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Anomalous behavior recognition 
of underwater creatures using lite 
3D full‑convolution network
Jung‑Hua Wang 1,2*, Te‑Hua Hsu 3,4, Yi‑Chung Lai 1,2, Yan‑Tsung Peng 5, Zhen‑Yao Chen 1,2, 
Ying‑Ren Lin 1, Chang‑Wen Huang 3,4 & Chung‑Ping Chiang 3

Global warming and pollution could lead to the destruction of marine habitats and loss of species. 
The anomalous behavior of underwater creatures can be used as a biometer for assessing the health 
status of our ocean. Advances in behavior recognition have been driven by the active application of 
deep learning methods, yet many of them render superior accuracy at the cost of high computational 
complexity and slow inference. This paper presents a real-time anomalous behavior recognition 
approach that incorporates a lightweight deep learning model (Lite3D), object detection, and 
multitarget tracking. Lite3D is characterized in threefold: (1) image frames contain only regions of 
interest (ROI) generated by an object detector; (2) no fully connected layers are needed, the prediction 
head itself is a flatten layer of 1 × �  @ 1× 1, � = number of categories; (3) all the convolution kernels are 
3D, except the first layer degenerated to 2D. Through the tracking, a sequence of ROI-only frames is 
subjected to 3D convolutions for stacked feature extraction. Compared to other 3D models, Lite3D is 
50 times smaller in size and 57 times lighter in terms of trainable parameters and can achieve 99% of 
F1-score. Lite3D is ideal for mounting on ROV or AUV to perform real-time edge computing.

Global warming and extreme climate change are having a profound impact on our oceans and marine life. Their 
effects could lead to the destruction of marine habitats and loss of species. Exposure to environmental change 
and pollution can change the behavior of marine animals, e.g. exposure to elevated CO2 and reduced seawater 
pH can alter the behavior of reef fish and hermit crabs. In addition to climate change, other man-made factors 
such as low-frequency noise generated by giant wind turbines could adversely affect marine ecology. To tackle, 
the 14th goal of United Nations’ Sustainable Development Goals (SDGs)1 is aimed at the conservation and sus-
tainable use of marine ecosystems. One key SDG is the predictable ocean, which has been launched2 to mobilize 
the ocean community to focus technological developments and research in oceanography on vital issues of 
protection and sustainable use of the ocean.

Since 2020, the coast of Taiwan has experienced severe coral bleaching, and about 30% were dead. A UN 
report3 predicted that Taiwan will become one of the most seriously bleached regions in the world, and it will also 
be the region with the earliest bleaching and the highest loss rate in East Asia. In response to the 14th SDGs, the 
authors of this paper along with scholars from four prestigious universities in Taiwan formed a cross-disciplinary 
team in 2021 to study the ecology of two most coral-rich areas, Kenting and Gonglia located in southern and 
northeast Taiwan, respectively. This government-funded research aims to develop AI models specifically for 
monitoring marine life and the environment. The models will be trained with various data sources collected 
using underwater cameras, sonar, and hydrophones that convert underwater sound waves to electrical signals. 
To name a few, imagery and acoustic data of selected marine life are simultaneously collected and their correla-
tions analyzed; video data for training AI models to monitor the bleaching the health status of corals and the 
species and quantity of habituating organisms; image data for training AI models to identify the health status of 
Macroalgae, which is known capable of absorbing carbon from the atmosphere animated, etc.

The anomalous behavior of underwater creatures is an important indicator of an ecological system under a 
changing and even deteriorating process and can be used as a health meter for the status of oceans. For example, 
any weird or abnormal behaviors could indicate the coral reefs have suffered serious problems, enabling timely 
responses and necessary measures to be taken. Besides, in the aspect of marine life rehabilitation, an efficient 
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monitoring system installed in the rehabilitation area should allow us to grasp any subtle changes in the health 
of creatures, as well as to timely reflect if their restoration progress is on the right or wrong track. Therefore, it is 
desired to have the capability of behavior recognition in conjunction with IoT-based environment parameters 
and the living states of macroalgae, to ensure more accurate and efficient ecological research on both coral reefs 
and oceans. The present paper reports our latest research results regarding the anomalous behavior recognition 
of marine life. The rationale of this work is rooted in the observation that, under the effect of global warming 
and climate change, one can expect that more stress-induced anomalous behaviors of life below water can be 
captured as imagery data. The long-term collection of such imagery data can be used to train AI models for 
detecting anomalous behaviors of marine life and thus assessing the ecological status of coral reefs.

Recent work and literature regarding marine life behavior are reviewed as follows. In the field of marine 
swarm behavior research, Herbert-Read et al.4 found that sailfish will break up sardine swarms and besiege 
smaller groups, driving them to the surface and attacking in turns. Later they found that when weak creatures 
were attacked by hunters, there would be protean escape behaviors, which came from the pressure of survival. 
Following that, noise disturbance experiments5 were conducted on bass and found that additional noise disrupts 
the ability of individuals to coordinate their actions with each other, which may in turn disrupt the collective 
dynamics of the fish school. Spampinato6 proposed combining the Gaussian mixture model and moving average 
to detect fish, and using a clustering algorithm to estimate movement trajectory. Later, that method was combined 
with event detection to analyze fish behavior under the effect of typhoons7. Although it can track a fish trajectory 
for behavior identification, the trajectory only retains the coordinates of the fish in each frame; the target object 
within the image frames and its posture features changes are literally neglected, which could greatly reduce the 
accuracy of behavior recognition.

