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Numerical assessment 
of irreversibility in radiated 
Sutterby nanofluid flow 
with activation energy and Darcy 
Forchheimer
Mujeeb ur Rahman 1, Fazal Haq 1*, M. Ijaz Khan 2,3,4, Fuad A. Awwad 5 & Emad A. A. Ismail 5

Entropy generation is a concept that is primarily associated with thermodynamics and engineering, 
and it plays a crucial role in understanding and optimizing various processes and systems. Applications 
of entropy generation can be seen in turbo machinery, reactors, chillers, desert coolers, vehicle 
engines, air conditioners, heat transfer devices and combustion. Due to industrial applications entropy 
generation has gained attention of researchers. Owing such applications, current communication aims 
to model and analyzed the irreversibility in Sutterby nanoliquid flow by stretched cylinder. Momentum 
equation is reported by considering porosity, Darcy Forchheimer and magnetic field. While in energy 
equation radiation and Joule heating effects are accounted. Activation energy impact is accounted 
in the modeling of concentration equation. Thermodynamics second law is utilized for physical 
description of irreversibility analysis. Through similarity transformations dimensional equations 
representing flow are transformed to dimensionless ones. Numerical solution for ordinary system 
is obtained via Runge–Kutta-Fehlberg scheme in Mathematica platform through NDsolve code. 
Influence of prominent variables on velocity, entropy, temperature, Bejan number and concentration 
are graphically analyzed. Coefficient of skin friction, gradient of temperature and Sherwood number 
are numerically analyzed. The obtained results show that velocity field decreases through higher 
porosity and Forchheimer variables. Velocity and temperature curves shows an opposite trend versus 
magnetic parameter. A decay in concentration distribution is noticed through larger Schmidt number. 
Entropy generation amplifies against magnetic parameter and Brinkman number.

List of symbols
m  Power law index (−)
k  Thermal conductivity 

(

W m−1K−1
)

τ  Heat capacity ratio (−)
B0  Strength of magnetic field 

(
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µ  Fluid friction 
(
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DT  Thermophoresis dispersion 
(

m2 s−1
)

ρ  Density of fluid 
(

kg m−3
)

(u, w)  Velocity components 
(

ms−1
)

T  Temperature (K)
σ ∗  Stefan Boltzmann constant 

(

J s−1m−2 K−4
)

C∞  Ambient concentration (−)

k2r   Chemical reaction rate 
(

s−1
)
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DB  Brownian motion coefficient 
(

m2 s−1
)

τw  Shear stress 
(

Wm−2
)

Jw  Mass flux 
(

ms−1
)

θ(η)  Temperature (−)

R  Radius of cylinder (m)

Pr  Prandtl variable (−)
�  Porosity parameter (−)
Re  Reynolds number (−)
Rd  Radiation parameter (−)
Nt  Thermophoretic diffusion variable (−)

δ1  Temperature difference ratio parameter (−)

γ  Rate of chemical reaction (−)
ν  Kinematic viscosity 

(

m2 s−1
)

B  Characteristic time (s)
σ  Electric conductivity 

(

kg−1m−3s3A2
)

kp  Porous medium permeability 
(

m2
)

Fe  Inertial coefficient 
(

kgm2
)

k∗  Coefficient of mean absorption 
(

m−1
)

DB  Brownian movement 
(

m2 s−1
)

Ea  Activation energy 
(

kgm2 s−2
)

Cp  Specific heat 
(

J kg−1K−1
)

n1  Fitted rate constant (−)

(r, z)  Coordinate axes (m)
T∞  Ambient temperature (K)
C  Concentration (−)

qw  Heat flux 
(

J s−2
)

f ′(η)  Velocity
φ(η)  Concentration (−)

γ3  Curvature variable (−)

M  Magnetic variable (−)

β1  Sutterby fluid parameter (−)
Fr  Forchheimer variable (−)
Nb  Brownian dispersion variable (−)

E1  Activation energy parameter (−)
Ec  Eckert number (−)
Sc  Schmidt number (−)

