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State preparation 
in a Jaynes‑Cummings lattice 
with quantum optimal control
Prabin Parajuli , Anuvetha Govindarajan  & Lin Tian *

High‑fidelity preparation of quantum states in an interacting many‑body system is often hindered by 
the lack of knowledge of such states and by limited decoherence times. Here, we study a quantum 
optimal control (QOC) approach for fast generation of quantum ground states in a finite‑sized Jaynes‑
Cummings lattice with unit filling. Our result shows that the QOC approach can generate quantum 
many‑body states with high fidelity when the evolution time is above a threshold time, and it can 
significantly outperform the adiabatic approach. We study the dependence of the threshold time on 
the parameter constraints and the connection of the threshold time with the quantum speed limit. We 
also show that the QOC approach can be robust against control errors. Our result can lead to advances 
in the application of the QOC to many‑body state preparation.

Recent progresses in manipulating quantum states and dynamics in noisy intermediate-scale quantum (NISQ) 
devices have demonstrated the potential to solve complicated problems with various physical  platforms1–3. An 
important question among such problems is the preparation of many-body states with high fidelity using NISQ 
devices, which is crucial for quantum simulation, quantum metrology and quantum  communication4–7. In the 
past, a number of approaches have been developed to generate desired quantum many-body states, including 
adiabatic  processes8,9, quantum shortcut  approach10, quantum phase estimation 11,12, quantum  eigensolvers13–15, 
and open system  approach16,17. However, due to the intrinsic complexity of quantum many-body systems, it 
remains challenging to prepare such states with high accuracy.

With quantum control techniques, precisely engineered pulse sequences have been employed to manipulate 
quantum states with high  accuracy18. Among such techniques, the quantum optimal control (QOC)  approach19–22 
provides a computational framework to generate desired quantum states or quantum processes by searching for 
optimal, time-dependent control parameters under given constraints. In recent years, QOC has been widely used 
in a broad range of applications from the implementation of high-fidelity quantum logic gates, the suppression 
of environmental noise, the control of quantum transduction processes, the generation of novel entangled states, 
to the control of quantum many-body  systems23–27. The problem of preparing quantum states or processes can 
be formulated into an optimization problem in the QOC approach, where an algorithm is adopted to minimize 
the cost function.

Here, we study the QOC approach for the preparation of many-body states in a finite-sized Jaynes-Cummings 
(JC) lattice. In the thermodynamic limit, a JC lattice with integer fillings (i.e., the average number of excitations 
per lattice site is an integer) can exhibit a quantum phase transition between the Mott-insulating (MI) and 
superfluid (SF)  phases28–33. At a finite size, the ground states of a JC lattice in the MI and SF regimes still exhibit 
distinctive  behaviors34–36. The preparation of the ground states in a JC lattice is non-trivial, especially in the 
intermediate range between the deep MI and deep SF phases.  In37, we employed an optimized nonlinear adi-
abatic approach for state preparation in a JC lattice. In this work with the QOC approach, we adopt the chopped 
random basis (CRAB)  algorithm38,39 to parameterize the time-dependent couplings of the JC lattice and use the 
Nelder-Mead approach to optimize these couplings. Our numerical result shows that when the total evolution 
time is above a threshold time Tth , the QOC approach can generate the target state with a high fidelity above a 
designated threshold value, and it can significantly outperform the adiabatic approach. We find that the thresh-
old time decreases and the average energy fluctuation increases with the constraints on the time-dependent 
couplings, which indicates the connection between the threshold time and quantum speed limit (QSL)40–45. 
Furthermore, our numerical simulation shows that the QOC approach can be robust against control errors in 
the time-dependent couplings. JC lattices have been explored theoretically and implemented experimentally in 
various systems, including the circuit QED systems, nanophotonic devices, atoms, and trapped  ions46–57. This 
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work can shed light on the application of  QOC in many-body state preparation and lead to deeper understand-
ing of the QSL for preparing quantum many-body states.