All the aforesaid work relies on traditional algorithms, with no AI elements involved. In contrast to the recog-
nition of marine life behavior recognition, deep learning (a subfield of AI) has long been applied to human action 
recognition. To name a few, the 3D convolutional neural networks (3DCNN)8 has one hardwired layer, three 
3D convolution layers, two subsampling layers, and one fully connected layer. Instead of random initialization, 
the hardwired layer in 3DCNN is manually prepared using information including the optical flows between two 
successive frames. Using RGB video and optical flow features, an approach called Two-Stream Convolutional 
Networks9 was proposed to improve the accuracy of behavior recognition. C3D10 has 8 convolution, 5 max-
pooling, and 2 fully connected layers, followed by a softmax output layer. All 3D convolution kernels are 3 × 3 × 3 
with a stride of 1 in both spatial and temporal dimensions. LRCN11 combines CNN and LSTM (long short-term 
memory) to learn action recognition. Despite the inclusion of temporal information, many existing deep learn-
ing models render superior accuracy at the cost of high computational complexity and slow inference speed.

Methods of aforesaid AI-based studies8–11 all aimed at terrestrial action recognition, such as diving, bike rid-
ing, fall-off, etc., and they all treated the task as a classification problem using a sequence of images as an input 
entity. Since they are only designed for semantically classifying a collective action such as “fish is swimming”, it 
is not possible for these methods to detect anomalous behavior of any individual object within an image frame. 
Namely, these methods cannot provide information on the position, size, category, and orientation of multiple 
target objects. We conjecture that these features if properly processed into a time series, can form useful training 
data for learning recognition of anomalous behavior. To this end, the task of object detection can play a role in 
giving the 2-D location of multiple objects in the image, as well as the prediction of their labels. In fact, image 
classification and object detection are two core techniques in computer vision, their fundamental difference must 
be understood in order to understand our work.

Figure 1 shows a sequence of images used herein to contrast the difference, especially in the applicability to 
the field of marine life, between image classification and object detection. For clarity, red and blue bounding 
boxes detected via a trained object detector are zoomed. A time series of such boxes form a recognizable action 
called cartwheeling, which is an anomalous behavior commonly exhibited by illed tilapia. However, if we were 
using an image classifier rather than an object detector, each image frame would only be classified as a normal 
scene containing three fishes swimming therein, and the anomalous behavior of an individual fish would not be 
caught. This is because, compared to the entire image plane, an ill individual often takes up only a small portion 
of information insufficient to be correctly detected by the image classifier. For breeding and aquaculture experts, 
any anomalous behaviors such as the cartwheeling of individual tilapia should receive immediate attention. 

Figure 1.   The posture sequence of a swimming fish, starting from 5th frame the fish body noticeably inclined 
to its right side, showing an anomalous behavior of cartwheeling.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20051  | https://doi.org/10.1038/s41598-023-47128-2

www.nature.com/scientificreports/

During the breeding process, it is desired to identify any individual fish exhibiting anomalous behavior that is 
caused by stress conditions set according to a specific experimental design. Because some brood fish are rare and 
very precious, sometimes early termination of experiments is necessary. Likewise, in the aquaculture industry, 
early detection of ill fish caused by bacteria or viruses is important because other fish in the same pool or tank 
could be rapidly infected.

Motivation
To our best knowledge, DCG-DTW12 is the first attempt to apply object detection to the recognition of the 
individual behavior of fish, it utilized the property that the relative position of the fish’s body parts remains 
unchanged to identify anomalous behaviors. A tracked fish will be represented by a sequence of encoded 3-D 
state vectors, with each vector representing the posture of the fish detected by an object detector. The vector 
defines the swimming direction as well as the positional relationship between key parts of fish: head, tail, fin, and 
dorsal fin. For example, in Fig. 2b a fish swimming northwest is encoded as [

√
2/2,

√
2/2, 1] . Finally, through 

Dynamic Time Warping (DTW)13, a matching score between a template set and a state-vector sequence is cal-
culated to determine if the fish tracked is abnormal. Though effective and simple, DCG-DTW suffers a problem 
when the fish is swimming at certain postures, such as heading toward or away from the reader. Figure 2a shows 
a fish swimming toward the reader, the state vector will be incorrectly encoded into the same vector as that in 
Fig. 2b. This is due to the fact that in DCG-DTW fish postures are defined in a 2D spatial plane, with the third 
coordinate of the 3D state vector only serving as the facing side indicator of the fish’s right eye. Thus, for the 
fish in Fig. 2a, though the dorsal fin is not apparent, we can still see that it is slightly on the left side of the fish 
head. In DCG-DTW, such posture will be mistakenly encoded. We also found that DCG-DTW may not only 
misjudge postures of the cartwheeling behavior, but the behavior of side_swim (swimming with one side of the 
fish body facing down), as some body parts other than fins in these postures cannot be successfully detected. 
Another limitation of DCG-DTW is its unsuitability for streamlined fish such as cobia because its dorsal fin is 
not easy to detect. Finally, the matching score calculation of DTW requires the sorting operation. If the total 
number of behavior classes (i.e. template size) increases, then the total computation time might easily grow to 
an extent that makes real-time edge computing applications virtually infeasible. In light of these observations, 
a new AI model is needed to directly learn spatiotemporal sequences of fish, so as to achieve accurate and real-
time recognition of abnormal behavior.

