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A novel directional‑oriented 
method for predicting shear 
wave velocity through empirical 
rock physics relationship using 
geostatistics analysis
Esmael Makarian 1, Maryam Mirhashemi 1, Ayub Elyasi 2, Danial Mansourian 3, Reza Falahat 4, 
Ahmed E. Radwan 5*, Ahmed El‑Aal 6,7, Cunhui Fan 8 & Hu Li 8

This study attempts to design a novel direction–oriented approach for estimating shear wave velocity 
 (VS) through geostatistical methods (GM) using density employing geophysical log data. The research 
area involves three hydrocarbon wells drilled in carbonate reservoirs that are comprised of oil and 
water. Firstly,  VS was estimated using the four selected empirical rock physics relationships (ERR) in 
well A (target well), and then all results were evaluated by ten statistical benchmarks. All results show 
that the best ERR is Greenberg and Castagna, with  R2 = 0.8104 and Correlation = 0.90, while Gardner’s 
equation obtained the poorest results with  R2 = 0.6766 and correlation = 0.82. Next, Gardner’s method 
was improved through GM by employing Ordinary Kriging (OKr) in two directions in well A, and then 
Cross‑Validation and Jack‑knife methods (JKm and CVm, respectively) were used to assess OKr’s 
performance and efficiency. Initially, CVm and JKm were employed to estimate Vs using the available 
density and its relationship with shear wave velocity, where the performance of CVm was better with 
 R2 = 0.8865 and correlation = 0.94. In this step, some points from the original  VS were used to train 
the data. Finally, Vs was estimated through JKm and using the relationship between the shear wave 
velocity of two wells near the target well, including wells B and C; however, in this step, the original 
shear wave velocity of the target well was completely ignored. Reading the results, JKm could show 
excellent performance with  R2 = 0.8503 and Corr = 0.922. In contrast to previous studies that used only 
Correlation and R‑squared  (R2), this study further provides accurate results by employing a wide range 
of statistical benchmarks to investigate all results. In contrast to traditional empirical rock physics 
relationships, the developed direction‑oriented technique demonstrated improved predicted accuracy 
and robustness in the investigated carbonate field. This work demonstrates that GM can effectively 
estimate Vs and has a significant potential to enhance  VS estimation using density.

The subsurface studies, whether deep studies, such as hydrocarbon discovery, or surface surveys, such as sample 
water exploration and geotechnical issues, desperately need an accurate tool to investigate features, like determin-
ing underground structures or assessing rocks, fluids, and porous media  properties1,2. P-wave  (VP) and S-wave 
velocity  (VS) are two important and versatile tools that are very efficient and useful in determining reservoir 
characteristics. To give more information,  VS is an essential parameter in determining subsurface structures in 
size and  geometry3. In reservoir characterization,  VS helps determine lithofacies, fluid properties, and electrical 
resistivity using the Vs–Vp relation, which is regarded as a magic  tool4. Moreover, the  VS–porosity relationship 
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can help assess the sorting and volume of cementation, especially for sandstone  reservoirs5,6. The shear wave 
velocity is also widely used in reservoir geomechanics because it is considered a predominant factor in estimating 
the elastic modulus and building the geomechanical model of the  reservoirs7–9.

On the other hand, the propagation of seismic wave velocity profoundly depends on the elastic properties 
of the porous medium, which is derived from the properties of both rocks and fluids; however, each seismic 
wave is affected by the factors according to its inherent  characteristics10,11 An extensive diversity of direct and 
indirect methods is employed to calculate shear wave velocity. It can be measured directly in the laboratory by a 
core sample or by well–logging tools, not the least of which is the DSI (Dipole Sonic Imager)12. However, these 
methods have some restrictions and problems; for example, in some situations, such as horizontal and deviation 
wells, getting a core sample or performing well-logging operations would be difficult or impossible, and above 
all, they are time–consuming and  expensive13.