Results
JC lattice
A JC lattice is illustrated in Fig. 1a, where each unit cell of the lattice contains a two-level system (qubit) coupled 
to a cavity mode with coupling strength g, and adjacent cavities are coupled by photon hopping with hopping 
rate J. The Hamiltonian of this lattice can be written as Ht = H0 +Hint ( � = 1 ). Here

is the Hamiltonian of the JC models in a finite-sized lattice of size N, with j ∈ [1,N] , ωc the cavity frequency, aj 
( a†j  ) the annihilation (creation) operator of the cavity modes, ωz the energy splitting of the qubits, and σjz , σj± 
the Pauli operators of the qubits. Also,

describes photon hopping between neighboring sites in the lattice. We choose the periodic boundary condition 
with aN+1 = a1 and denote � = ωc − ωz as the detuning between cavity and qubit frequencies.

The qubit-cavity coupling g induces a built-in nonlinearity in the energy spectrum of a single JC  model59, 
which can be viewed as an effective onsite interaction with strength U, as shown in Fig. 1b. Details of the JC 
model spectrum can be found in the Supplementary Information. In the thermodynamic limit with N → ∞ , 
and at integer fillings when the number of excitations is an integer multiple of N, the competition between this 
onsite interaction and the photon hopping can lead to a quantum phase transition between the MI and SF phases 
28–31. When dominated by the qubit-cavity coupling with g ≫ J , the ground state of the JC lattice will be in a MI 
phase characterized by localized polariton excitations. In the limiting case of J = 0 , the ground state with N 
excitations is the product state |G�J=0 =

∏N
j=1 |1,−�j with each JC model in its first excited state |1,−�j . When 

dominated by photon hopping with J ≫ g , the ground state of the lattice will be in a SF phase with long range 
correlation. In the limiting case of g = 0 , the ground state is the Fock state |G�g=0 =

1√
N !
(a†k=0)

N |0,↓� with all 
excitations occupying the momentum-space mode ak=0 =

1√
N

∑N
j=1 aje

ik·j for the quasi-momentum k = 0 . For 
a finite-sized lattice, the ground states also exhibit features of these phases in the corresponding parameter 
 regimes35,37.  These features can be i l lustrated with the single-particle density matrix 
ρ1(i, j) = �G|a†i aj|G�/�G|a

†
i ai|G� , which describes the spatial correlation between the cavity modes at sites i and 

j, with |G� the ground state for given parameters. As shown in Fig. 1c, ρ1(1, 3) for a N = 4 lattice, and hence, the 
spatial correlation of the ground state, decreases algebraically (exponentially) in the SF (MI) phase.

Couplings and fidelity
Preparing the ground states of a JC lattice with integer fillings is a challenging task except for the limiting cases 
of g = 0 or J = 0 . Here, we will employ the QOC technique to achieve fast and high-fidelity state preparation in 

(1)H0 =

N
∑

j=1

[

ωca
†
j aj + ωz

σjz + 1

2
+ g

(

a†j σj− + σj+aj

)

]

(2)Hint = −J

N
∑

j=1

(

a†j aj+1 + a†j+1aj
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Figure 1.  Jaynes-Cummings Lattice. (a) The schematic of a one-dimensional JC lattice with qubit-cavity 
coupling g and photon hopping rate J. (b) The energy spectrum of a single JC model for detuning � = 0 , where 
|0,↓� is the ground state and |n,±� ( n ≥ 1 , integer) are the lowest excited states. (c) The single particle density 
matrix ρ1(1, 3) vs hopping rate J and detuning � for a N = 4 lattice at unit filling. Here we let g = 1 , and all 
parameters are in dimensionless  units58.
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a JC lattice and compare our result with that of the adiabatic approach  in37. We define the fidelity of the prepared 
state with regard to the desired many-body ground state |ψT� for the target parameters as

where |ψ(T)� is the state at the final time T of the evolution. The cost function in the QOC is chosen as the 
infidelity I = 1− F . The QOC approach minimizes the cost function by optimizing the coupling constants g(t) 
and J(t) in the Hamiltonian Ht

19–22. For simplicity of discussion, we let the detuning �(t) ≡ 0 during the entire 
evolution. The couplings are bounded by the constraints gmax and Jmax , with |g(t)| ≤ gmax and |J(t)| ≤ Jmax at an 
arbitrary time t. The numerical simulation is conducted on a JC lattice with four sites and four polariton excita-
tions (i.e., unit filling). The initial Hamiltonian parameters are g(0) = 0 and J(0) = 0.5 , and the target parameters 
are g(T) = 1 and J(T) = 0.02 . The initial state of this system is the ground state for the initial parameters, which 
is the SF state |G�g=0 . The target state is the ground state for the target parameters, which is a MI state. During 
the evolution, the system is governed by the Hamiltonian Ht with time-dependent couplings g(t) and J(t). We 
adopt the CRAB algorithm that parameterizes the couplings with truncated Fourier  series38,39, and apply the 
Nelder-Mead method for the optimization.