To date, there are rather few reports of AI-based behavior recognition of marine life. Based on pre-extracted 
features of RGB and optical flow, Wang14 trains the C3D model and obtains fairly good behavior classification 
results. The shortcoming of C3D is that the input features need to be prepared manually prior to the deep learn-
ing, i.e., they are not automatically extracted. Thus, C3D cannot be trained directly with raw image data. Unlike 
the image classifier trained with optical-flow features14, Li et al.15 proposed an alternative solution based on the 
famous object detector YOLOv5. They added bidirectional feature pyramid network, coordinate attention block, 
and spatial pyramid pooling to YOLOv5, which was named BCS-YOLOv5. The method is characterized by using 
(mosaic) image fusion and modifying YOLOv5 to capture pose information of fish. In particular, it relies on 
explicitly defining four different behavior classes (normal, disease, hypoxia, and pH) for each object in order to 
perform anomaly detection of single fish in the input image. In contrast, our work is aimed to utilizing the results 
provided by an object detector to track a sequence of fish images, followed by classifying the input sequence as 
normal or not. That is, the main task of this paper is to develop a novel 3D classifier for recognizing the behavior 
of fish. Unlike 3DCNN and C3D of which training relies on not only raw imagery data but also images-derived 
features such as optical flow and gradients, the proposed Lite3D is built on a 3D full-convolution neural network 
which automatically extracts features, and can be combined with any state-of-the-art object detector and tracking 
algorithm to perform real-time recognition. Here, the term “full-convolution” is used to indicate no use of fully 
connected layers in the network architecture. Each fish is first detected as an ROI and tracked for certain image 

Figure 2.   (a) A target fish swimming outwardly; (b) the erroneous state vector defined in DCG-DTW12.
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frames, and then the resulting sequence of ROIs extracted from the input video is fed to a cut-paste-warp scheme 
to produce a sequence of ROI-only frames for training the Lite3D to learn behavior recognition.

Lite3D is a lightweight model ideal for real-time detection of anomalous behaviors. Compared to its coun-
terparts, Lite3D not only has the smallest model size and least number of trainable parameters but also is the 
fastest in execution speed. The main contributions of this work are threefold: (1) realize a novel approach that 
incorporates object detection, automatic feature extraction/classification, and tracking to perform real-time 
fish behavior recognition, without needing manual-derived features as well the error-prone vector encoding 
and time-consuming template matching; (2) present a lightweight 3D full convolution network, without the 
use of fully connected network at the prediction head; (3) devise a cut-paste-warp scheme to produce ROI-only 
sequential frames for training Lite3D effectively.

Results
The experiment setup is listed as follows. Hardware: CPU/i7-8700 with one NVIDIA GPU/RTX-2080 and 
RAM/32G. Software: Windows 10, python 3.6.9, Cuda 10.2, cuDNN 7.6.5. Object detector uses YOLOv4-tiny 
under Tensorflow 1.14.0. Key hyperparameters of batch size, epoch, learning rate, and optimizer are set to 32, 50, 
0.001, and Adam, respectively. Performance comparison is conducted using a private dataset prepared through 
the step of data preparation (elaborated later). This private dataset was labeled by aquaculture experts and used 
for the training and testing processes (see Supplementary Table S1, where we have 5862 ROI-only sequences, 
each having a length of ten frames) for cobia and 5596 sequences for tilapia. We see some categories have much 
less data than others, e.g. the “anomalous” in cobia and the “side_swim” in tilapia. As well known, the problem 
of the imbalanced dataset can be alleviated through data augmentation, under-sampling the majority class, using 
F1-score, etc. Note that the experiment is performed in compliance with performed in compliance with Taiwanese 
animal protection act, and approved by the Institutional Animal Care and Use Committee (IACUC-09053). All 
the authors followed the ARRIVE guidelines.

Also, for a fair comparison, we adjusted the input data dimension of 3DCNN8 and C3D10 to be the same as 
that of Lite3D. Since our goal is to make Lite3D deployable on an edge computing device for real-time recogni-
tion, performance criteria should include precision, recall rate, F1-score, model size, the total number of trainable 
parameters, and finally, the execution time. Note that the original C3D architecture requires over 78 M trainable 
parameters, which is too fat for limited computing hardware. For comparison purposes, we implemented a lite 
version of C3D that is close to 3DCNN in terms of model size and parameters. After the network construction 
and training, the model size and the number of trainable parameters for 3DCNN, C3D, and Lite3D are calculated 
by Tensorflow, and they are 16.3 MB/4.27 M, 18.6 MB/4.88 M, and 349 KB/0.08 M, respectively. Specifically, in 
terms of model size, Lite3D is 50 times smaller than the other two models; and in terms of trainable parameters, 
Lite3D is 57 times lighter.

