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Alzheimer’s disease: new insight 
in assessing of amyloid plaques 
morphologies using multifractal 
geometry based on Naive Bayes 
optimized by random forest 
algorithm
Elshaimaa Amin 1,2, Yasmina M. Elgammal 2, M. A. Zahran 2 & Mohamed M. Abdelsalam 3*

Alzheimer’s disease (AD) is a physical illness, which damages a person’s brain; it is the most common 
cause of dementia. AD can be characterized by the formation of amyloid-beta (Aβ) deposits. They 
exhibit diverse morphologies that range from diffuse to dense-core plaques. Most of the histological 
images cannot be described precisely by traditional geometry or methods. Therefore, this study 
aims to employ multifractal geometry in assessing and classifying amyloid plaque morphologies. The 
classification process is based on extracting the most descriptive features related to the amyloid-beta 
(Aβ) deposits using the Naive Bayes classifier. To eliminate the less important features, the Random 
Forest algorithm has been used. The proposed methodology has achieved an accuracy of 99%, 
sensitivity of 100%, and specificity of 98.5%. This study employed a new dataset that had not been 
widely used before.

Alzheimer’s disease (AD) is one of the most dreadful and generic classes of dementia that causes a progressive 
loss of memory and cognitive function, leading to poor quality of life. It accounts for almost 60–80% of dementia 
cases and it is ranked globally as the fifth leading cause of death.

Pathologically, the primary characteristic of neuropathological lesions in AD is the extracellular deposition 
of amyloid plaques. Amyloid plaque aggregates are composed of amyloid-beta (Aβ), a fragment of amyloid 
precursor protein (APP) and a single transmembrane protein1. As in Fig. 1, APP is processed by two alterna-
tive pathways: nonamyloidogenic and amyloidogenic2. In the nonamyloidogenic pathway, APP is cleaved by 
α-secretase and γ-secretase generating the extracellular soluble APP-α (sAPP-α), APP intracellular domain 
(AICD) fragment and a short fragment p3 (N-truncated Aβ fragment)3. In the amyloidogenic pathway, at which 
Aβ fragments are produced, there are sequationuential cleavages by β- and γ-secretase. APP, at first, is cleaved 
by β-secretase-producing soluble APP-β (sAPP-β), and then the membrane-retained fragment is cleaved by 
γ-secretase generating. Another AICD fragment translocated to the nucleus where it affects the transcriptional 
regulation of several proteins and drives neuroprotective pathways and Aβ fragments of 40 (Aβ40) or 42 (Aβ42) 
amino acids interacting initially with apolipoprotein E result in an aggregation of beta oligomers to generate 
beta-amyloid plaques. Eventually, Aβ fragments are involved in several downstream pathways related to AD4.

Recently, researchers have introduced novel therapeutic approaches for AD that target the reduction of amy-
loid oligomer levels, including (1) the use of small molecule inhibitors to prevent oligomerization. (2) Employ 
the immunotherapy to neutralize oligomeric species. (3) Accurate determination of Aβ-degrading enzymes to 
dominate Aβ oligomer levels in the brain. (4) Stimulation of the immune system to produce Aβ antibodies to 
attack aggregates. (5) Use of Aβ blockers to block amyloid channels. All these approaches are currently under 
development in the preclinical research stages5. However, biological studies can reveal the initiation of the Aβ 
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pathways before the outset of AD symptoms, which contributes to targeting studies of early stages of treatment 
and slowing disease progression. Early diagnosis of AD, therefore, is needed to provide adequate treatment and 
avoid deterioration stages5.

Generally, the main challenge is not only to clear but also to prevent the formation of Aβ plaques requiring 
accurate measures of plaque morphologies for understanding disease progression and pathophysiology. Indeed, 
there are numerous forms of plaque, but the most prevalent form is characterized as a diffuse, cerebral amyloid 
angioplasty (CAA), and dense-core (see Fig. 2). The diffuse plaques are loosely organized amorphous clouds. 
Dense-core plaques are related to synaptic loss. They are surrounded by dystrophic neuritis, activated microglial 
cells, and reactive astrocytes. The dystrophic neurites are used for the pathological diagnosis of AD as they are 
associated with the presence of cognitive impairment. In CAA, the Aβ plaques deposit in the tunica media of 
leptomeningeal arteries and cortical capillaries, small arterioles, and medium-size arteries, particularly in pos-
terior areas of the brain. Some degrees of CAA, usually mild ones, are presented in about 80% of AD patients. In 
case it is severe, CAA can weaken the vessel wall and cause life-threatening lobar hemorrhages6.

Figure 1.   Cleavage of amyloid precursor protein (APP) by nonamyloidogenic and amyloidogenic pathways.