Viscoelastic liquids like molten polymers and polymer solutions exhibit numerous verities of rheological char-
acteristics. These features include time dependent viscosity, shear rate dependent viscosity, normal stresses in 
steady shear flow and various time-dependent elastic effects. Sutterby fluid model is one of the most important 
models proposed by  Sutterby1, which addresses the solution of high polymer aqueous solutions. Imran et al.2 
inspected the thermal radiation and chemical reaction influences on Sutterby nanomaterial flow in inclined 
elastic channel. Impact of radiation, mixed convection and Joule heating on Sutterby nanoliquid flow in a verti-
cal channel is numerically examined by Hayat et al.3. Akbar and  Nadeem4 reported mixed convection flow of 
Sutterby nanoliquid in a diverging tube. Helical flow of Sutterby nanomaterial between two concentric cylinders 
is scrutinized by Batra and  Eissa5. Ishtiaq et al.6 examined shear thickening/thinning behavior of Sutterby nano-
material flow over biaxially stretchable sheet with magnetic field and heat source/sink. Mixed convection and 
Arrhenius kinetics effects on 3-D steady flow of Sutterby nanomaterial is conveyed by Azam et al.7 .Khan et al.8 
inspected the features of stratified Sutterby nanomaterial flow in presence of external radiation and Lorentz force.

Mixture of nano-sized metallic particles and base fluids are nanofluids/nanomaterials. Nano-sized metallic 
particles include metallic oxides, metals, carbon nanotubes and nitrides. Conventional base fluids are water, 
ethylene glycol and light oils. Nanofluids have higher thermal performance as compared to conventional carrier 
liquids. Practical usages of such nanofluids can be seen in thermal engineering processes like fuel cells, refrig-
erators and engine oil. Firstly  Choi9 added nano-sized metallic particles in carrier fluids and concluded that 
thermal features improved significantly.  Buongiorno10 provided a model to study heat transfer augmentation 
in nanomaterials. He considered seven slip mechanisms for nanoparticles and proved that thermophoresis dif-
fusion and Brownian movement are governing factors as compared to others. Prasad et al.11 reported radiative 
nanofluid flow with Lorentz force effect.  Turkyilmazoglu12 inspected mass and heat transportation in nanofluid 
flow over different frames using Buongiorno model. Tian et al.13 analyzed convectively heated MHD nanoliquid 
flow having stagnation point over stretching sheet. Features of laminar flow of viscous fluid flow by stretchable 
cylinder are analytically examined by  Turkyilmazoglu14. Hayat et al.15 analyzed convective hybrid nanofluid 
flow with radiation and heat transfer characteristics. Influences of Hall current and electrical MHD in flow of 
micropolar nanofluid between a pair of rotating disks is explored by Awan et al.16. Hussain et al.17 inspected 
features of rotating flow of hybrid nanoliquid accounting the influences of restricted slip boundary constraints. 
Qureshi et al.18 examined impressions of heat generation and magnetic field in hybrid peristaltic flow in a 
metachronal wave. Parveen et al.19 inspected the characteristics of dissipative bioconvective flow of nanoliquid 
which contains chemotactic microorganisms through Joule heating. Rheological properties of Pseudo plastic 
nanomaterial flow in a symmetric channel accounting the effects of ciliary motion is presented by Khan et al.20. 
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Bayesian regularization networks is implemented to explore the features of nanofluid flows considering various 
effects by Awan et al.21,22. Ahmad et al.23 deliberated Maxwell nanomaterial flow by permeable rotating frame 
with heat transfer analysis. Flow behavior of radiative MHD Maxwell nanoliquid considering viscous dissipa-
tion effects is investigated by  Hsiao24. Hassan et al.25 inspected the behavior of MHD hybrid nanomaterial flow 
which contains SWCNT-Ag as nanoparticles with radiation effects. A few more studies related to nanofluid are 
given in refs.26–30.

Due to applications in environmental, chemical, industrial and pharmaceutical sectors nanoliquid flows 
over porous surface have gained significance. Applications of such flows may include in energy storage units, 
geothermal heat exchanger layouts, nuclear waste disposal and crude oil production.  Seddeek31 reported convec-
tive nanofluid flow having thermophoresis and dissipation features saturating porous space. Umavathi et al.32 
described Darcy-Forchheimer convective nanofluid flow with Brinkman relation. Muhammad et al.33 analyzed 
Maxwell nanoliquid flow in Dacry-Forchheimer porous space. Hayat et al.34 scrutinized Darcy-Forchheimer 
flow with carbon nanotubes in presence of permeability.  Alzahrani35 investigated bidirectional flow of CNTs in 
Darcy-Forchheimer and porous surface.  Turkyilmazoglu36 studied the features magnetic field of uniform strength 
applied horizontally to the flow generated by rotating disk. Hayat et al.37 discovered Carreau nanoliquid flow due 
to heated surface with Darcy-Forchheimer and porosity effects.