Over the past few years, a wide range of indirect methods have been presented to tackle these problems. A 
myriad of empirical rock physical relations has been introduced to predict  VS, such as Borcher et al. (2005), Kerif 
(1990), Castagna et al. (1985), Pickett (1963), Greenberg and Castagna (1992), Gassmann (1951), Castagna and 
Backus (1993), and Han et al. (1989)14–21. These methods mainly employ P–wave velocity and lithology to predict 
 VS in different areas. Besides, thanks to the immense advance in science and technology, intelligent methods have 
been widely used to estimate  VS, some of which are listed as follows: Taheri et al. (2022), Mehrad et al. (2022), 
Zhang and Ben‐Zion (2020), Wang and Cao (2021), Ebrahimi et al. (2022), Olayiwola and Sanuade (2021), Liu 
et al. (2021), Miah (2021), Azadpour et al. (2020), Yang et al. (2019), Anemangely et al. (2019)22–32. These meth-
ods usually utilize numerous inputs, for instance, gamma ray (GR), density (Rhob),  VP porosity, and resistivity, 
to get satisfactory and accurate results. Because they are input–based methods and work through discovering 
the relationship between input data and target parameters, studies show that the more input data, the better the 
 results22. Geostatistical methods are other indirect methods that have mostly been used to estimate shear wave 
velocity profiles in surface and near-surface  projects33,34. Maleki et al.35 generates a 3D shear wave velocity model 
for a well through the Kriging and Back Propagation Neural Network (BPNN) based on the correlation between 
P-wave velocity and  VS. Most of the previous studies were conducted on only one well and used more than two 
sets of data to estimate the shear wave velocity. Scrutinizing previous studies reveals that not much attention was 
paid to estimating shear wave velocity through mere density because it does not have a good correlation with  VS. 
Given those considerations, the main goal of this study is to discover a novel numerical direction to predict shear 
wave velocity using density as the least available data to save time and money through developing an empirical 
rock physics relationship (ERR) by geostatistical methods (G.M.). For this purpose, initially, S-wave velocity is 
estimated using a total of ERR provided by  Gardner36, Castagna et al.16,  Kerif15, and Greenberg and  Castagna18 in 
the target well. Then, the poor-quality estimated data is improved through G.M., including the cross-validation 
method (CVm) and the Jack-knife method (JKm). In the third step, the shear wave velocity of the target well is 
estimated by the JKm using the densities of two nearby wells. In contrast to previous studies that used only cor-
relation and R-squared  (R2), this study further provides accurate results by employing a wide range of statistical 
benchmarks to investigate all results comprehensively and accurately. These benchmarks include mean absolute 
percentage error (MAPE), Margin of error (ME), mean absolute error (MAE), mean percentage error (MPE), 
the root mean squared error (RMSE), and Minimax. Besides, the mean and standard deviation (STDEV) for 
all estimations were considered. Because the new strategy in this article involves a lot of numerical methods, 
some statistical benchmarks are a normal and essential activity that must be done to evaluate results accurately.

Geological information and data set description
The study was performed in the Persian Gulf ’s oil carbonate reservoir (here named R). Studies show numerous 
hydrocarbon reservoir formations exist mainly within carbonate sequences of different ages in the studied basin, 
ranging from the Triassic to the  Tertiary37. The data set used in this study has been taken from the R reservoir, 
namely wells A, B, and C, which are close to each other (Fig. 1). Petrophysical analysis from core samples and 
well logging data show that roughly the selected wells in terms of lithology and fluids are the same. In all wells, 
limestone is responsible for the largest share of lithology with approximately 85%, followed by dolomite with 
almost 10%, and shale accounted for the smallest proportion of lithology (about 5%). All research wells mainly 
comprise water and oil, with a high oil–water ratio (OWR); however, negligible gas has been detected. Labora-
tory investigations based on thin section analysis proved that the pore type in the target formation is mainly 
interparticle and that there are no significant changes or  fractures38. Tectonically, none of the tectonic processes, 
such as folding or faulting, have affected the studied area. This study uses well-logging data to predict  VS and 
selects well A as the target. In order to estimate S-wave velocity through empirical rock physics relationships 
(ERR) in the target well, P-wave velocity, density, and volume lithology information have been used, and for 
applying geostatistical methods (GM), density has been used.

Methodology
S–wave velocity in subsurface projects may not be measured at all, or the measured value may have problems at 
some intervals or misses. In order to estimate S–wave velocity in this paper, two main approaches are employed: 
ERR and GM. In the former method, the S–wave velocity of well A was ignored and then estimated by some ERR 
based on different parameters, including density, P–wave velocity, and lithology, unlike the previous studies that 
only used  VP and lithology and did not consider density. The GM method improves the poorest results using the 
Ordinary Kriging method (OKr). Following this, CVm and JKm are obligated to evaluate the performance and 
efficiency of OKr. It must be mentioned that all results were evaluated and compared to the (measured) original 
 VS through ten different statistical benchmarks; however, in the previous studies, only  R2 and Correlation were 
employed.
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Empirical rock physics relationship (ERR)
A seismic velocity such as a compressional (P) or shear (S) wave is mainly dependent on the characteristics of 
porous media, not the least of which are its elastic  properties39. The velocity of the shear (S) wave can be defined 
by Eq. (1):

where  VS is S-wave velocity, µ is shear modulus, and ρ is the density of a rock, these two sonic waves are further 
connected by concerning elastic properties:

