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Evaluating algorithms of decision 
tree, support vector machine 
and regression for anode side 
catalyst data in proton exchange 
membrane water electrolysis
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Nowadays, due to the various type of problems stemmed from using chemical compounds and fossil fuels 
which have widely influence on whole environment including acid rain, polar ice melting and etc., number 
of researches have been leading on replacing the nonrenewable energy sources with renewable ones in 
order to produce clean fuels. Among these, hydrogen emerges as a quintessential clean fuel, garnering 
substantial attention for its potential to be synthesized from the electric power generated by renewable 
sources like nuclear and solar energies. This is achieved through the employment of a proton exchange 
membrane water electrolysis (PEMWE) system, widely recognized as one of the most proficient and 
economically viable technologies for effecting the separation of  H2O into  H+ and  OH−. In this study, the 
important affecting parameters on the anode side of catalyst in PEMWE and analyzed them by machine-
learning (ML) algorithms through developing a data science (DS) procedure were discussed. Various 
machine learning models were subjected to comparison, wherein the Decision Tree models, specifically 
those configured with maximum depths of 3 and 4, emerged as the optimal choices, attaining a perfect 
100% accuracy across both Dataset 1 and Dataset 2. Moreover, notable enhancements in accuracy values 
were observed for the Support Vector Machine (SVM) model, registering increments from 0.79 to 0.82 for 
Dataset 1 and 2, respectively. In stark contrast, the remaining models experienced a decrement in their 
accuracy scores. This phenomenon underscores the pivotal role played by the data generation process in 
rendering the models more faithful to real-world scenarios.

In recent years, concerns about global warming and its various environmental impacts, such as polar ice melt-
ing, acid rain, and rising sea levels, have become a primary focus for scientists. These issues are largely attrib-
uted to the consumption of refractory chemical compounds, particularly fossil fuels like coal, oil, and natural 
gas, as well as concerns about their  depletion1. Consequently, there has been a concerted endeavor to expedite 
the advancement of renewable energy generation, storage, and conversion infrastructures, in light of projec-
tions indicating a prospective global power demand of approximately 30 and 46 TW by the years 2050 and 
2100,  respectively2. However, a major challenge in using solar and wind energy as renewable sources is their 
unscheduled and intermittent supply, which often does not match the grid power  demands3. To address this 
issue, efficient systems for storing excess electricity must be developed. One promising approach is the use of 
electrocatalytic systems, which convert electricity into chemical energy for indirect storage of excess renewable 
 energy4. Amongst a plethora of electrocatalytic technologies, water electrolysis stands out as the most efficacious 
means for producing pristine green hydrogen, harnessing the potential of renewable energy sources like solar 
and wind  energies5. Pertinently, Pourrahmani et al. have undertaken a thorough inquiry into the feasibility and 
efficacy of employing PEMFC as an indirect means of water electrolysis storage, a process entailing the conver-
sion of excess electricity generated by wind turbines into hydrogen  gas6. This green hydrogen can be stored and 
used in the chemical industry, or for electricity production via fuel cells or internal combustion engines, with 
zero post-combustion  pollutants7. Commercially available systems for water electrolysis include alkaline, solid 
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oxide and proton exchange membrane (PEM) electrolyzers, with the latter being more advantageous due to 
their more compact design, absence of leaking issues, higher current density, higher operating temperature and 
characteristic of high temperature potential resulting in higher energy conversion efficiency, greater hydrogen 
generation rate, lower gas crossover rate resulting in decreasing power consumption, part-load operating ability, 
and ability to operate at higher pressures due to their strong cell  structure8–11. In contemporary times, there exists 
a burgeoning inclination towards the refinement and reconfiguration of alkaline water electrolyzers, coupled 
with the advancement of proton exchange membranes with applicability spanning both water electrolysis units 
and fuel cells. These strides stem from notable advancements witnessed within the domain of high-temperature 
solid oxide technology, as substantiated by research  studies12–14.

Water electrolysis is a process that water molecules spilt in hydrogen and oxygen gases using electricity 
through electrochemical process resulting in producing clean energy with no emission of pollution. The basic 
equation of water electrolysis is as Eq. 115.