To compare the performance of the three models, we used a private dataset that contains samples of three 
behavior classes for cobia, and four for tilapia in Table 1. Regarding the loss function during the backpropagation 
training process16, both “cross entropy” and “focal loss”17 were tested. For the former, although all three models 
can achieve nearly 96% in average precision, they had only 92% precision for the “grinding” class of tilapia, 
because the data quantity thereof is relatively small (only 53 for training and 13 for testing, see Supplementary 
Table S1). To improve, we substitute the focal loss for the cross entropy, the precision for the “grinding” class of 
tilapia has increased to 100%, and the average precision of all three models increased from 96 to 98%.

To help readers better understand the necessity as well as the effectiveness of using the cut-paste-warp scheme, 
we have also prepared a dataset without using cut-paste-warp for comparison purposes. Table 2 shows the train-
ing results of the three models using the focal loss. By comparing Tables 1 and 2, it is easy to see that all models 
suffer a significant performance degradation for the “grinding” class of tilapia. This is due to the close resemblance 
of the “grinding” class to the “cartwheeling” class in terms of moving poses. The most noticeable difference is 
that the “grinding” class always occurs at the bottom of the tank. Namely, anomalous behaviors occurring at the 
bottom of the image are likely predicted as the “grinding” class. This result justifies the use of ROI-only frames 
generated via the cut-paste-warp scheme. Finally, Table 3 provides a performance comparison between methods. 
Lite3D outperforms in terms of precision, recall, F1-score, FPS, and the number of free parameters. Note that, 
compared to 3DCNN, C3D, and Lite3D which all involve explicitly learning temporal information, BCS-YOLOv5 
yields the lowest precision. This is because BCS-YOLOv5 is solely based on object detection, which inevitably 
gives more false-positive output predictions.

Using a test video of four image frames containing multiple fish, Fig. 3 pictorially shows the recognition 
results of the three models trained with “focal loss”. Here, yellow lines represent the tracking traces, while green 
and red boxes indicate normal and anomalous behaviors detected, respectively. In the 72nd frame, we see that 

Table 1.   Recognition performance comparison.

Model

Precision (for individual behavior category)

Precision Recall F1-score

Cobia Tilapia

Normal Lifeless Anomalous Normal Grinding Cartwheeling Side_swim

3DCNN 0.97 0.99 1.00 0.99 1.00 0.97 0.91 0.97 0.96 0.97

C3D 0.98 0.99 1.00 0.98 1.00 0.93 1.00 0.98 0.98 0.98

Lite3D 0.98 0.99 1.00 0.99 1.00 0.95 1.00 0.98 0.99 0.99
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ID_5 and ID_6 respectively exhibit “grinding” and “cartwheeling” for all three models. Using naked eyes, we can 
see that in frame 86, fish ID_6 already returned to a “normal” swimming posture, while fish ID_5 remained at 
“side_swim”. However, Fig. 3 shows that only Lite3D successfully detected the fish ID_6 returning to “normal” 
at frame 86 (indicated by the green box), justifying that our method indeed performs better over the other two 
models in differentiating between normal and anomalous behaviors of fish.

As shown in Table 4, the proposed lightweight model is 3 to 5 times faster than the object detector YOLOv4-
tiny, and our recognition method can reach 98 fps on RTX2080. If run on Jetson Xavier™ NX, it can still achieve 
39 fps, fully justifying its feasibility for realizing edge-computing applications on ROV or AUV.

Discussion and conclusion
The total number of trainable weights used by Lite3D is only 1/57 that of 3DCNN and C3D. In terms of model 
size (i.e. memory space required to store the total number of network layers and artificial neurons), Lite3D is 
only 1/50 of 3DCNN and C3D. Such a tiny model is achieved at no expense of recognition performance, and it 
can be used with any state-of-the-art object detector and tracking algorithm to achieve 99% in F1-score.

Because warping is conducted on an ROI-pasted blank canvas and the result is used as input data to Lite3D, 
both spatial and temporal information is well preserved. Spatiotemporal info is extracted through plural 3D 
convolution layers. All convolution layers of Lite3D adopt random initialization, so no need to manually derive 
features of optical flow and gradients as the hardwired input layer in 3DCNN. In contrast, intermittent postures 
erroneously detected in DCG-DTW could result in poor accuracy. As shown in Fig. 3, where two or three fish 
were being detected and tracked during 50th–86th frames, if DCG-DTW were used, fish ID_5 at frame 72 
would be falsely identified as though no changes in posture due to no parts of the fish were detected. Since pre-
defined states are not necessary for Lite3D, this problem of mis-detected body parts is not an issue at all. For 
future work, the representational power of Lite3D may be further improved by invoking Squeeze-and-Excitation 
Networks18 to adaptively recalibrate channel-wise feature responses after layer C1 (see “Methodology”). Also, the 
computational cost be further reduced by decomposing all the standard 3D convolutions into depth-wise and 
pointwise convolutions19. Finally, it should be worth trying to apply our method to terrestrial action recognition 
and compare its performance with those of methods8–11.