In Eqs. (2) and (3), K and µ are the bulk and shear modulus, and also ϑ is the Poisson ratio of the medium; 
the equations illustrate that the value of the velocity ratio is always more than one  (VP/VS > 1)40. The first section 
of this paper estimates S–wave velocity through the selected empirical relationship between  VP and density. It is 
worth mentioning that these equations were provided based on specific areas and conditions. This study obtained 
data from well–logging, including P–and S–wave velocities, densities, and volume logs consisting of calcite, 
dolomite, and shale. The employed rock physical equations are discussed below. Firstly, Kerif et al.15 provided 
an excellent relationship to estimate Vs as following Eq. (4) using the relation between  VP and  VS:

where  VS is shear wave velocity (m/s),  VP is compressional wave velocity (m/s), and a and b are coefficients 
considered to have the following values: a = 0.331999 and b = 1743. One of the most important and widely used 
equations for estimating P–wave velocity is the Gardner (1947) relationship.  Gardner36 generated an applied 
relationship between density and P–wave velocity based on Eq. (5):

where ρ is the bulk density (g/cm3), Vp is the sonic P-wave velocity (m/s), and α and β are coefficients of 0.31 
and 0.25, respectively (default values).  Jaramillo41 tried to estimate P and S wave velocity by different empiri-
cal relationships using well-logging data in North American basins with various lithologies. For the carbonate 
section, he employed an equation according to Gardner’s equation (1974) separately as Eq. (6) for estimating S 
wave velocities:
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Figure 1.  Location map of the used well in the study area and their relative distance.
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In Eq. (6),  VS is shear wave velocity (m/s) ρ is density (kg/m3), and a and m are localized coefficients, with 350 
or divided constant and 0.25, respectively. He could not obtain favorable results to estimate  VS utilizing Eq. (6). 
The current research uses Eq. (6) to estimate  VS and improve its results using geostatistical methods.

Additionally, we have considered the equation given by Castagna et al. (1985) as Eq. (7):

where we assumed the values of a and b are 0.86 and  − 1170, respectively.
Also, other equations are provided by Castagna et al. (1993) for carbonates as follows Eq. (8):

Only  VP and density are involved in the equations as mentioned  above16.
Lastly, Greenberg and Castagna’s (G.C) fourth and final equations (1992) have provided a useful empirical 

relationship to estimate the shear wave  velocity18. The equation, in addition to  VP, has also been used in lithology 
and mineralogy based on Eq. (9):

In Eq. (9), L denotes the number of pure components in terms of lithology;  Xi presents the volume proportion 
of lithological constituents;  aij is an empirical regression coefficient relying upon lithology (Table 1);  Ni refers 
to the order of polynomial for constituent i; and  VjP is the water-saturated P-wave velocity in the j rock facies. 
Finally,  VS is S-wave velocities (km/s) in composite brine-saturated, multimineral rock.

In all the methods mentioned above, the relative volume of constituents and the type and mechanical fea-
tures of different minerals were not included in estimations. However, these important factors are considered in 
Greenberg–Castagna’s (1992) relationship.

Geostatistics methods (GM)
Geostatistics is the statistical understanding of changes in time and space that mainly addresses spatial or tempo-
ral data sets and deals with spatially distributed and spatially correlated phenomena of the  data42. Geostatistical 
methods (GM) initially strive to specify and quantify the spatial structure of valuable information, after which 
the target (needed) data are interpolated or predicted through near points considering their spatial  structure43. 
Over the past few decades, GM has gained popularity among petroleum engineers, geophysicists, and geologists 
to determine the range of existing errors and use several variables together to estimate the amount of the desired 
reservoir  parameters44. Geostatistical techniques are capable of estimating the value of the target parameter in 
a place where no data is available using known  coordinates45. This feature enables GM to be considered in a 
wide range of exploration sciences, such as mineral resources and hydrocarbon  reservoirs43. There is a myriad 
of methods in GM for interpolating the missing or needed data points, not the least of which is Kriging (Kr), 
employing a confined set of valuable data points to predict the value of the unavailable variable through a con-
tinuous spatial  area46. A sharp difference between this approach and other simple interpolators, such as Gaussian 
decays or Distance Weighted Interpolation, is that the spatial correlation among valuable data points is utilized 
in the spatial field of the research area in order to interpolate target data points. However, in other methods, the 
weights only depend on a geometric characteristic, such as the distance. It does not change with the change in 
the spatial structure of the samples, and as the spatial structure weakens, the role of the samples decreases as 
long as the weight of all the samples is  equal47. An added advantage of Kr is that it can provide the uncertainty 
surrounding each interpolated data point. Another important benefit of Kr is that the associated error for each 
estimate can be  calculated48.