The simplest water electrolysis system has been displays in Fig. 1a which consisting of an anode and a cathode 
connected through an external power supply and immersed in a conducting electrolyte. Through the imposition 
of a direct current (DC) upon the system, electrons traverse from the negative terminal of the DC power source 
towards the cathode. Here, they are absorbed by hydrogen ions (protons), thereby engendering the formation of 
hydrogen atoms. In the overarching scheme of water electrolysis, hydroxide and hydrogen ions migrate towards the 
anode and cathode respectively, a diaphragm serving as a delineating barrier between these two segments. Addi-
tionally, the hydrogen and oxygen produced at the cathode and anode, respectively, are captured by gas  collectors14.

Several electrolyte systems have been developed for water electrolysis, including alkaline water electrolysis 
(AWE), proton exchange membranes (PEMs), alkaline anion exchange membranes (AEMs), and solid oxide 
water electrolysis (SOE). Despite the utilization of diverse materials and operational parameters, these systems 
adhere to a common set of fundamental principles. Moreover, water electrolysis can be conducted across a 
spectrum of temperatures, contingent on the specific operational criteria and temperature range  selected16.

Within the realm of designing experiments for cells, a pivotal stage involves scrutinizing the experimental 
data to discern the optimal values for an array of parameters influencing cell performance. In this endeavor, the 
novel concepts of Artificial Intelligence (AI), Internet of Things (IoT), Data Science (DS), and Machine Learning 
(ML) emerge as relatively recent paradigms. They hold the potential to enhance the efficiency of fuel cells and 
augment hydrogen generation through the assimilation of historical data and predicted  futures17,18. This study 
centered on examining the introduction and discussion of proton exchange membrane (PEM) electrolyzers, with 
a specific focus on integrating data science and machine learning principles. In pursuit of this goal, a data science 
procedure was devised, utilizing machine-learning algorithms and incorporating anode side catalyst parameters. 
The outcomes of this analysis were subsequently scrutinized using Jupyter notebook, a programming platform 
utilizing Python 3.9.0 facilitated by the Anaconda platform. Finally, the various models were compared, and 
the resulting data were visualized based on different values of model evaluation parameters which resulted in 
realizing the application of data science as an auxiliary tool in analyzing the data and obtaining practical models 
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Figure 1.  (a) Scheme principle for electrolysis  cell14 and (b) PEM water electrolysis.
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for predicting and discovering optimal data based on the changes of other influencing experimental parameters 
related to the anode side of the catalyst in the production of hydrogen gas through PEM water electrolyzer.

PEM water electrolyzer (PEMWE)
The first PEM water electrolysis named as polymer electrolyte membranes or solid polymer electrolyte mem-
branes in 1966 for U.S space applications which was related with sulfonated polystyrene ion-exchange electrolyte 
membrane development idealized by Grubb in 1950s to solve the problems of the alkaline water  electrolysis19,20. 
In most of the PEM water electrolyzer, perfluorosulfonic acid membranes such as Nafion® and sulfonated poly-
etheretherketone have used as an electrolyte (proton conductor)21,22. These proton exchange membranes having 
many advantages such as lower gas permeability, high proton conductivity (0.1 ± 0.02 S  cm−1), lower thick-
ness (∑20–300 µm) and high-pressure operations. PEM water electrolysis is one of the promising methods for 
conversion of renewable energy to high pure hydrogen in terms of sustainability and environmental influence. 
Proton exchange membrane water electrolysis also offers several advantages, such as a compact design, high 
current density exceeding 2 A.cm−2, high efficiency, fast response, small footprint, and operation under lower 
temperatures ranging from 20–80 °C. Moreover, it produces ultrapure hydrogen and oxygen as a  byproduct21,23–26. 
Notably, the process of balancing PEM electrolysis plants is relatively simple, which enhances its attractiveness 
for industrial applications.

The primary process of a PEM water electrolyzer involves the electrochemical splitting of water into hydrogen 
and oxygen at the cathode and anode sides, respectively. Specifically, water is introduced to the anode side, where 
an OER takes place, generating oxygen  (O2), protons (H +), and electrons (e-). The electrons exit from the anode 
through the external power circuit, which provides the driving force (cell voltage) for the reaction. The protons 
that are produced travel to the cathode side through a proton-conducting membrane, resulting in a hydrogen 
evolution reaction (HER) that combines with the electrons to produce hydrogen, as depicted in Fig. 1b27.