In chemical reactions role of activation energy (AE) is noteworthy. The lowest energy amount obligatory to 
trigger a chemical reaction is named as AE. In different fields AE concept is widely used such as water mechanics, 
oil emulsions and oil tank counting.  Bestman38 revealed flow over porous surface in existence of energy activation 
and binary response with mass and heat transmission characteristics. Makinde et al.39 reported steady radiative 
flow over porous medium with heat transfer and chemical reaction impacts in an optically reedy atmosphere. 
 Maleque40 discovered unsteady boundary layer flow having heat sink/source and energy activation impacts. 
Awad et al.41 investigated unsteady rotational viscid fluid flow considering AE and chemical reaction. Impacts 
of AE and thermal radiation on MHD flow of Carreau are reported by  Hsiao42.

Entropy generation (EG) is an extensive property of thermodynamics. Thermodynamics second law states 
that in an isolated thermal system entropy never decays. In an irreversible reaction total entropy always increases 
while in reversible reactions it remains constant.  Bejan43 studied irreversibility in convective nanoliquid flow. 
 Turkyilmazoglu44 scrutinized EG and slip impressions in radiated fluid flow in by metallic permeable channel. 
Khan et al.45 calculated the EG in radiative flow of Sisko liquid by stretched surface with dissipation effect. Vatan-
makan et al.46 examined EG in steam flow with volumetric heating and turbine blades. Hayat et al.47 inspected EG 
in Casson type nanoliquid flow by stretchable sheet through magnetic field and Arrhenius kinetics. Gul et al.48 
reported EG in viscoelastic Poiseuille nanofluid flow. Xie and  Jian49 discussed entropy optimization rate in MHD 
nanofluid flow through micro parallel networks. Khan et al.50 scrutinized irreversibility in rotational viscous 
nanofluid flow with mixed convection and radiative heat flux. Huminic and  Huminic51 reported irreversibility 
in hybrid nanomaterials flow.

The literature cited in above transpires that irreversibility in Darcy Forchheimer flow of Sutterby nanomate-
rial due to stretched cylinder with porous walls in existence of Arrhenius kinetics, Joule heating and chemical 
reaction is not examined till now. In order to fill this gape, motivation here is to investigate the irreversibility in 
radiative Sutterby nanoliquid flow by stretchable cylinder. Heat transport characteristics are scrutinized through 
Joule hating and radiation effects. Furthermore, Brownian movement and thermophoresis diffusion impacts 
are accounted. Mass transfer characteristics are reported through activation energy. Utilizing thermodynamics 
second law physical description of irreversibility is analyzed.

Problem description
In current inspection, incompressible steady flow of Sutterby nanomaterial by stretchable cylinder is considered. 
The flow is taken along axial z-direction and radial direction is taken normal to z-direction. The cylinder stretches 
with velocity Uw =

U0z
l  in the axial direction due which flow generates. Magnetic field of constant strength B0 

is imposed vertical to the flow. Induced magnetic field effect is neglected for small Reynolds number. Effects of 
Arrhenius kinetics, Joule heating and radiation have been incorporated in thermal and mass concentration equa-
tions. Boundary layer conventions are accounted in development of flow governing model equations. Schematic 
flow diagram with boundary restrictions is depicted in Fig. 1. The governing equations signifying the flow under 
above norms are as  follows52,53;

with
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Considering53

One has

with

Here
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Figure 1.  Coordinate system and flow diagram.
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Physical quantities
Physical quantities are as follows;

where

Final forms are

where Rez
(

=
zUw
ν

)

 is local Reynolds number.

Entropy modeling
It is defined  as52,53;

non-dimensional form of entropy generation rate is

Bejan number is
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 diffusion variable and α2
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 concentration 
difference ratio variable.

Numerical solution and discussion
Here NDsolve code in Mathematica is executed to solve the dimensionless system of equations. Impact of sundry 
variables on Sutterby nanofluid velocity (f ′(η)) , thermal field (θ(η)) , mass concentration (φ(η)) EG rate (SG) and 
Bejan number (Be) are scrutinized by plotting. Engineering quantities are evaluated numerically. Table 1 is labeled 
to ensure the correctness of present numerical approach. This table demonstrated the comparison of gradients 
of temperature 

(

θ
′′

(0)
)

 versus different Pr values while influence of remaining variables is neglected. Clearly the 
results are in good agreement.

Velocity
Figure 2 delineates Sutterby fluid parameter (β1) impact on f ′(η) . For raising values of β1 velocity decreases. 
Physically for raising β1 relaxation time increases as a result viscous effects dominants therefore additional 
resistance is offered to fluid particles thus f ′(η) decreases. Figure 3 discovers influence of Forchheimer variable 
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Table 1.  Comparison of results for gradient of temperature.