Ordinary kriging (OKr)
Kriging has different methods, such as simple and Ordinary Kriging, Indicator Kriging, Universal Kriging, etc., 
and this study employs Ordinary Kriging (OKr) to predict the shear wave velocity. OKr is the most useful Krig-
ing method utilizing exciting information in the neighbourhood of the target situation data points. This linear 
estimator method’s basis is to evaluate the variable’s variability structure concerning the spatial distance and 

(7)VS = a× VP + b
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Table 1.  The Greenberg–Castagna relations (1992) regression coefficients for  VS prediction.

Lithology ai2 ai1 ai0

Sandstone 0 0.80416  − 0.85588

Limestone  − 0.05508 1.01677  − 1.03049

Dolomite 0 0.58321  − 0.07775

Shale 0 0.76969  − 0.86735
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local Mean. Different weights are given to the points in this method to make the data variations smoother and 
determine the estimation error and its  validity49. The equation of the OKr method estimation is based on Eq. (10):

Assuming an observation vector of Z = (Z1,..,Zn) in a D-dimensional space (S1,…..,Sn), where D ∈ R^d.
We can predict the value of Z in S0, and the accidental gausi field will be derived as Z(s) = μ + δ(s) where μ is 

the mean and δ(.) is the  error50. In this case, the normal kriging will be defined as a weight average as following:

where Wi is the kriging weights. Under these circumstances the kriging will become a non-oblique prediction 
method.

In Eq. (10), z equals the estimated values,  wi equals the weight, and  zi equals the sample values. After esti-
mating parameters through the OKr method, the validation of outcomes is also crucial, so following the steps 
mentioned above is to evaluate estimations and assess the power of the kriging method using the Cross-Validation 
(CVm) and Jack Knifing (JKm) methods.

Cross‑validation method (CVm)
Cross-validation is a statistical procedure that can produce roughly unbiased predictors by examining various 
ranges of errors, from minor to glaring, in many intricate  conditions51. Three steps are essential for the method: 
First, the  zi data selected at random must be removed from the information one by one. Subsequently, the 
prediction pattern must be again estimated regarding the residual n-1 data point. The next step is checking out 
the re-computing way that predicts the removed data correctly; thereupon, the total estimations, as well as the 
removals of zi, must be made on average as following Eq. (11):

where the Ẑi is the predicted Zi value which is unavailable in the model. This type of CVm is known as leave one 
out cross validation (LOOCV). To calculate the error of this technique is a time-consuming task, as one needs 
to fit the data over n-times and calculate the (Zi-Ẑi ) prediction error until they can predict the mean. Hence, the 
Generalized cross validation (GCV) is a better alternative over LOOCV as it will only fit the model data once and 
is a more time efficient approach (Hastie et al. 2009). Additionally, the K-fold cross validation can be considered 
as another technique. This method removes the n/k from the model, calculates the error, and predicts the mean 
K (Normally valued 5 or 10). The lower the error model, the more reliable the predicted model.

The process is repeated numerously until all data subsections have been evaluated. Eventually, the average 
validation is presented as the last  assessment52.

Jack‑knife method (JKm)
Turkey presented the JKM in 1958, which is a repetitive procedure that can help increase accuracy and appraise 
the error of the estimator. Firstly, the parameter is estimated from the whole  sample53. Then each element is, 
in turn, dropped from the sample, and the desired parameter is calculated from this smaller  sample54. If the 
parameter to be estimated is the population mean of x, we compute the mean xi for each subsample consisting 
of all but the i-th data point (Eqs. 12–14).

The Jack-knife technique is like LOOCV (Rizzo 2019). If we remove the observation I from the observational 
vectors and show them as Z(i) = (Z1, . . . ,Zi−1,Zi+1, . . . ,Zn) , then, the Z(i) will equal the i observation of the 
jakknife value. If θ̂(i) = θ(Z1, . . . ,Zi−1,Zi+1, . . . ,Zn ) then the value of variance θ̂  will be as following:

where θ̂(.) = 1
n

∑n
i=1(θ̂(i))

These n estimates would form a total assessment of the distribution of the sample statistic computed over 
many samples. In particular, the Mean of this sampling distribution is the average of these n estimates.