In Fig. 2a–c, we plot the optimized couplings g(t) and J(t) vs the relative evolution time t/T under the con-
straints Jmax = 2 and gmax = 1, 2, 4 , respectively, with total evolution time T = 3.30π . The couplings in the adi-
abatic approach governed by (8a) and (8b) are plotted as dashed curves. The optimized couplings are continuous 
curves that change smoothly over the course of the evolution. For the constraint gmax = 1 , g(t) includes a large 
plateau at the maximal strength g(t) = 1 ; whereas the plateau area decreases significantly for gmax = 4 . In con-
trast, J(t) has no plateau. This is because the system can already reach the deep SF phase when J = Jmax = 1 , and 
it does not require a larger value of J to explore the SF part of the Hilbert space. Our numerical result also shows 
that the fidelity for larger gmax is significantly higher than that for smaller gmax , as shown in Fig. 2d. For gmax = 2 
and 4, the fidelity of the state at the final time exceeds the designated threshold fidelity Fth = 0.99 ; while for 
gmax = 1 , the fidelity cannot reach 0.99 after the maximal number of iterations. For all the three gmax values, the 

(3)F = |�ψ(T)|ψT�|
2,

Figure 2.  Optimized couplings. (a–c) The optimized couplings g(t) and J(t) vs the relative evolution time t/T for 
the constraints Jmax = 2 and gmax = 1, 2, 4 , respectively, with the total evolution time T = 3.30π . d The fidelity 
F vs t/T for the couplings in (a–c). The dashed curves are for the adiabatic ramping process.
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fidelity at time T is much higher than that from the adiabatic approach, demonstrating that the QOC approach 
can greatly outperform the adiabatic approach.

The fidelity of the prepared state depends on the constraints gmax , Jmax , and the total evolution time T. In 
Fig. 3a, we plot the fidelity vs T for the constraints gmax = 1, 2, 4 and Jmax = 2 . The result shows that the fidelity 
exhibits an increasing trend with the total time T and the constraint gmax . Meanwhile, the fidelity from the QOC 
approach is significantly higher than the fidelity from the adiabatic ramping process. For example, the QOC 
fidelity is greater than 0.99 for gmax = 2 , Jmax = 2 and T = 3.30π , while the fidelity from the adiabatic ramping 
is only 0.42 for the same parameter constraints and evolution time T.

Threshold time
In the numerical simulation, we observe that when the total evolution time T is below a threshold time Tth , the 
QOC process cannot achieve a fidelity that is higher than the designated threshold fidelity, which we choose to 
be Fth = 0.99 . In Fig. 3a, the threshold time Tth for each set of constraints is indicated by a dashed vertical line. 
Our result shows that the threshold time decreases as the constraint gmax increases. Hence, it will take less time 
to reach a desired fidelity when the coupling g(t) can have a larger magnitude. To analyze the dependence of the 
threshold time on the constraints, we plot Tth vs the constraint Jmax for different values of gmax in Fig. 3b. It is 
shown that Tth decreases significantly as gmax increases, but only decreases slightly when Jmax increases. For the 
values of gmax used in our simulation, J = Jmax = 1 is sufficiently large for the system to enter the deep SF phase. 
Thus, the system does not demand a larger value of J or subsequently longer evolution time in order to reach 
high fidelity, which leads to Tth ’s weak dependence on Jmax . This result agrees with that of Fig. 2a–c, where J(t) 
does not exhibit any plateau during the evolution. The threshold time for different constraints is given in Table 1, 
together with the fidelity at the evolution time T = Tth from the QOC approach and from adiabatic ramping.

We compare the threshold time Tth from our numerical simulation with an estimation of the quantum speed 
limit (QSL) TQSL , which is the minimal time for a given quantum system to evolve from an initial state to a target 
 state40–45. We estimate the QSL  with43:

Figure 3.  Fidelity and threshold time. (a) The fidelity F of the prepared state vs the total evolution time T. The 
vertical dashed lines indicate the position of the threshold time Tth for each set of constraints. The constraints 
are Jmax = 2 and gmax = 1, 2, 4 . The dashed horizontal line corresponds to the threshold fidelity Fth = 0.99 . (b) 
The threshold time Tth vs the constraint Jmax for gmax = 1, 2, 4.