The presentation of anomalous behaviors in marine life often indicates symptoms of disease or signs of being 
under stress due to coldness, too salty water, etc. In light of this, our method can also be used to assist the breed-
ing and aquaculture industry in providing an early warning of abnormal or emergency conditions that require 
timely measures to prevent significant losses. Also, it is fairly easy to integrate the software coding of our method 
with a cost-saving camera and IMU (inertial measurement unit) to produce affordable underwater monitoring 
devices. Having said that, we should be cautious that in practice, the performance of our method is inevitably 
influenced by the performance of the detector and tracking. Thus, it is very important to have a well-performing 
object detector and tracking algorithm in the presence of complex underwater conditions. For example, if the 
object detector lacks a sufficiently high sensitivity in detecting marine life (e.g., in facing a very complex under-
water background), we may come into an interruption of tracking sequence, hence resulting in an inability to 
identify behaviors correctly. To this end, we will study the plausibility of merging the object detector, tracking, 
and Lite3D to strengthen the system robustness through the implementations of weigh-sharing as well as the 
end-to-end fusion20 in the aspect of architecture, rather than the purely spatial fusion using the input images15.

Table 2.   Recognition performance comparison without using the cut-paste-warp scheme.

Model

Precision for individual behavior class

Precision Recall F1-score

Cobia Tilapia

Normal Lifeless Anomalous Normal Grinding Cartwheeling Side_swim

3DCNN 0.96 0.99 1.00 0.99 0.92 0.94 0.91 0.96 0.98 0.97

C3D 0.96 0.99 0.89 1.00 0.81 1.00 0.83 0.93 0.92 0.92

Lite3D 0.93 0.98 1.00 0.99 0.86 0.99 1.00 0.97 0.90 0.93

Table 3.   Single fish behavior detect performance comparison.

Method Precision Recall F1-score mAP50 (Detector) FPS
Num. of parameters (Detector /
Classifier)

Yolov4 + 3DCNN 0.97 0.96 0.97 0.78 38.59 27.6 M/ 4.2 M

Yolov4 + C3D 0.98 0.98 0.98 0.78 38.21 27.6 M/4.8 M

Yolov4 + Lite3D 0.98 0.99 0.99 0.78 38.87 27.6 M/0.08 M

Faster-RCNN + DCG-DTW 0.84 0.80 0.82 0.50 27.26 6.5 M/NA

Yolov4 + DCG -DTW 0.79 0.56 0.66 0.35 17.38 27.6 M/NA

EfficientDet-D1 + DCG -DTW 0.55 0.61 0.58 0.41 17.13 6.6 M/NA

BCS-YOLOv5 0.93 0.93 0.93 0.97 55 9 M/NA



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20051  | https://doi.org/10.1038/s41598-023-47128-2

www.nature.com/scientificreports/

Figure 3.   From top to bottom are the recognition comparisons of yolov4 + 3DCNN, yolov4 + C3D, 
yolov4 + Lite3D, Faster-RCNN + DCG-DTW, yolov4 + DCG-DTW, EfficientDet-D1 + DCG-DTW and BCS-
YOLOv5. 

Table 4.   Execution time breakdown of the proposed method (in secs).

Device Object detection Tracking Lite3D Total time FPS

Jetson Xavier™ NX (CPU NVIDIA Carmel Arm®v8.2, GPU NVIDIA Volta™) 0.01762 0.00222 0.00541 0.02525 39.60

PC (CPU Inteli7-8700, GPU RTX 2080 × 1) 0.00769 0.00091 0.00159 0.01020 98.02
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Methodology
The flowchart of the proposed method is shown in Fig. 4, it consists of two phases: Training and Prediction. The 
former further comprises two steps: data preparation and model training. In Step_1, an object detector is used 
to perform the detection of target creatures bounded by an ROI (Region of Interest) for each image frame. Each 
individual target will be tracked within the frames to generate a sequence of ROIs. Each ROI will be processed by 
the cut-paste-warp scheme, i.e., it will be pasted back to its corresponding position of the original input frame with 
the background completely blackened out. A training vector d = (dk-9, dk-8,…,dk) can be obtained by extracting 
k images in a sequence of ROIs. Without loss of generality, set k = 10 and choose YOLOv4-tiny21, 22 as the object 
detector, and use cobia and tilapia as the demonstrating fish species. Then, a behavior category is assigned, by 
experts, to d . Following that, experts are asked to screen, based on a majority voting scheme, those data with 
confusing annotations. In Setp_2, the cleaned data is divided into a training set and a test set, and Lite3D is built 
and trained using the training set. Finally, in the prediction phase, frames of video are streamed into the trained 
Lite3D for behavior recognition. First, target objects in successive frames are detected and tracked to obtain 
ROIs (i.e. any red or green bounding box in Fig. 3), thus generating a sequence d for each tracked target for the 
trained Lite3D to perform prediction. The method is elaborated as follows.

Step_1 Data Preparation
Annotation of underwater creature behaviors
Supplementary Fig. S3a shows a false detection of body parts by DCG-DTW12, where the tail of one fish (the 
smaller brown box) was erroneously identified as belonging to another fish (red box). This error is rooted in 
that the center point of the tail is located within the red bounding box. Also, as explained earlier, DCG-DTW is 
unable to define the two postures in Supplementary Fig. S3b and Supplementary Fig. S3c, namely, fish swimming 
toward and away from the reader. The proposed method can do without the aforesaid problems.