A jack-knife estimate of the estimator’s variance can be calculated from the variance of the distribution xi.

Result evaluation
In this numerical research, a fair range of statistical benchmarks have been utilized to accurately assess the results 
and standards. Mean and standard deviation (STDEV) provide a better understanding of the estimated data and 
their dispersion compared to the measured value. Mean is equal to the sum of all data points divided by their 
numbers, and STDEV ( σ ) is defined in Eq. (15) as follows:
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where m is the number of data points, Xi is each of the values of the data, and X presents the Mean of Xi. In order 
to evaluate the relationship between the estimated and major values, R-Squared and coefficient of determination 
 (R2) and correlation (here is Corr) were implemented as Eqs. (16 and 17):

And for further investigation, these benchmarks also were used: mean absolute percentage error (MAPE), 
Minmax error, root mean square error (RMSE), Margin of error (ME), mean absolute error (MAE), and mean 
percentage error (MPE), which their equations are listed in Eqs. (18–23) as follows:

where  xi is the measured  VS value,  xi(E) is the estimated  VS value, xi is the average of the measured  VS value, 
and xi(E) the figure for the estimated value, on average, and n is the number of samples. Furthermore, σ is the 
standard deviation, and Cov is the covariance,  respectively2,55.

Results and discussion
Estimation by ERR
This research to estimate  VS through ERR uses P-wave velocity and density, whose correlations with shear wave 
velocity are examined in the first step. In Fig. 2a and b, it was found that their Correlation were  R2 = 0.68 and 
 R2 = 0.80 for density and  VP with  VS, respectively. Therefore, it is expected that the result of the estimation  VS 
using  VP would be more satisfying than when density is used. Table 2 contains information on the Mean and 
STDEV of the original (measured), which are 2407.29 and 260.52, respectively.

Regarding the obtained results using ERR in Tables 3 and 4, among rock physics relationships, the G.C method 
is responsible for the best performance in estimating  VS. This method could obtain  R2 = 0.8104 with a correlation 
of 0.9002. There is a significant difference between the values of MPE, ME, and MAE in the G.C method and 
those in other rock physics approaches as they are almost 3, 7, and 70, respectively, for the G.C method. Moreo-
ver, the G.C methods accounted for the least RMSE and Minmax error, with 116.908 and 0.5254, respectively. 
Comparing Tables 2, 3 and 4 reveals that the mentioned method has the lowest Mean (7.83) and STDEV (1.15) 
difference compared to the original values of  VS. Table 4 indicates that Castagna et al. (1993) approximately put 
on a similar performance with the G.C method, and this point should be mentioned that the obtained results are 
better when limestone line is input. To be more accurate, the figures for  R2 for the limestone and dolomite lines 
equations are 0.8117 and 0.8181, and those for correlation are 0.9039 and 0.9016, respectively.

Furthermore, the values of RMSE and MAE for the dolomite line are much higher than those for the lime-
stone line, but no significant difference was seen in other benchmarks. The differences between the estimated 
and measured (original) mean shear wave velocities for the limestone and dolomite lines methods are 10.6 
and 116.38, and the difference in STDEV is 11.97 and 12.53, respectively. Since these methods, in addition to 
P–wave velocity, employed lithological information; therefore, the obtained results are much more accurate and 
satisfactory. Castagna et al. (1985) and Kerief ’s (1990) equations work only for P–wave velocity and evaluating 
the results through benchmarks shows that there are no sharp differences between the performances of these 
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methods, so the figures for  R2 and Correlation for them are approximately 0.80 and 0.89 (Table 3). The STDEV 
for Castagna et al. (1985) is 403.53, whereas that for Kerif is 353.09, but the Mean for both methods is almost the 
same. As expected, Gardner’s equation (1974) reveals the weakest performance among all used ERR here. Table 3 
shows this equation stands at least in R-squared and Correlation, 0.6766 and 0.8225, respectively, although it is 
responsible for the highest amounts of Minmax (0.8067) and RMSE (370.092).

Additionally, it has the largest difference in standard deviation compared to the original shear wave, with 
246.76. In other statistical benchmarks, the errors are high and similar to Castagna et al. (1985) and Kerif (1990), 
not G.C and Castagna et al. (1993). So at the end of this part, it was clear that the poorest results belong to Gard-
ner’s equation (1974), and they are to be improved by GM in the next sections. Figure 3 shows all cross plots for 
ERR for estimating VS in well A, and Fig. 4 illustrates well–logging plots for ERR results.