Figure 2.   Amyloid-beta (Aβ) plaques morphologies: (a) diffuse, (b) cerebral amyloid angioplasty (CAA), and 
(c) dense-core.
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Related works
The application of fractal geometry has become a new trend in studying biological systems in the last years7–14, 
including AD15–20. Fractal is an amorphous geometric concept with infinite nesting of a self-similar structure 
at different scales providing a general framework for studying different irregular sets. Fractal dimension (FD) 
seems to be a measure of the fractal properties that describe the space-filling properties of networks, including 
biological systems. FD has been applied to histopathological studies to determine the complexity of certain tis-
sue components21–24. Biscetti et al.25 measured FD and other parameters of superficial capillary plexus (SCP), 
intermediate capillary plexus (ICP), deep capillary plexus (DCP), and choriocapillaris of subjects with mild 
cognitive impairment (MCI) due to AD and cognitively healthy controls (CN). They found that FD shows early 
vessel recruitment as a compensative mechanism at disease onset. The calculation of FD from optical coherence 
tomography angiography (OCT-A) is scanned to show the retinal vascular changes in subjects with AD, MCI, 
and CN shown in26. They found that FD decreases in elderly people and is lower in males.

The limitation of fractal analysis in describing more complex structures like Aβ plaques by one exponent 
FD can be solved by multifractal analysis. Multifractal is a generalization of fractal geometry when FD is not 
sufficient as it provides a spectrum of fractal dimensions FDs27–29. Multifractal measures have been observed in 
different physical situations as neural networks, fluid turbulence, rainfall distribution, mass distribution across 
the universe, viscous fingering, and many other phenomena.

Machine learning (ML) is a branch of artificial intelligence, which extracts information “training data” from 
a dataset to make accurate predictions or decisions without being explicitly programmed. Many studies have 
focused on applying machine learning techniques to diagnose and classify the various stages of AD via differ-
ent types of physical tests in the last years30–40, and recently using immunohistochemistry images41,42. In43, they 
use the convolutional neural network (CNN) model on IHC images to classify between Aβ morphologies as 
dense core plaques, diffuse plaques, and CAA. The utilization of deep learning (DL) to differentiate tauopathies, 
including AD, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick’s disease (PID), 
based on IHC images shown in44. Using MRI scans, Majumder et al.45 applied the artificial neural network 
(ANN) technique to distinguish between AD and cognitively normal (CN). Mild cognitive impairment (MCI) 
to Alzheimer’s disease (AD) transition prediction was carried out, in46, using the ANN algorithm in MRI images. 
Additionally, Richhariya et al.47 classified between several stages as CN vs. AD, MCI versus AD, and CN vs. MCI 
using recursive feature elimination and SVM.

Therefore, the principal objective of the current research is to study the morphologies of amyloid plaques in 
AD using multifractal analysis that may represent a vital pathway for the increase in the number of neurode-
generative diseases, including Alzheimer’s, as well as structure-based drug discovery, which may contribute to 
the creation of novel treatment strategies for various degenerative diseases. The variety of tissue structures in 
Whole-Slide Imaging (WSI) in the temporal gyri of the AD patient brain have been discussed in this research. 
To automate the classification process, the Naive Bayes has been used as a classifier.

The research contributions
The current study contribution can be summed up as follows:

1. A new strategy in assessing of amyloid plaques morphologies using multifractal geometry of analysis.
2. Accurate measure of plaques morphologies for understanding disease pathology.
3. Using Naive Bayes classifier as a classifier saves time and effort other than algorithms that require train-
ing procedures.
4. It provides high performance measures compared with other recent classification techniques.

Materials
Data used by Tang et al. are available at48. There are 63 subjects in the sample, and each has a single temporal 
gyri whole slide image (WSI). The subjects were chosen to represent a broad spectrum of pathological burden 
for each of the three AD pathologies of interest: cerebral amyloid angiopathy (CAA), dense-core and diffuse 
plaques. Glass slides with 5 mm sections of the superior and middle temporal gyrus that had been formalin-fixed 
and paraffin-embedded made up all of the WSIs. Amyloid beta (Aβ) antibody was used to perform immunohis-
tochemistry staining on the tissue. An Aperio AT2 was used to digitize every slide at a magnification up to 40 
times. The open-source library PyVips was used to apply the color normalization and subsequently tile the WSI 
into small images in a structured format (256 × 256 pixels). The used dataset contains 1200 images divided into 
400 images for diffuse, 400 images for cerebral amyloid angioplasty (CAA), and 400 images for dense-core cases. 
Using a custom program written by MATLAB v.9.4 for R2018a (Mathworks, MA, USA), the hardware system is 
composed of a CPU core i7, 8GB RAM, and 1TB HD.