We have collected and annotated video data of various marine life including tilapia, cobia, crab, lobster, cut-
tlefish, echinus, and sea cucumber. However, to help readers understand our work, in this paper we only present 
results of tilapia and cobia. At this moment, there are seven categories defined by experts, three for cobia and 
seven for tilapia. Exemplar categories and their posture sequence are illustrated in Supplementary Fig. S4, where 
di indicates a target fish detected at the ith frame. Supplementary Fig. S4a shows sequential movement of “normal” 
behavior. Supplementary Fig. S4b shows an anomalous behavior of side_swim, meaning the fish is swimming 
with one side of its body facing down, hence the name. Supplementary Fig. S4c shows a fish remaining still for a 
period of time at the pool bottom. Because cobia is migratory fish, if a cobia stays unmoved for a long time, then it 
deserves attention. This kind of behavior is annotated as “lifeless “. Supplementary Fig. S4d depicts a fish rubbing 
against the pool bottom, with the body being unbalanced or flipped. It is annotated as the “grinding” category in 
tilapia, and the “anomalous” category in cobia. If a cobia exhibits the grinding behavior, likely there are parasites 
on the skin; Supplementary Fig. S4e shows a fish exhibiting a toppling posture, it is annotated as “cartwheeling”.

ROI‑only frames generated via cut‑paste‑warp scheme
State-of-the-art deep neural networks often require fixed-size input images, and so does the proposed Lite3D. 
However, we cannot simply use the cutout ROIs (see Supplementary Fig. S5a) and warp them into the same size 

Figure 4.   Flowchart of the proposed anomalous behavior recognition method.
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(Supplementary Fig. S5b) for training Lite3D, because doing so will cause the loss of spatially varying informa-
tion that is essential to the behavior recognition. To see this, we first note that any edge detectors would produce 
ROIs of various sizes, as shown in Supplementary Fig. S5a. If one simply applies warping to ROIs to reshape 
them into the same size, then temporal information originally inferable from the consecutive input frames (i.e., 
changes in body size and orientation), is likely destroyed. This can be seen by comparing Supplementary Fig. S5a 
and Supplementary Fig. S5b, where the body-moving variations of the fish are lost in Supplementary Fig. S5b 
due to the warping. We solve this problem by preparing a black canvas having the size of the original image 
frame, then pasting the ROI to the canvas at the position where the ROI is originally located, and then warping 
the ROI-pasted canvas to the size required by the network in question. The result is shown in Supplementary 
Fig. S5c where moving variations of the fish are nicely kept. The performance comparison of using ROIs gener-
ated without applying the cut-paste-warp scheme (Supplementary Fig. S5b) and ROI-only frames generated 
by applying the cut-paste-warp scheme (Supplementary Fig. S5c) as test datasets are shown in Tables 1 and 2, 
respectively. Finally, data with confusing annotations will be removed through majority voting by aquaculture 
experts, resulting in 5,862 sequences for cobia and 5,596 sequences for tilapia(see Supplementary Fig. S7 for 
examples of the seven categories).

Step 2 Model training
Without loss of generality, we explain the network design of Lite3D using the exemplar configuration Supple-
mentary Fig. S6. Feature maps at different layers of Lite3D is shown in Supplementary Fig. S6a, and the architec-
ture configuration is depicted in Supplementary Fig. S6b Lite3D has a backbone and a prediction head C4 . The 
network configuration of Lite3D is shown in Supplementary Fig. S6b, it has a backbone (green boxes together) 
and a prediction head (red box). The backbone, which acts as a spatiotemporal feature extractor, comprises 
three blocks, each having a convolutional layer Ci and a Max-pooling layer Si . The feature maps generated by 
C1, S1, C2, S2, C3, S3 , and C4 are expressed in tensor format k × c@n× n , where c may represent the number of 
channels or it may refer to the number of kernels (and hence the number of feature maps). The integer k is the 
number of n× n image frames in the input video, it may also refer to the number of feature maps generated by 
the previous layer. Though other integer values may also be used, here for illustration purposes we set k = 10, 
c = 3, n = 64 for the input layer in Supplementary Fig. S6. The key feature of this design is that we substitute 
convolutional layers for full-connection (FC) layers at the prediction head. Especially, the convolution kernel 
applied to the flatten layer has the size of 1× �@1× 1 , �=the number of categories, thus enabling the replacement 
of FC layers simply with a flatten layer. One merit of such a design is that it substantially reduces the number of 
trainable weights, as verified in section “Results”. In addition, our design allows k to be calculated by the model 
architecture which is normally preconfigured by the network developer. The following discussions briefly describe 
how. First, we approach this problem by starting with a broader question: can the proper values of (w, h, k) be 
determined if the kernel size of each convolutional layer and that of pooling layer are known? Take Supplemen-
tary Fig. S6a as an example, where Lite3D is designed to have four convolutional layers C1 , C2 , C3 , C4 and three 
pooling layers S1 , S2 , S3 . We assume the kernel size of 3D convolution at lth is cnl × cnl × cpl , the kernel size of 
pooling layer pnl × pnl × ppl , and the final size of feature map is w′ × h

′ × k
′ . Further, assume no zeros padding. 