Estimation by GM
As stated before, the shear wave velocity estimated by  Gardner36 was the poorest result, and in this section, GM 
strives to improve it. Hydrocarbon reservoirs usually involve various stratigraphic layers separated by surfaces 
referring to geological processes such as deposits over time. The layers, more often than not, have a different 
thickness (proportional), or maybe some of their parts are unavailable due to being missing as a result of tectonic 
events such as faults or experiencing erosion (truncation). Sometimes, onlap occurs, in which layers follow the 
available top without erosion; however, they complete the topography; therefore, the stratigraphy grid must 

Figure 2.  The correlation between (a) Rhob with  R2 = 0.6902 and (b)  VP with  R2 = 0.8054 versus  VS in the target 
well.

Table 2.  Statistical information of origin S–wave velocity.

Parameter Mean STDEV

S-wave velocity 2407.29 260.52

Table 3.  Result for empirical rock physic relationship to estimate S-wave velocity (m/s). Significant values are 
in bold.

Method Mean STDEV R2 Corr MAPE ME MAE MPE RMSE Minmax

Gardner36 2577.33 507.28 0.6766 0.8225 11.129 170.129 265.212 0.0643 370.092 0.8067

Castagna et al.16 2672.05 403.53 0.8054 0.8974 11.375 258.655 278.523 0.1044 328.204 0.60798

Kerif (1990) 2687.85 353.09 0.8061 0.8978 12.183 280.508 293.468 0.1158 324.3661 0.5952

Greenberg and  Castagna18 (G.C) 2415.12 261.67 0.8104 0.9002 3.1668 7.8843 70.322 0.0050 116.908 0.5254

Table 4.  Result for empirical rock physic relationship to estimate S-wave velocity using Castagna et al. (1993).

Method Mean STDEV R2 Corr MAPE ME MAE MPE RMSE Minmax

Limestone. Line 2396.69 248.55 0.8171 0.9039 3.14 10.33 69.725 0.0020 112.63 0.5156

Dolomite. Line 2523.67 273.05 0.813 0.9016 5.5955 116.42 128.746 0.0503 166.42 0.5529
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be corrected. And finally, strata are not matched with the upper and lower layers (combination). Given those 
considerations, in the first step to employ GM, to regularize and better understand the spatial relationships of 
variables, layers for the study area must be converted to a regular form.

where  Zbottom and  Ztop are Correlation at the base and top, Zt is for the target layer, Tav is responsible for the study 
area’s average thickness, and  ZCor illustrates Z  coordinator56.

After generating a coordinate system, estimations of shear wave velocity in the target well are followed in 
two directions:

(a) Using the available density and through CVm and JKm.
(b) Using the density of two nearby wells, including wells B and C employing JKm.

The relationship between shear wave velocity and density must be investigated in two directions. In the target 
well, it was assessed and shown in Fig. 2 with  R2 = 0.6889, and Fig. 5 illustrates the correlations for wells B and 
C with  R2 = 0.8255 and  R2 = 0.7367, respectively.

It is clear that in wells B and C, there is a stronger relationship between S–wave velocity and density compared 
to the target well, and well B accounted for the best relationship  (R2 = 0.8255). Next, all coefficients for Garder’s 
equation must be localized, and their results are listed in Table 5.

Shear wave velocity was estimated through Gardner’s equation (1974) using the local coefficients that its 
absolute value of the difference with the measured  VS would equal residual velocity (RV); from now on, all geo-
statistical processes will be done on RV. Data preparation is one of the most important steps in GM, not the least 
of which is normalizing the used data-set. This is because it allows various data from different parts of the study 
to be compared, and normalization puts the data in a similar domain by removing or reducing irrelevant data 
or data anomalies. Additionally, since the Kriging used in this research is linear, all data must be normalized. 
Therefore, during the following step, the normal distribution of RV should be examined for the two directions; 
this point should be mentioned that for JKm in the second direction, two calculated RV are placed one after the 
other (considered as an RV for two nearby wells). For this purpose, this paper uses two graphical approaches: 
frequency histograms and probability plots. Figure 6 shows that the frequency histograms of two directions are 
almost bell-shaped, and the probability plots are close to the straight line in Fig. 7. It can be concluded that their 
distributions are normal and ready to be used for geostatistical estimates. Following this, the spatial relationship 
between the data must be investigated through variography, known as the first and most important step in GM 
after data preparation. This essential step is implemented through a variogram. This powerful and invaluable 
tool can supply an array of information on the spatial explication of the data by appraising the proportion of 
change compared to  distance57; therefore, in the stage after, the empirical variogram has been generated on RV 
to provide the intensity of spatial changes of variables (a) using one well and (b) using nearby wells.