In this study, the first step of the proposed classification system is the image-processing step. The images, 
firstly, have been processed to enhance the contrast and resolution. Secondly, the images have been passed 
through two processing stages: the first stage is responsible for converting the images from an RGB image to a 
Grayscale image. In the second stage, the images have been converted to a binary form; this can be illustrated in 
Figure 3. The binarization process is based on converting the image pixel level into two values 1 or 0; therefore, 
the resulting image has only two colors (Black and white). The pixel conversion process can be achieved through 
two steps. In the first step, obtain the image histogram, which describes the gray color distribution of the pixels 
in an image. In the second step, compute the threshold value according to the used threshold technique. In 
this study, Otsu’s method49 has been used as a threshold technique. This technique is based on maximizing the 
inter-cluster variation to minimize the intra-cluster variation; hence, it divides all the pixels into two clusters 
(foreground and background) based on the grayscale intensity values of the image pixels.
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Methods
Multifractal analysis
In the last decades, a broad range of complex structures of interest to scientists, engineers, and physicians have 
been quantitatively characterized using the idea of a fractal dimension: a dimension that uniquely correlates to 
the geometrical shape under study and is often not an integer50. The key to this trend is the recognition that many 
random structures obey a symmetry as remarkable as that obeyed by regular structures. This "scale symmetry" 
implies that objects appear to be the same at many different scales of observation. To describe a fractal set, it is 
supposed that S is a subset of a d-dimensional space covered with boxes of length L, then the local density Pi(L) 
of the object is the mass function of the i-th counting box,

where MT denotes the object’s total mass and Mi(L) is the number of pixels that comprise the mass in the box. 
On the other hand, Pi(L) in heterogeneous objects can vary as:

where αi is the Holder exponent that characterizes the scaling of the i-th region or spatial location. Consequently, 
the local behavior of Pi(L) around the center of a counting box with length L is thus demonstrated by αi. The 
number of boxes N(α) where the mass function has exponents range between α and α + dα scales as:

where f(α) is the fractal dimension of the fractal units at particular sizes. Scaling of the q-th moments of the 
density function Pi(L) yields to multifractal measures as

Hence, the exponent in Eq. (4) is called the mass exponent of q-th moment of order τ(q) that admits the fol-
lowing equation:

It is well known as:

where Dq denotes the generalized dimensions defined as:

The multifractal spectrum illustrated in Fig. 4 is a convex function with a maximum Do at q = 0 and is known 
as the box-counting dimension51. For q = 1, f (α) = α = D1 is the information dimension. D1 represents the scaling 
of information generation that describes the rate of information gain by successive measurements or the rate of 
information loss by time52.

In fact, the set of local scales that may be stated as powers of L is the only one used to estimate the multifractal 
spectrum because it cannot be calculated as infinity. Additionally, this fact limits the variety of moment q that 
can be applied53. Therefore, the multifractal spectrum can be computed from:
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Figure 3.   Sample fore image processing step (a) the raw image (b) the image in gray scale (c) the binary image.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18568  | https://doi.org/10.1038/s41598-023-45972-w

www.nature.com/scientificreports/

Thus, the computation of f (q) and α(q) goes as follows:

And

The second commonly used graph discussed here is the generalized dimension curve (Dq vs. q), which is 
analogous to applying warping filters to an image to exaggerate parameters that might otherwise be unnotice-
able. The term "warp filters" refers to a group of arbitrary exponents represented by the symbol "q". Hence, we 
can construct a generalized dimension Dq for each q as shown in Fig. 5.

The generalized dimension Dq can be defined as:
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Figure 4.   The singularity spectrum.

Figure 5.   The multifractal generalized dimension.
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where I (q, r) is the partition function given by:

Equation (11) becomes:

where r denotes the scale of measurement, q is the order of the moment, N(L) is the number of fractal copies 
based on the scale L and Pi(L) is the growth probability function of the i-th fractal unit. From the general dimen-
sion definition, at q = 0, Do describe the box-counting dimension (DB), also known as the capacity dimension. 
In Eq. (13), when we use a grid of boxes to cover a given space, the box-counting dimension D0 is given by:

When N(L) is the number of nonempty boxes with length L that cover the space and include at least some part 
of the attractor (not necessarily the total number of points). At q = 1, D1 is the information dimension (DI) that 
characterizes the rate of information loss by time or the rate of information gain by sequential measurements. 
DI analogous to a quantity known as the Shannon entropy. It is given by:

Provided we apply the Taylor expansion to Eq. (12), we have:

So, Eq. (13) becomes:

At q = 2, D2 is the correlation dimension54, which characterizes the correlation between pairs of points on a 
reconstructed attractor. From Eq. (13), the correlation dimension (DC) is given by:

If D0 = D1 = D2, the structure is termed as monofractal or unifractal. If Do > D1 > D2, the structure is termed 
as multifractals.