The size parameters of input frame h and w are calculated as Eq. (1), and the depth k in the temporal direction is 
Eq. (2). The integer value of w and k can be given located in a range through Eq. (3) and Eq. (4).

B e c au s e  t h e  d e s i re d  f i n a l  s i z e  o f  f e atu re  m ap  i s  w′ × h′ × k′ = 1× 1× 1,  w i t h 
cn1 = cn2 = cn3 = cn4 = 3, pn1 = pn2 = 3, pn3 = 2  ,  u s i ng  E q .   ( 3 )  y i e l d s  63 ≤ w, h ≤ 80  .  T h at 
explains why in Supplementary Fig.  S6, the input frame size was set to 64. Likewise, with 
cp1 = 1, cp2 = cp3 = cp4 = 3, pp1 = pp2 = 1, pp3 = 2 , using Eq. (4) gives us 9 ≤ k ≤ 10 . Accordingly, in Supple-
mentary Fig. S6, the depth k was set to 10. Clearly, given the equations of (1) through (4), if one is given the value 
of parameters of h,w, k under the constraint of the value of w′, h′, k′ all being one, the problem of finding out the 
cnl , cpl , cnl , cpl becomes solving four simultaneous equations. Unfortunately, the reverse is not always possible. 
That is, given a k value, no analytical solution exists yet. However, the techniques of NAS (network architecture 
search) can be used for searching plausible network configurations.

The rationale for replacing all FC layers is rooted in two observations23: (1) the convolutional layer learns 
better with the underlying information of the image data, thus enabling lower training loss with fewer train-
able parameters (2) fewer trainable parameters make possible better resilience to overfitting and hence better 
generalization capability, especially in the case of few training data available. Using entry-wise independent 
Gaussian and CIFAR-10 for the test, they also showed that in dealing with simple classification or object detec-
tion tasks, all-convolution networks perform better than hybrid networks (i.e. CNN + FC). However, we note 
that all-convolution networks such as AConvNet24 are mainly aimed at tackling 2-D image classification tasks. In 

(1)w = h = cn1 − 1+ pn1
(
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(
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(
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(
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(
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)))
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order to handle spatiotemporal data, 3D convolution models are capable of providing the required representation 
capability, yet they inevitably incur massive trainable parameters, making it difficult to be deployed in real-time 
edge computing applications.

In Supplementary Fig. S6b, the 3D kernel size of all convolution and max-pooling is expressed as h× w × p , 
where p represents the depth in the temporal direction. That is, h× w × p means the h× w kernel being applied 
simultaneously to p successive frames to generate an output feature map. The padding of all layers was set to 
“valid”, and the stride of (1, 1, 1). With k input frames, we will have k − (p− 1) output frames. In Supplementary 
Fig. S6b, all convolutional layers adopt 3× 3× 3 kernel size, except the C1 layer, which is purposely degenerated 
to 3× 3× 1 . Namely, with p = 1 in C1 and the input video clip is assumed to have 10 frames, each of which has 
three channels (RGB). Further, assuming there are 16 convolution kernels in C1 , there will be 16 output channels 
for the input video. Because all the convolution kernels in C1 have a size of 3× 3× 1 , each time the convolution 
is applied on only one frame in the depth direction, no temporal information will be collected until the C2 layer. 
In short, the C1 layer is only responsible for extracting spatial features needed for the truly 3D convolutions in 
C2 through C4 layers to stack temporal information.

The output feature maps of the first block can be shown to be 10× 16@21× 21 , and frames, the total number 
of trainable parameters for the first block is calculated as 3× 3× 3× 16 = 432 added by 16 biases, which equals 
448. At layer C2 , 32 kernels of 3× 3× 3 are used, with p = 3 , there will be 8 output frames. And because the 
kernel of the S2 layer is set to 3× 3× 1 , the output of the second block is a tensor of 8× 32@7× 7 and 13,856 
trainable parameters. Likewise, the output of the first block has the tensor expression of 3× 64@3× 3 and 55,360 
trainable parameters. Thus, the total number of trainable parameters is calculated as Eq. (5):

With �=7, the total number of trainable weights in Supplementary Fig. S6 thus equals 0.08 M. The 3D convo-
lution is prescribed in Eqs. (6) and (7), where Ilj

(

x, y, z
)

 is the jth feature map in the lth layer; f  is the activation 
function, and Vl

j (x, y, z) is the convolution result of the jth feature map in the lth layer; wl
j,c represents kernel 

weights connected between the jth feature map in the lth layer and the cth feature map of the previous layer.