Pr Present results Wang54 Gorla and  Sidawi55

0.07 0.0645 0.0656 0.06562

0.20 0.1689 0.1691 0.1691

0.70 0.4538 0.4539 0.53488

2.00 0.9113 0.9114 0.91142

7.00 1.8953 1.8954 1.89046

20.00 3.3539 3.3539 3.35391
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(Fr) on fluid velocity. Physically, for hiking Fr estimations, f ′(η) decreases. For larger values of Fr drag surface 
force increases, thus f ′(η) decreases. Figure 4 shows influence of γ3 on f ′(η). here, material velocity upsurges 
via rising γ3 . For higher γ3 cylinder radius decreases as a result fluid contact area between fluid particles and 
surface of cylinder decreases due to which less resistive force of surface is offered to fluid particles so velocity 
upsurges. Figure 5 describes influence of surface porosity on f ′(η) . Velocity decreases for improvement in � . For 
increasing values of � kinematic viscosity of porous medium upsurges, therefore f ′(η) curves decays. Behavior of 
f ′(η) versus magnetic variable is captured in Fig. 6. Velocity diminishes versus higher M . Since through higher 
M Lorentz force enhances which acts in the opposite direction of flow and thus velocity decays. From Fig. 7 

Figure 2.  f ′(η) curves versus β1.

Figure 3.  f ′(η) curves via Fr.

Figure 4.  f ′(η) curves through γ3.
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it is noticed that Re and f ′(η) have an inverse relation. In fact Re has direct and inverse relations with inertial 
forces and viscous forces, thus for larger Re viscous forces dominant over inertial forces thus velocity decreases.

Temperature
Figure 8 gives inspiration of Ec on θ(η). For enlargement in Ec temperature upturns. Since for higher Ec , internal 
energy of fluid boosts, consequently kinetic energy of system increases as a result inside friction of tiny solid 
particles enhances and extra heat supplied to the system, resultantly θ(η) increases. Variation in thermal fluid 
versus γ3 is captured in Fig. 9. Clearly θ(η) increases for raising values of γ3 . Figure 10 shows the variation in 

Figure 5.  f ′(η) curves against �.

Figure 6.  f ′(η) curves versus M.

Figure 7.  f ′(η) curves via Re.
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θ(η) against M . For greater estimations of M temperature rises. In fact more heat is added in the system when 
magnetic variable amplifies due to resistive force and so θ(η) increases. Influence of Nb on θ(η) is checked in 
Fig. 11. Temperature improves through higher Nb. Random movement of tiny particles increases with in fluid 
against higher Nb , consequently inter collision of nanoparticles increases and thus extra heat generates, therefore 
θ(η) improves. Figure 12 is designed to check the outcome of Nt on θ(η). For raising Nt thermal field boosts. 
Physically, when thermophoresis force increases rate of shifting of solid tiny particles from hot to cold region 
improves, so θ(η) escalates. Figure 13 articulates the influence of Pr on thermal field. It is perceived here that via 
higher Pr thermal field declines. Physically through rising Pr fluid thermal diffusivity diminished and thus θ(η) 

Figure 8.  θ(η) curves against Ec.

Figure 9.  θ(η) curves versus γ3.

Figure 10.  θ(η) curves via M.
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retards. Influence of radiation variable on θ(η) is given in Fig. 14. Here θ(η) boosts via larger Rd. since surface 
heat flux boosts for higher values of Rd and thus θ(η) improves.

Concentration
Figure 15 is drafted to show influence of δ1 on φ(η) . It is observed that for an escalation in δ1 values φ(η) upsurges. 
Figure 16 depicts E1 effect on φ(η) Concentration upsurges for raising values of E1 . For higher E1 Arrhenius func-
tion decreases thus concentration increases. Figure 17 portrays effect of γ on φ(η) . Concentration decreases for 
raising γ . For higher γ destructive rate of reaction increases and thus liquid species liquefy more successfully, so 

Figure 11.  θ(η) curves versus Nb.

Figure 12.  θ(η) curves against Nt.