A standard variogram model was fitted after estimating the empirical variogram to accurately investigate the 
data’s special structure (Fig. 8). This is because using models results in variography being done in all directions 

(24)ZCor =
Zt − Zbottom

Ztop − Zbottom
× Tav

Figure 3.  The correlation between (a)  VS. Limestone with  R2 = 0.817 = 0.8054, (b)  VS. dolomite. Line with 
 R2 = 0.813, (c) Castagna et al. (1985) with  R2 = 0.805, (d)  VS. Kerif (1990) with  R2 = 0.806 (e)  VS. Greenberg–
Castagna (1992) with  R2 = 0.810, and (f)  VS. Gardner (1974) with  R2 = 0.676 against Vs.
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and distances, and the errors due to lack of information and reaching real values would be  minimized58. The 
survey uses the Gaussian model when the accessible density (from the target well) is used and the exponential 
and Gaussian models when the information from two nearby wells is used (Fig. 8). In the following stage, S-wave 
velocity was estimated through OKr, and then to assess the productivity and performance of OKr, CVm and JKm 
were employed. CVm relies on data that has been observed but not used when building the model. These data 
are used to check and measure the model’s efficiency to predict new data. To apply CVm, an abandon-one-out 
strategy was implemented on the target well’s data set (on the residual velocity). In JKm, when the information 
of one well was put into effect, six points at seven-point distances from the studied zone (the target well) were 
ignored, after which the shear wave speed was estimated through the remaining points from the data set. And 
when information from two nearby wells was involved, the whole  VS of the target well was ignored, so it has been 
estimated by employing the data sets of wells B and C by JKm.

Figure 4.  Well-logging plots for estimated shear wave velocity by ERR (red curves) and original shear wave 
velocity (black curves) in well A.

Figure 5.  The relationship between shear wave velocity and density for wells B and C.

Table 5.  Gardner (1974) localized coefficients for the used wells.

Well a b

Well A 0.12 0.38

Well B 0.11 0.36

Well C 0.17 0.34
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Comparing Tables 3 and 6 reveals that the GM method could effectively improve Gardner’s results equation 
for shear wave velocity estimation, as  R2 changed from 0.6766 to 0.8865 and 0.8082 for CVm and JKm, respec-
tively. And there is a positive change in the correlation of about 8% for JKm and 12% for CVm. The Mean dif-
ference and STDEV results obtained by GM with measured shear wave velocity are much less than the Gardner 
method’s results, and the difference for Mean in both GM is under three units, and that of for STDEV in CVm 
and JKm are 9.02 and 53.47. Amongst all statistical benchmarks, ME and RMSE show more drastic change, 
especially in CVm, as the former decreased from 170.129 to under two units, and the latter registered a significant 
fall of approximately 280 and 230 units in CVm and JKm, respectively. The other benchmarks’ figures include 
MPAE, MAE, and Minmax reduced in both used GM. Moreover, given those considerations, it can be deduced 
that CVm achieved much better results in predicting S–wave velocity by Gardner’s equation (1974) than JKm.

Based on the findings presented in Table 6, the novel approach implemented through JKm demonstrates 
remarkable success in predicting S-wave velocity. The analysis reveals a high level of prediction accuracy, with 
an R2 value of 0.8503, a correlation coefficient of 0.922, and an RMSE value of 109.5701. Notably, this approach 
significantly reduces the differences between the mean and standard deviation of the measured shear wave veloc-
ity, with approximate reductions of 41 and 31, respectively, compared to Gardner’s results (Table 3). Furthermore, 
Table 7 showcases the effectiveness of the new strategy in improving Eq. 6. Using the Rhob-VS relationship from 
nearby wells, as applied by JKm, is highly successful and can yield excellent results. The improvements achieved 
through this approach validate its applicability and effectiveness in estimating S-wave velocity in the target well. 
In conjunction with these quantitative results, Figs. 9 and 10 provide visual representations of the relationship 
between measured VS and estimated Vs and depth profiles of the estimated Vs compared to the measured Vs in 
the study area. These graphical representations further support the efficacy of the JKm approach in accurately 
estimating S-wave velocity.

Figure 6.  (a) Frequency plot of Residual S- wave for Gardner (1974) (a) using one well (b) using nearby wells.

