1–3  m45.

The highest level of co-occurrence, as measured by the Schoener’s D, was observed between C. aspera and 
C. canescens (Fig. 5). However, the overlap was not symmetrical: 84% of the field occurrences of C. canescens 
overlapped with that of C. aspera but only 39% of the occurrences of C. aspera coincided with that of C. canes-
cens (Fig. 6). The distribution area of C. aspera was more than twice the size of that of C. canescens. While both 
species are widespread in the Baltic Sea, it has been shown that the difference between them is that C. aspera 
often forms monospecific stands or dominant communities with association of other species while C. canescens 
mainly occurs as single plants or patches inside the stands of C. aspera or other  charophytes21.

Z. marina had the lowest co-occurrence with all other species; the overlap was particularly low with cha-
rophytes (Fig. 5). The rare co-occurrence of Z. marina and the Chara genus of charophytes is an anticipated 
result, but in this study, the pattern was quantified using extensive database of field observations together with 
permutation tests. Eelgrass is a marine species and cannot tolerate salinity lower than five. In Estonian coastal 
waters, Z. marina commonly forms single-species communities in a depth range of 2–5 m and overall, it has 
been found growing in depths from 0.1 to 8.6 m. Our results also clearly indicated that compared to the other 
studied species, Z. marina had the largest proportion of single-species occurrences. When Z. marina grew with 
other species, then it had the highest proportion of overlap (58%) with the species with the largest distribution 
area—S. pectinata. While the overlap with the species of genus Chara was very low (< 4%), the occurrence of Z. 
marina overlapped with that of the charophyte T. nidifica by almost 10% (Fig. 6).

Potamogeton perfoliatus was another angiosperm species that had notably low occurrence overlap with the 
species of Chara genus. While in the case of Z. marina and Chara spp., the lack of overlap can be clearly explained 
by variations in depth, salinity and wave exposure, the segregation of P. perfoliatus and Chara spp. is not that 
straightforward. It seems that for P. perfoliatus, the sediment composition has the most important role—the 
distribution of P. perfoliatus is limited to soft sediments with the share of sand around 70–100% while the share 
of sand can be much smaller in case of the species of Chara  genus45.

It has been previously shown that among the studied species, the charophyte C. connivens and angiosperm 
M. spicatum grow in the most similar environmental  conditions45. Although there is significant overlap in 
the distribution area of these species in the NE Baltic Sea region, M. spicatum had more than two-fold larger 
distribution area than that of C. connivens because M. spicatum also inhabits more exposed coasts. However, 
both species occur more commonly together with S. pectinata than with each other. This indicates that similar 
niches do not necessarily translate into highest distribution overlap but instead, the highest distribution overlap 
exists with the most widespread species. Theoretically, there are two extreme scenarios in the niche–distribution 
 interplay114–116: if competitive interactions strongly determine community composition, then the species with 
similar niches should be spatially segregated; if community composition is not strongly driven by competition, 
then the species with similar niches should exhibit high spatial overlap. Based on empirical evidence of different 
organism groups e.g. 114,117, and references therein, the relationships between niche overlap and spatial overlap 
can take various forms. Based on the results of this study and previous  studies22, frequent co-occurrence of the 
studied species existed and thus it is more likely that the competition is not very important structuring force of 
communities of soft-bottom macrophytes in the northern Baltic Sea. However, it must be considered that spatial 
and temporal scales play an important role in the outcome of distribution studies. Closely related species or 
species with similar niches rely on mutually exclusive distribution at small spatial scales due to competition but 
co-occur in larger spatial scales due to similar broad-scale environmental  preferences51,118,119. This means that 
distribution studies should address multiple spatial scales (from microhabitat to regional level) in order to fully 
understand the coexistence and competition patterns between species. In this study, the environmental variables 
were available in 10–50 m raster layers. We lacked the small-scale (sub-meter to below 10 m) environmental data 
were direct competition between species actually takes place. Such high resolution environmental data is lacking 
for large marine areas due to obvious practical reasons. The coexistence patterns of soft bottom macrophytes in 
small spatial scales remain to be elucidated in dedicated future field studies.

Species’ potential geographic distribution areas often differ from their occupied distribution areas due to biotic 
 interactions117. The complex interplay between plants’ physiological tolerance limits, availability of environmental 
niche and biotic interactions (competition, herbivory, pathogens etc.) is further modified by stochastic distur-
bance events (e.g., severe storms) and anthropogenic pressures (e.g., eutrophication, human-induced climate 
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change). The complexity is further increased by concurrent effects and interactions acting at different spatial and 
temporal scales. Thus, it must be taken into account that results of SDMs only provide simplified insights into 
geographic aspect of the species coexistence but cannot reveal the full complexity of the system.

Conclusions
Analyzing a comprehensive dataset of field samples of soft substrate macrophytes, we found that the observed 
co-occurrence patterns among sympatric species significantly diverged from what would be expected by random 
chance. The analysis showed that species exhibited a higher tendency to co-occur within their taxonomic groups 
(charophytes and angiosperms) than between these groups. When considering previous studies of niche posi-
tions and niche sizes of the studied species, it can be concluded that large niche space does not always directly 
translate into large distribution area in a given regional scale. In future studies multiple spatial scales (from 
microhabitat to regional level) as well as temporal scales should be addressed to fully understand the coexistence 
and competition patterns between sympatric macrophyte species.
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