The anode catalyst in proton PEMWEs has been the subject of extensive research due to the oxygen evolution 
reaction (OER) being the primary source of  irreversibility28. Typically, noble metal-based electrocatalysts such as 
 IrO2 are utilized for the OER in PEM water electrolysis, as it is recognized as one of the most durable materials 
under  O2 evolution conditions in highly acidic  environments22,29. However, this results in a higher cost compared 
to alkaline water electrolysis systems. Therefore, reducing production costs while maintaining high efficiency 
remains a significant challenge in PEM water  electrolysis22.

Data science and machine learning
Data science theory
Data science often refers to the process of leveraging modern machine learning techniques to identify insights 
from  data30,31. Over the past few years, there has been a growing trend among organizations to adopt a "data 
centered" approach to decision-making. As a result, there has been an increase in the formation of teams con-
sisting of data science workers who collaborate on larger datasets, more structured code pipelines, and more 
consequential decisions and  products32.

The demand for advanced data analytics leading to the use of machine learning and other emerging tech-
niques can be attributed to the advent and subsequent development of technologies such as Big Data, business 
Intelligence, and the applications that require automation.  Sandhu33 elucidates that machine learning is a subfield 
of artificial intelligence that employs computerized techniques to address problems based on historical data and 
information, without the need for significant modifications to the core process. Artificial intelligence, on the 
other hand, involves the development of algorithms and other computational techniques that imbue machines 
with intelligence. It comprises algorithms that can reason, act, and execute tasks using protocols that are beyond 
the capabilities of humans.

Machine learning theory
Machine learning is a component of artificial intelligence although it endeavors to solve problems based on his-
torical or previous  examples34. Unlike artificial intelligence applications, machine learning involves learning of 
hidden patterns within the data (data mining) and subsequently using the patterns to classify or predict an event 
related to the  problem35. Simply, intelligent machines depend on knowledge to sustain their functionalities and 
machine learning offers such a knowledge. In essence, machine learning algorithms are embedded into machines 
and data streams provided so that knowledge and information are extracted and fed into the system for faster and 
efficient management of processes. It suffices to mention that all machine learning algorithms are also artificial 
intelligence techniques although not all artificial intelligence methods qualify as machine learning algorithms.

Machine learning algorithms can be broadly classified as either supervised or unsupervised, although some 
authors may also include reinforcement learning as a distinct category, as these techniques involve learning from 
data to identify patterns with the goal of reacting to an environment. Nevertheless, most literature acknowledges 
the two major categories of supervised and unsupervised learning algorithms. The difference between these two 
main classes is the existence of labels in the training data subset. As outlined by  Kotsiantis36, supervised machine 
learning involves the utilization of predetermined output attributes in conjunction with input attributes. These 
algorithms strive to predict and classify the predetermined attribute, and their performance is evaluated based 
on metrics such as accuracy, misclassification rate, and other relevant performance measures, which are contin-
gent on the number of correctly predicted or classified instances of the predetermined attribute. Importantly, the 
learning process concludes when the algorithm attains a satisfactory level of  performance37. According to Lib-
brecht and  Noble34, technically, supervised algorithms perform analytical tasks first using the training data and 
subsequently construct contingent functions for mapping new instance of the attribute. As stated previously, the 
algorithms require prespecifications of maximum settings for the desired outcome and performance  levels34,37. 
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Machine learning methods typically require a training subset of around 66% of the data in order to achieve sat-
isfactory results without incurring excessive computational  costs38. Within the supervised learning paradigm, 
algorithms can be categorized into either classification or regression  algorithms35,36. In contrast, unsupervised 
learning does not involve a target attribute and instead focuses on pattern recognition. All variables in the analysis 
are used as inputs, making these techniques particularly useful for clustering and association mining. According 
to  Hofmann39, unsupervised learning algorithms are suitable for creating the labels in the data that are subse-
quently used to implement supervised learning tasks. That is, unsupervised clustering algorithms identify inher-
ent groupings within the unlabeled data and subsequently assign label to each data  value38,40. On the other hand, 
unsupervised association mining algorithms tend to identify rules that accurately represent relationships between 
attributes.  Praveena41 asserts that supervised learning relies on prior experience or acquired patterns within the 
data and typically involves a defined output  variable42–46. The input dataset is partitioned into train and test subsets, 
and various studies have explored the concept of training datasets based on the desired  outcome47–49. Algorithms 
employing supervised learning utilize patterns within the training dataset to predict or classify an attribute within 
the test  subset50,51. Multiple authors have described the workflow of supervised machine learning, and decision 
trees, Naïve Bayes, and Support Vector Machines are among the most commonly used  algorithms40,52–55.