Table 1.  The threshold time Tth for selected constraints and the corresponding fidelity F at the total evolution 
time T = Tth using QOC and using adiabatic ramping (adia.).

Constraints Tth F (QOC) F (adia.)

Jmax = 1, gmax = 1 5.27π       0.9944   0.6610

Jmax = 1, gmax = 2 3.30π 0.9932 0.4213

Jmax = 1, gmax = 4 2.23π 0.9963 0.3995

Jmax = 2, gmax = 1 5.27π 0.9944 0.6610

Jmax = 2, gmax = 2 3.28π 0.9927 0.4223

Jmax = 2, gmax = 4 1.96π 0.9954 0.3276

Jmax = 4, gmax = 1 5.28π 0.9925 0.6626

Jmax = 4, gmax = 2 3.28π 0.9927 0.4223

Jmax = 4, gmax = 4 1.90π 0.9904 0.3001
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Here, arccos |�ψ(0)|ψT�| describes the distance between the initial and the target states in the Hilbert  space45. 
For orthogonal states with �ψ(0)|ψT� = 0 , the distance is π/2 . For the initial and target states in our simulation, 
the distance is 0.469π . Also, �Eave =

1
T

∫ T
0
dt�E(t) is the average energy fluctuation during the time evolution 

with �E(t) =
√

�[Ht − �Ht�]
2� being the instantaneous energy fluctuation of the Hamiltonian Ht at time t, and 

the operator average is taken on the instantaneous quantum state |ψ(t)�.
In Fig. 4a–c, we plot the energy fluctuation �E(t) as a function of the relative evolution time t/T for the same 

constraints Jmax , gmax , and the same evolution time T as those in Fig. 2. The result from the adiabatic approach 
is plotted as the dashed curve. In all the three plots, the energy fluctuation is the strongest when t/T ∈ (0.3, 0.4) , 
and it is far stronger than the energy fluctuation in the adiabatic process. For gmax = 2, 4 , �E(t) becomes very 
small when t approaches the final time T, indicating that the final state occupies the ground state with high 
probability. For gmax = 1 , �E(t) at t = T remains large and is comparable to that from the adiabatic approach, 
which shows that the system has a sizable probability to be in the excited states in this case. This is because the 
threshold time for gmax = 2, 4 (for gmax = 1 ) is shorter (longer) than the evolution time T = 3.30π , and hence 
the QOC process can (cannot) reach high fidelity. In Fig. 4d, we plot the average fluctuation energy �Eave vs the 
total evolution time T for the constraints used in Fig. 4a–c. Here �Eave shows a decreasing trend as T increases 
and is stronger than that from the adiabatic approach. Using (4) and the result of �Eave for the threshold time 

(4)TQSL ≈
arccos |�ψ(0)|ψT�|

�Eave
.

Figure 4.  Energy fluctuation. (a–c) The energy fluctuation �E(t) vs the relative evolution time t/T for the 
constraints Jmax = 2 and gmax = 1, 2, 4 , respectively, and T = 3.30π . The dashed curve is for the adiabatic 
ramping process. (d) The average energy fluctuation �Eave vs the total evolution time T for the constraints in 
(a–c). The inset of (d) shows the threshold time Tth (circle) and the estimated TQSL (triangle) vs gmax.
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Tth , we estimate the QSL. As shown in the inset of Fig. 4d, the estimated TQSL exhibits similar behavior to the 
threshold time Tth , decreasing with the increase of the constraint gmax . Meanwhile, the estimated QSL is com-
parable in scale to the threshold time, but it is shorter than the threshold time. We note that this comparison is 
only qualitative. The estimation of the QSL presented here is a rough approximation due to the complexity of the 
JC lattice, and the threshold time is defined for a specific threshold fidelity chosen in our numerical simulation.