Figure 13.  θ(η) curves versus Pr.
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φ(η) decreases. Figure 18 gives impact of γ3 on φ(η) . For enlargement in γ3 concentration increases. Figure 19 
expresses the Nb influence on φ(η) . Nanofluid mass concentration declines through rising Nb. Physically, inter-
molecular collision boosts against higher Nb due to arbitrary movement. Resultantly more heat generates thus 
temperature increases and φ(η) decreases. Figure 20 explores the behavior of  φ(η) versus Nt . Fluid concentra-
tion increases for higher values of Nt . Physically, thermophoretic force which shifts fluid particles from hot to 
cold region increases for enlargement in Nt thus φ(η) increases. Figure 21 is plotted to study influence of Sc on 
φ(η) Here, φ(η) decreases via increasing values of Sc. Since mass diffusivity reduces for larger Schmidt number 
and thus φ(η) is diminished.

Figure 14.  θ(η) curves versus Rd.

Figure 15.  φ(η) curves versus δ1.

Figure 16.  φ(η) curves versus E1.
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Entropy generation and Bejan number
This section is devoted to check the influences of Br , δ1 and M on SG and Be . Figures 22 and 23 portrays Br influ-
ence on SG and Be . For higher Br values SG increases while Be decays. Physically, Br acts as heat source within 
the fluid. Therefore higher Br produces more heat and thus SG enhances whereas Be decays. Figures 24 and 25 
shows influence of δ1 on SG and Be . For higher δ1 values irreversibility enhances thus both SG and Be increased. 
Since δ1 is in direct relation with Tw − T∞ and we know that Tw > T∞ , so higher δ1 produces more heat to the 
fluid and thus both SG and Be enhanced. Outcomes of magnetic variable on SG and Be is expressed in Figs. 26 
and 27. It is observed that SG increases for higher M while opposite behavior holds for Be . It is due to the fact 
that M is linked with Lorentz force, which is a resistive force and opposes the flow. Consequently irreversibility 
with in fluid upsurges and Bejan decays.

Figure 17.  φ(η) curves versus γ.

Figure 18.  φ(η) curves versus γ3.

Figure 19.  φ(η) curves via Nb.
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Engineering quantities
Here skin friction coefficient 

(

Cfz(Rez)
1
2

)

 , rate of heat transfer 
(

Nuz(Rez)
−
1
2

)

 and Sherwood number 
(

Shz(Rez)
−
1
2

)

 are discussed numerically. Outcomes of various flow parameters on Cfz(Rez)
1
2 are examined in 

Table 2. For higher β1 , Fr, γ3, � , M , and Re velocity gradient improves. Computational results of Nusselt number 
for different flow variables are given in Table 3. Clearly noted that for higher Pr , M , Nt, Nb and Ec temperature 
gradient decreases. An augmentation in Nuz is seen for Rd and γ3 . Variation of various sundry variables on mass 

Figure 20.  φ(η) curves against Nt.

Figure 21.  φ(η) curves versus Sc.

Figure 22.  SG via Br.
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transfer rate is examined in Table 4. From this table it is observed that Sherwood number improves for higher 
δ1 , γ , n, Nb, Nt and Sc . Opposite effect is seen for E1 and γ3.

Conclusions
The prime objective of this article is to examine the irreversibility in steady magnetized flow of Sutterby nanofluid 
caused by stretched cylinder. The features of Arrhenius kinetics, Joule heating, chemical reaction, Darcy Forch-
heimer, surface permeability and thermal radiation are accounted in development of mathematical governing 

Figure 23.  Be against Br.

Figure 24.  SG via δ1.

Figure 25.  Be versus δ1.
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equations. Through thermodynamics  2nd law total irreversibility is modeled. Numerical and graphical solutions 
are constructed through RKF-45 in Mathematica package. Main findings are itemized as:

• Velocity decreases for higher porosity parameter and magnetic variable.
• Temperature have opposite behavior for magnetic variable and Prandtl number.
• For higher thermophoresis and Brownian movement variable temperature enhances.

Figure 26.  SG via M.

Figure 27.  Be against M.

Table 2.  Numerical simulations for Cfz(Rez)
1
2.

β1 Fr γ3 � M Re Cfz (Rez )
1

2

0.6 0.5 0.7 0.2 0.7 0.01 0.232204

0.7 0.487635

0.8 0.745848

0.5 0.232204

0.7 0.271123

0.7 0.232204

0.9 0.288469

0.2 0.232204

0.4 1.62164

0.7 0.232204

0.9 0.295894

0.01 0.232204

0.02 0.279904
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• Concentration decreases for Brownian movement variable while it increases for thermophoresis variable.
• For higher Schmidt number concentration decreases.
• EG increases for higher Brinkman number, temperature difference ratio variable and magnetic variable.
• Bejan number decays versus higher Brinkman number and magnetic variable while it enhances for tempera-

ture difference ratio variable.

Data availability
All data generated or analyzed during this study are included in this published article.
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