Tools and systems
There exists a plethora of tools that are designed to support the work of data scientists. These include program-
ming languages like Python or R, statistical analysis tools such as  SAS56 and  SPSS57, integrated development 
environments (IDEs) like Jupyter  Notebook58,59, and automated model building systems such as  AutoML60 and 
 AutoAI61. Empirical studies have shed light on how data scientists utilize these  tools62–64, as well as the features 
that could be augmented to enhance the user experience for those working  solo65.

Jupyter  Notebook66 is a noteworthy system, which has various versions including Google  Colab67 and Jupyter-
Lab68. It is an integrated development environment that is specifically tailored to meet the needs of data science 
workflows. The graphical user interface of Jupyter Notebook supports three core functionalities, which are vital 
to data science work: coding, documenting a narrative, and observing execution  results69. Additionally, the 
capability to effortlessly switch between code and output cells enables data scientists to rapidly iterate on their 
model development and testing  processes31,62.

Developing data science procedure
Data mining
This study takes into account the current density (CD), water feed rate (WFR), catalyst loading, and high-fre-
quency resistance (HFR) of the anode side of a proton exchange membrane water electrolysis (PEMWE) system 
to develop a data science procedure and train machine learning models. The datasets were obtained from Fig. 2, 
which displays HFR vs. average pore opening diameter (APOD) at working temperatures of 35 °C and 55 °C, 
and CD vs. WFR at working cell potentials of 1.9 V and 2 V at 55 °C, respectively, based on two different catalyst 
loading levels of 0.595 and 0.085, along with the porous transport layer (PTL) material specifications of the anode 

Figure 2.  (a) trend in the HFR of the cell at 1.48 V by increasing PTL average pore opening diameter base on 
the  IrO2 dosage changes and (b) current density vs the anode water feed rate for the 4  cm2 PEMWE cell under 
potentiostatic control at 55 °C different PTL average pore opening diameter base on the  IrO2 dosage  changes70.
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side as the target data in the machine learning models. It should be noted that the datasets collected from Fig. 2a 
were only taken at 55 °C due to the temperature constraints of the CD vs. WFR experiment.

Three PTL cases have been investigated based on the average pore opening diameter, average grain diameter, 
areal surface porosity, average porosity and permeability as properties of these materials which are displays in 
Table 1.

Data generation

The datasets mentioned above were initially processed and organized using MS Excel in preparation for mod-
eling in Python Jupyter Notebook. The Dataset-1 consisted of 42 rows and 5 columns, but this was expanded to 
162 rows and 5 columns by generating random numbers within a specific range for the WFR and CD columns 
using the code provided below:

The generated data have been reentered into MS Excel for sorting and initial preparing which finally has 
been named Dataset-2.

Input variables

In the subsequent phase, three discrete machine learning models—Regression, Support Vector Machine (SVM), 
and Decision Tree—will be individually employed on Dataset-1 and Dataset-2. The resultant shifts in WFR and 
CD concerning the PTL will be displayed in dedicated visual representations, owing to the marked distinctions 
in their respective datasets. To effectuate this, each dataset has been imported into Python Jupyter Notebook 
using the prescribed code as presented below:

Table 1.  Properties of PTL  materials70.