Discussion
Control error and decoherence
In superconducting quantum devices, tunable qubit-cavity coupling and cavity hopping (i.e., cavity coupling) 
can reach a few hundreds of  MHz60–63. For example, tunable qubit-cavity coupling can be achieved via flux-
tuned inductive coupling in the g-mon configuration or via a tunable  coupler64,65. Tunable cavity hopping can be 
achieved by connecting cavities with a tunable Josephson  junction66. We assume that the dimensionless coupling 
g = 1 used in our numerical simulation corresponds to g = 2π × 100 MHz in actual  devices58. A dimensionless 
evolution time of T = 3.30π then corresponds to T = 16.5 ns. The optimized, time-dependent couplings g(t) and 
J(t) need to be generated within this time scale, which can be implemented with current technology.

To explore the robustness of the QOC approach against control errors, we simulate the errors by adding a 
time-dependent Gaussian noise to the optimized solutions of g(t) and J(t) with 

 where δ1(t) and δ2(t) are Gaussian noise at time t with standard deviation σ . We obtain the fidelity of the prepared 
state in the presence of these errors. For a given value of σ , we conduct the simulation on 1000 samples of the 
time-dependent errors and calculate the average value of the fidelity. The total evolution time is chosen to be the 
threshold time Tth for given constraints.

Figure 5 shows that the fidelity of the prepared state decreases with the standard deviation of the control 
errors. We observe that the decrease of the fidelity for larger gmax is slower than that for smaller gmax ; whereas 
the decrease of the fidelity remains almost the same for different values of Jmax . For Jmax = 2 and σ = 0.05 , the 
fidelity is reduced to F = 0.9902 , 0.9910, 0.9948 for gmax = 1 , 2, 4, respectively. Compared with the fidelity for 
no control errors given in Table 1, the reduction of the fidelity is negligible. This result shows that the QOC 
approach can be robust against control error.

Another factor that could affect the fidelity of the QOC process is the decoherence of the qubits and the 
cavity modes. In the NISQ era, the finite decoherence times of the quantum devices set a limit on the time for 
coherent evolution. In a JC lattice with unit filling, the polariton excitations can decay in a time scale comparable 
to the decoherence times. At the current state-of-the-art, the decoherence time of superconducting qubits can 
reach ∼ 100 μs 60–62. Superconducting cavities can have quality factors greater than 106 . For a cavity frequency of 
ωc = 2π × 5 GHz, such a quality factor gives a cavity decay time of ~ 32 μs. With an evolution time of 16.5 ns, the 
QOC can be completed in a much shorter time scale than the decoherence times of superconducting qubits and 
cavities, and hence the effect of decoherence can be neglected. This analysis has been confirmed by our numerical 
simulation using a master equation approach, as detailed in the Supplementary Information. We want to note 
that the short evolution time required in the QOC approach is one of its advantages over the adiabatic approach.

(5a)g(t) → g(t)+ δ1(t),

(5b)J(t) → J(t)+ δ2(t),

Figure 5.  Effect of control error. The fidelity vs the standard deviation σ of Gaussian control errors. The total 
evolution time for given constraints is the corresponding threshold time Tth in Table 1.
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Methods
In the CRAB algorithm used in our simulation, the time-dependent parameters g(t) and J(t) are parametrized 
with truncated Fourier series to the 8th harmonics and can be written  as38,39 

 with 

 where ci,k and di,k ( i = 1, 2 and k ∈ [1, 8] ) are the Fourier coefficients of the k-th harmonic in g(t) and J(t), 
respectively, and ωi,k = k + δωi,k is the frequency of the k-th harmonics with an adjustable offset δωi,k . Here, 
g0(t) [ J0(t) ] is the linear ramping function for the coupling g (J) in the adiabatic approach with 

 where g(0), J(0) [g(T), J(T)] are the initial (target) values for the couplings. The function s(t) = [1− cos(2π t/T)] . 
With s(0) = s(T) = 0 , it ensures that the initial and final values of g(t) [J(t)] are the same as that of g0(t) [ J0(t) ]. 
During the QOC process, g(t) is bounded by the constraint gmax with

and similarly, J(t) is bounded by the constraint Jmax.
For a given set of initial (target) parameters for the JC lattice, we obtain the initial state |ψ0� (the target state 

|ψT� ) by diagonalizing the corresponding Hamiltonian Ht . The optimization process begins with a random set 
of parameters ci,k , di,k , and δωi,k and has a maximum of 150,000 iterations. The convergence of these parameters 
vs the iteration number n can be found in Fig. S1 of the Supplementary Information.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
The codes that are used to produce the data presented in this study are available from the corresponding author 
upon reasonable request.
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