Note the gradients for the kernel weights are computed using the famous backpropagation algorithm, except 
the same weights are shared across many connections of frames or feature maps at the previous layer, see (red, 
blue, and green) arrows in Supplementary Fig. S6c. The flatten layer uses focal loss17 of Eq. (8), where 0 < αi ≤1 
represents the weight of the ith category loss, which is responsible for solving the problem of the imbalanced 
number of categories; and (1− A(xi))

γ represents the loss adjustment factor, which is responsible for solving 
the problem of learning difficult data. By adjusting γ to reduce the loss corresponding to easy-to-learn data, the 
model can focus on learning complex data. Assuming αi = 1 , Supplementary Fig. S8 shows the effect of using 
different values of γ on the model loss. Regardless of the value of αi , a larger γ tends to make the model saturate 
more easily and hence has a lower learning capacity. In particular, we found that when γ = 20 , the loss function 
stops decreasing and becomes nearly zero when the prediction probability (confidence level) is greater than 0.2, 
which means that the model stops learning. Obviously, this is undesired. In practice, for any trainable models, 
we would expect the prediction confidence level to be higher than 50%. Because the output of softmax always is 
bounded in [0,1], if its value exceeds 0.5 and is indeed a correct prediction, then we can say that the model has 
learned the input data quite well. Accordingly, it is desired to see that the learning activity of the model continues 
(i.e., the loss decreases) relatively fast as long as the prediction probability is smaller than 0.5. However, when 
the prediction probability is greater than 0.5, the decrease amount in the loss function should be relatively slow. 
In light of this, γ ∈ [0, 5) is recommended for training Lite3D. In addition, a rule-of-thumb for setting αi is as 
follows: the smaller the amount of data in the ith class, the larger αi is used, so the learning can be focused on 
classes with less data. This property is quantified by Eq. (9), where Stotal and Si denote the total number of training 
data and that in the ith class, respectively.

Prediction phase
In this study, a multi-thread tracking algorithm is developed to work with YOLOv4_tiny to provide the sequences 
of ROIs for behavior recognition of multi-targets. A set T =

{

tj
}

 is used to keep all the targets being tracked 
frame by frame. Initially, T = ∅. Within each frame, objects (e.g. fish) X =

{

xdi
}

 detected by YOLOv4_tiny at dth 
frame are subjected to the tracking Algorithm (see Supplementary Algorithm_S2) whereby multiple targets are 
tracked for k frames, ROIs of which will be subjected to the cut-paste-warp scheme, and the resulting sequence 
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will be fed into the trained Lite3D for behavior recognition. Note that a prediction ROI is given for any tracking-
loss frame. More details on the tracking algorithm are given as follows.

Any object xi is to be matched with all threads in T using Eq. (10), whereby elements tj having a sufficiently 
large IoU (intersection over Union) with xi are further subjected to a distance checking, i.e., the element in the 
thread T that matches xi and has a distance from xi being smaller than the threshold β (in pixels) is picked.

Note that the values of α and β can be varied according to the species of the target, e.g. in dealing with speedy 
creatures, a smaller α allows more candidates to be selected for the distance checking, thus avoiding failure track-
ing. During the tracking, three working sets A (Add), U (Update), and P (Predict) are used to keep track of new, 
aborted threads, and the estimation for the tracking loss, respectively. If xi does not match any thread, then xi is a 
new target that needs to be added to A . By setting the prediction set P as T − U  , we can save computation time, 
because that way we only need to make predictions for the objects in P , rather than predicting for all detected 
objects as in other tracking methods. In all experiments presented in this paper, we simply use the linear predic-
tor in both x and y directions as the strategy for predicting the next positions of tracking objects. Following the 
prediction, if there are newly detected objects, add them to T . Without loss of generality, if a target tj is lost for 
r successive frames, the tracking of tj can be aborted and removed from T. In this study, r = k/2. Also, a data 
structure of a first-in-first-out stack is assigned to each tj for keeping coordinates data of ROIs, and the top ten 
ROIs form a sequence d and are sent to Lite3D for recognition, as shown in Fig. 4.

It is interesting to visualize the effectiveness of Lite3D in extracting useful features for behavior recognition. 
Supplementary Fig. S9 illustrates the 3-D distribution map of the classification results, i.e., the best tree principal 
features derived by applying the Principal Component Analysis to the output features at the flatten layer in Sup-
plementary Fig. S6. For comparison, we trained two separate models of Lite3d using entropy loss and focal loss, 
respectively. Clearly, the nonuniform density distribution in Supplementary Fig. S9 has justified that there exists 
a difference in importance among the features, and some features indeed carry more information than others. 
In addition, the more concentrated density distribution in Supplementary Fig. S9b than that in Supplementary 
Fig. S9a indicates that the focal loss outperforms the ordinary entropy loss.

Data availability
The raw dataset generated and/or analyzed during the present study is now available and can be accessed through 
the link: http://​140.​121.​135.​204/​aicen​ter/​publi​catio​ns.​html, under the repository name of Anomaly behavior 
recognition of underwater creatures using Lite3D full-convolution network. Currently, the dataset includes seven 
behavior categories (as those shown in Supplementary Fig. S7) and will be continuously expanded in the future 
by the AI Research Center at NTOU. For dataset of creatures other than those presented in this article, readers 
are encouraged to visit https://​ai-​center.​ntou.​edu.​tw/​proje​ct/​datas​et.

Code availability
For readers who are interested in acquiring the training set, test set as well as augmented image data used in 
this paper, the programs needed for preparing the above datasets are accessible through Github https://​github.​
com/​softc​omput​ingla​b520/​Anoma​ly-​Behav​ior-​Recog​nition-​of-​under​water-​creat​ures-​Using-​Lite-​3D-​Full-​Convo​
lution-​Netwo​rk.
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