PTL APOD (µm) Avg. grain dia. (µm) Areal surface por. Avg. por. Permeability  (m2)

1 33 13.9 0.780 0.302 5.35e-13

2 94 30.7 0.730 0.312 1.10e-12

3 160 66.8 0.815 0.218 3.20e-13
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Data pre-processing

The machine learning models will not work correctly in presence of the letters, so the words PTL1, PTL2 and 
PTL3 were replaced with a series of indexes including the numbers 0, 1 and 2 respectively by the following code:

In the following, since all three selected models fall under the category of supervised learning, it is necessary 
to specify the features and target values for the analysis. To accomplish this, two variables, X and Y, are defined 
to represent the features and target values, respectively. Subsequently, the train and test data must be randomly 
selected from the dataset to enable the models to function optimally. In this study, 30% of the data were allo-
cated to the test set, while 70% of the data were designated as the training set. The following codes can be used 
to implement the above:

The acquired dataset encompasses features of diverse dimensions, collectively exerting a detrimental influence 
on the modeling of datasets, particularly in terms of accuracy rates, among other factors. Consequently, prior to 
executing the models, it is imperative to standardize the feature values utilizing the ensuing code. This procedure 
aims to adjust appropriately scaled dimensions conducive to effective model training.

Machine learning algorithms
In the following, the theory related to each of these models will be briefly explained and how to set them up along 
with the corresponding codes will be displayed:
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Regression model
Linear regression is one of the simplest supervised learning algorithms in our toolkit. If you have ever taken an 
introductory statistics course in college, likely the final topic you covered was linear regression. In fact, it is so 
simple that it is sometimes not considered machine learning at all! Whatever you believe, the fact is that linear 
regression and its extensions continues to be a common and useful method of making predictions when the 
target vector is a quantitative value (e.g., home price, age)71.

In this section, creating and fitting the Linear Regression model is explained which we can find the linear 
relationship between features and target vector besides the codes related to the prediction of the target values 
from the test features values:

Support vector machine (SVM) model
To comprehend support vector machines, it is helpful to first understand hyperplanes. In mathematical terms, a 
hyperplane refers to an (n-1) dimensional subspace within an n-dimensional space. Despite sounding complex, 
the concept is relatively simple. For instance, in a two-dimensional space, we could use a one-dimensional hyper-
plane (i.e., a line) to divide it. Conversely, in a three-dimensional space, a two-dimensional hyperplane (i.e., a 
flat plane or sheet) would suffice. In essence, a hyperplane is a generalization of this concept into n  dimensions71. 
Support vector machines classify data by identifying the hyperplane that maximizes the margin between classes 
in the training data. In a two-dimensional example with two classes, the hyperplane is the widest straight "band" 
(i.e., line with margins) that separates the  classes71.

In this section, we explain the process of building and training a Support Vector Machine (SVM) model, 
which seeks to identify the hyperplane that maximizes the margin between classes in the training data. We also 
provide the code employed to predict target values from test feature values.

Decision tree classifier model
Tree-based learning algorithms are a broad and popular family of related nonparametric, supervised methods 
for both classification and regression. The basis of tree-based learners is the decision tree wherein a series of 
decision rules (e.g., “If their gender is male…”) are chained. The result looks vaguely like an upside-down tree, 
with the first decision rule at the top and subsequent decision rules spreading out below. In a decision tree, every 
decision rule occurs at a decision node, with the rule creating branches leading to new nodes. A branch without 
a decision rule at the end is called a  leaf71.

One of the primary reasons for the widespread adoption of tree-based models is their interpretability. Deci-
sion trees can be visually depicted in their entirety, thus enabling the creation of an intuitive model. This simple 
tree structure has spawned numerous extensions, ranging from random forests to stacking  techniques71.

In this section, the process of building and training a Decision Tree Classifier model with a maximum unit 
depth of 1, 2, 3, and 4 were described. This model allows us to identify decision rules based on a non-parametric 
relationship between features and the target vector. Furthermore, the code used to predict target values from 
test feature values were provided as:
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Decision tree model (max-depth = 1)

Decision tree model (max-depth = 2)

Decision tree model (max-depth = 3)

Decision tree model (max-depth = 4)
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Model evaluation and visualization
As it said in previous sections, a comparison between the prediction target values from training the models and 
the test target values for both Dataset-1 and Dataset-2 have been displays in Figs. 3, 4, 5, 6, 7 and 8 based on the 
distribution of WFR and CD vs. PTL cases.