Figure 7.  (a) Probability plot of Residual S- wave for Gardner (1974) (a) using one well and (b) using nearby 
wells.
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Considering the obtained results, ERR can estimate shear wave velocity in wells, which is not measured 
very well using P-wave velocity, and the results would be improved if lithology information was used in addi-
tion to VP. However, a myriad of studies using P-wave velocity, lithology, and petrophysical information have 
tried to estimate S-wave velocity through intelligence methods, not the least of which are machine and deep 
learning techniques. Some of them are listed as follows: Li et al. (2017), Hu et al. (2020), You et al. (2021), Luo 
et al. (2022)59–62. (It must be noticed that other similar studies were mentioned in the pervious sections such as 
Anemangely et al.32, Wang and  Cao25, Wang et al.13, Zhang et al.2). In these studies, at least six or seven sets of 
input data (well-logging data) have been put into effect to predict accurately, which is not economical or time-
efficient. Still, here it was tried to improve an ERR successfully using only the parameter density to estimate 
S-wave velocity, and a very acceptable result was obtained Corr = 0.94, which means there is a difference of just 
one or two percent in compression because that research utilized more than six or seven inputs.

On the other hand, most studies were conducted to predict  VS only for well a and did not pay attention to 
estimating S–wave velocity using other wells, and very few studies that have used multiple wells for estimation 
have used a large number of their data for estimation in the target  well12. The present research takes a useful and 
further step and could estimate  VS by employing information from other wells without using the information 
of the target well.

Given these considerations, the results reveal that the performance of OKr, CVm, and JKm in estimating 
shear wave velocity is more efficient than earlier research, as they were capable of predicting VS with far less 
data points yet with perfect accuracy.

It must be mentioned that the new strategy in this research can be effectively employed in other geological 
content with similar properties such as porosity, density, and fluid content. However, it may not work in high-
porosity porous media, fractured zones, or zones containing remarkable amounts of shale. Because in the men-
tioned porous media, the density changes are remarkable, and more advanced numerical methods are needed. 
Also, we think the suggested numerical methods in gas zones may not function effectively. These are important 
issues that we plan to address in future research.

Figure 8.  The empirical variogram (red diagram) and the model fitted to it (blue diagram) for the density for 
(a) using one well (b) using nearby wells.

Table 6.  The S-wave velocity estimation results using the CVm and JKm for Gardner (1974) method.

Method Mean STDEV R2 Correlation MAPE ME MAE MPE RMSE Minmax

CVm 2408.24 269.53 0.8865 0.9415 2.3434 0.95472 53.3275 0.0089 91.330 0.5586

JKm 2405.79 313.99 0.8082 0.899 3.4605 1.5291 75.1255 0.0016 138.7626 0.7170

Table 7.  The S-wave velocity estimation results using JKm for Gardner’s method (1974).

Method Mean STDEV R2 Correlation MAPE ME MAE MPE RMSE Minmax

JKm 2446.527 283.051 0.8503 0.922 3.1192 3.5092 72.041 0.00142 109.5701 0.5705
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Figure 9.  The measured  VS- estimated cross plots utilizing CVm and JKm in the study area.

Figure 10.  Well-logging curves for shear wave velocity estimation using CVm and JKm (red curves) and 
measured shear wave velocity (black curves) in in the study area.
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Conclusions
This research generated a novel numerical direction for shear wave velocity estimation based on geostatistical 
methods through three carbonate wells next to each other. In the first section, among ERR methods, those 
involving lithology and P–wave velocity in the estimations obtained better results. The Greenberg–Castagna 
(1992) equation accounted for the best result with Corr = 0.90, while Gardner’s (1974) equation displayed the 
poorest results with  R2 = 0.67 and Corr = 0.82. This research employed GM to improve the results through the 
OKr approach, CVm, and JKm to assess the results. Accordingly, the results improved from Corr = 0.82 to 
Corr = 0.94 and Corr = 0.89 when CVm and JKm were employed, respectively. A detailed analysis of results using 
ten statistical benchmarks shows that the two methods (CVm and JKm) could improve results effectively, but 
CVm provided better performance than JKm when available information about only the target well was used.

Additionally, JKm could effectively estimate  (R2 = 0.85, Corr = 0.922) the target well Vs using a data set of 
two nearby wells without any information about the target well. As a whole, this case study research shows that 
GM has considerable potential to improve shear wave velocity estimation by density, while there is no good cor-
relation between them in compression with the  VP–VS relationship, which has an excellent correlation. The next 
studies can implement the recommended numerical directions in other fields with different lithologies, such as 
sandstone, highly-shale, or fracture reservoirs.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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