To check the efficiency of the models, there are number of parameters (Metrics), including model score 
(Accuracy), mean absolute error (MAE), mean squared error (MSE) and  R2, which can be used to comparing 
the values of these parameters separately for each of the models using the following codes:
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Figure 3.  PTL vs. water feed rate (WFR) and current density (CD) for regression model (a) Dataset-1 (b) 
Dataset-2.
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Figure 4.  PTL vs. water feed rate (WFR) and current density (CD) for SVM model (a) Dataset-1 (b) Dataset-2.
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Figure 5.  PTL vs. water feed rate (WFR) and current density (CD) for DecisionTree (max-depth = 1) model (a) 
Dataset-1 (b) Dataset-2.
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Figure 6.  PTL vs. water feed rate (WFR) and current density (CD) for DecisionTree (max-depth = 2) model (a) 
Dataset-1 (b) Dataset-2.
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Figure 7.  PTL vs. water feed rate (WFR) and current density (CD) for DecisionTree (max-depth = 3) model (a) 
Dataset-1 (b) Dataset-2.
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Figure 8.  PTL vs. water feed rate (WFR) and current density (CD) for DecisionTree (max-depth = 4) model (a) 
Dataset-1 (b) Dataset-2.
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To visualize the performance of the models, a comparison has been made between all three models on data-
sets 1 and 2 through the following codes and the values of model score (accuracy), mean absolute error (MAE), 
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mean squared error (MSE) and  R2 are displayed in Figs. 9 and 10 as the result of this work and the exact values 
of mentioned metrics have been tabulated in the Table 2.

Figure 3 visually demonstrates that the regression model lacks accuracy and suffers from considerable error 
in classifying PTL types due to the incongruity between the test data  (ytest) and predicted data  (ypred). As evident 
from Table 2, the model achieves an accuracy of only 71% with mean absolute error (MAE), mean squared error 
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(MSE) and  R2 of 0.49, 0.26 and 0.46, respectively. When the number of datasets increases, the accuracy declines 
further to 66% whereas MAE, MSE and  R2 alter to 0.38, 0.18 and 0.69, respectively. Thus, the regression model 
is deemed unsuitable for monitoring the system’s behaviour.

Figure 4 illustrates the changes in WFR and CD for diverse PTL cases using the SVM model, ostensibly 
indicating that this model produces fewer prediction errors relative to the preceding model. As delineated in 
Table 2, the accuracy is 79% and 82% for datasets 1 and 2, respectively. The predictions from this model closely 
mirror the test data, thereby making the SVM model more fitting for modelling and anticipating system behav-
iour based on diverse parameters.

This work utilized decision tree models with maximum depths of 1, 2, 3 and 4 for modeling. Figures 5, 6, 7 
and 8 illustrate the changes in WFR and CD based on PTL cases for these models. Figure 5 shows that the max-
depth 1 model fails to predict PTL1 data due to its shallow structure as a result of tree pruning to a depth of one 
which makes the model to consider only one layer of  datasets71. The metrics in Table 2 indicate this model is 
unsuitable. Figure 6 depicts the WFR and CD distribution for the max-depth 2 model, achieving 83% and 82% 
accuracy for datasets 1 and 2, respectively (Table 2). Unlike the previous model, it predicts all PTL cases due 
to its depth which could considering two layer of  datasets71, making it suitable for predicting system changes 
and behavior. Figures 7 and 8 show the distributions for max-depth 3 and 4 models, respectively. The test and 
predicted data match perfectly, indicating highly accurate performance. Table 2 elucidates that their accuracy 
attains a remarkable 100% for both datasets, demonstrating exemplary model training and aptitude for predicting 
system behavior. The more intricate structures encompass all strata of data, culminating in flawless concordance 
between test and predicted data. To deepen our understanding, it is imperative to recognize that in decision tree 
models, the target value Y is forecasted by taking into account all input feature values denoted as  X1,  X2, …,  XP, 
where P signifies the number of feature values or data layers. In this scenario, a binary tree is cultivated wherein, 
at each node, a test is conducted on one of the inputs or layers, denoted as  Xi. It is worth noting that every maxi-
mum depth of the tree corresponds to the consideration of a singular layer or feature value, denoted as  Xi

72. 
Consequently, in the case of PTL versus water feed rate (WFR) and current density (CD) for the Decision Tree 
models with maximum depths of 3 and 4, for both datasets, three and four layers of the datasets were taken into 
account as input values. The tree was pruned to these specified depths, resulting in elucidated models boasting 
an accuracy of 100%71. Figures 9 and 10 compare the overall metrics for all models and datasets individually, 
allowing model comparisons based on accuracy, MAE, MSE and  R2.

In summation, the incongruity between the test and predicted data for the regression model and its inferior 
predictive capability renders it an inappropriate choice for identifying PTL types. In contrast, the SVM model, 

Figure 9.  Overall metrics for Dataset-1.
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due to its higher accuracy, congruous test and predicted data and comparatively lower errors, likely constitutes 
a more desirable option for the specified purpose.

Moreover, the shallower max-depth 1 model fails while the max-depth 2 model performs reasonably well. 
However, the max-depth 3 and 4 models achieve perfect accuracy and metric scores, indicating their suitability 
for the task due to their ability to account for all data layers through their deeper structures.

Conclusion
The integration of artificial intelligence and machine learning, with a particular focus on their ability to gather 
and analyze data, has become a logical and essential consideration for chemists and chemical engineers seeking 
to understand flow patterns, develop empirical models, and design and optimize various systems. Recent research 
has elucidated the crucial role of devoting significant time and resources to the various stages of data science, 
encompassing everything from mining and preprocessing to data generation, inspection, and visualization. Fur-
thermore, this research has emphasized the importance of scientific expertise in leveraging the full potential of 
data science, particularly in the context of chemistry and chemical engineering. The data used in this study was 
obtained from open literature sources, with a primary focus on data science and machine learning. The project 
involved conducting a data science analysis on a set of data related to operational parameters affecting the anode 

Figure 10.  Overall metrics for Dataset-2.

Table 2.  Overall metrics values of models for Dataset-1 and Dataset-2.

Models

Overall metric values

Dataset-1 Dataset-2

Accuracy MAE MSE R2-score Accuracy MAE MSE R2-score

Linear regression 0.71 0.49 0.26 0.46 0.66 0.38 0.18 0.69

Support vector machine 0.79 0.15 0.15 0.68 0.82 0.16 0.16 0.72

Decision tree (max-depth = 1) 0.72 0.46 0.46 0.05 0.70 0.41 0.41 0.3

Decision tree (max-depth = 2) 0.83 0.15 0.15 0.68 0.82 0.14 0.14 0.75

Decision tree (max-depth = 3) 1 0 0 1 1 0 0 1

Decision tree (max-depth = 4) 1 0 0 1 1 0 0 1
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side of a PEM water electrolyzer for  H2 production, using various machine learning models and comparing 
their performance. One of the most important issues proven in this article is data generation, which clearly has 
a direct impact on the conclusion and analysis of the system by approaching overall metrics values to the reality. 
While some individuals may believe that increasing the volume of data will necessarily enhance the accuracy of 
models, this study demonstrates that as the number of data points increases, the models become more realistic, 
and the accuracy becomes more precise, even if it leads to a decrease in accuracy. As demonstrated in the text, 
the accuracy value for the SVM model increased after data generation, while it decreased for the regression, 
Decision Tree (max-depth = 1), and Decision Tree (max-depth = 2) models.

This endeavor delved into the exploration of data science and machine learning in conjunction with the 
hydrogen gas production via water electrolysis. It entailed an in-depth analysis of data pertaining to the anode 
side catalyst of PEMWE, with a particular emphasis on the criticality of data pre-processing, notably data genera-
tion. Consequently, it was substantiated that employing models for prognostication, analysis, and optimization 
profoundly impacts system efficiency. Presently, the substitution of non-renewable energy sources with renew-
able alternatives, as well as the development of novel, efficient, and cost-effective solutions for storing excess 
electricity generated by renewable systems like wind and solar, stands as a paramount challenge for humanity. 
This shift has profound implications for the future of our planet. Hence, we anticipate that this research, with 
its attendant benefits and forward-looking perspectives, will positively contribute to the advancement of hydro-
gen gas production as a clean fuel. Moreover, it holds the promise of informing the design of a storage system 
capable of accommodating excess electricity generated from renewable sources. This will be achieved through 
the meticulous analysis of data pertaining to the anode side of PEMWE and the derivation of a robust model for 
the precise prediction, analysis, and optimization of system efficiency. In conclusion, data science and machine 
learning provide valuable insights and can serve as useful tools for chemists and chemical engineers. They can 
expand their knowledge base and add to their toolbox.

Data availability
All data generated or analysed during this study are included in this published article.
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