Lacunarity measurement
Lacunarity is a measure of the different gaps distribution throughout an image55. It gives an assessment of the 
structure heterogeneity. The higher lacunarity value, the less heterogeneous in the fractal geometry. The mean 
lacunarity Λ can be written as:

where µ: the mean for pixels per box, σ: the standard deviation.

Naïve Bayes
It is a supervised learning algorithm based on Bayes’ theorem. Naïve Bayes is considered as a probabilistic clas-
sifier with an assumption of independence among predictors. It has several advantages: (1) Fast, easy and simple 
to implement. (2) No need for large training datasets. (3) It can be used for discrete and analogue data. The main 
idea in the Naive Bayes classifier is that the presence of a particular feature is unrelated to the presence of any 
other features. Therefore, it cannot be learnt if there is a relation between the features56–58.

Bayes’ theorem is used to determine the probability of a hypothesis with the prior knowledge of a class. It 
can be described by:

where P(C|x) "Posterior probability": is the probability of hypothesis/class "C" on the observed event/features 
"x"; P(C) "Prior probability": is the probability of hypothesis before observing the evidence. P(x|C) "Likelihood 
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probability": is the probability of the evidence given that the probability of a hypothesis is true. P(x) "Marginal 
Probability": is the probability of the evidence or the prior probability of predictor.

Assuming that X represents as the extracted features and can be written as:

Therefore, the probability of a hypothesis/class c for the selected features X with number n can be written as:

Equation (22) can be written in simple form as:

According to the used datasets, the classifier system may have m classes:

Then the classifier system can select the class with the highest probability value as:

In this study, there are three classes (m = 3) of Aβ plaques (c1, c2, c3)  as diffuse, CAA, and dense-core. The RF 
optimized hyperparameters59 can be listed in Table 1.

The methodology is based on extracting the most changeable features related to AD, the system has 12 
extracted features (X = 12). These features can be illustrated in Fig. 6 and listed as follows:

	 1.	 The lacunarity (λ),
	 2.	 The maximum value of α (αmax) in the singularity spectrum,
	 3.	 The singularity spectrum at the αmax (f(αmax)),

(21)X = (x1, x2, x3, . . . ., xn)

(22)P(C|x1, x2, x3, . . . , xn) =
P(x1|c)P(x2|c)P(x3|c) . . . P(xn|c)P(C)

P(x1)P(x2)P(x3) . . . P(xn)

(23)P(C|x1, x2, x3, . . . , xn) =
P(C)

∏n
i=1 P(xi|c)

∏n
i=1 P(xi)

(24)C = (c1, c2, c3, . . . , cm)

(25)C = argmaxmj=1 =
P
(

cj
)
∏n

i=1 P
(

xi|cj
)

∏n
i=1 P(xi)

Table 1.   The RF optimized hyperparameters.

Number of decision trees 120

Sampling data points method Bootstrap

The quality measure of a split “Gini function”

The features number for the best split max_feature

The needed number of samples to be at a leaf node min_samples_leaf

The tree maximum levels max_leaf_nodes = 22

Figure 6.   The extracted features.
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	 4.	 The minimum value of α (αmin) in the singularity spectrum,
	 5.	 The singularity spectrum at the αmin (f(αmin)),
	 6.	 The α value at the maximum of the singularity spectrum curve (α0),
	 7.	 The width of the singularity spectrum curve (width),
	 8.	 The symmetrical shift of the singularity spectrum curve,
	 9.	 The box-counting dimension (D0),
	10.	 The Information dimension (D1),
	11.	 The correlation dimension (D2).

These features can be illustrated in Fig. 6
Most of the time, reducing the number of input variables or the extracted features might enhance the effi-

ciency of the model, as well as lowering the computing cost of modelling. Therefore, when creating a predictive 
model, it is desired to perform a feature selection process to reduce the number of extracted features. This can 
be done by using a feature selection algorithm as a Random Forest (RF) algorithm60,61.

Random forest algorithm
Random forest is a supervised machine learning algorithm. It is a modified version of the decision trees. It is 
usually trained using the “bagging” method. It is a collection of multiple decision trees to increase the overall 
result. To start the training of the RF algorithm, three parameters have to be adjusted first to be operated as a 
classifier procedure. These parameters can be summarized as (1) the number of the used trees, (2) the number 
of nodes, and (3) the number of the features sampled. As shown in Fig. 7.

Several advantages can be obtained as a result of using the RF algorithm, these advantages can be listed as 
(1) reducing the risk of overfitting, (2) performing both classification and regression tasks, (3) giving a good 
explanation for the resultant, (4) easily determination of the important features, and (5) easily handling of large 
datasets. However, RF suffers from disadvantages as (1) large time-consuming, (2) more computation resources, 
and (3) more complex in prediction than the decision tree.

In almost all classification systems, hundreds or thousands of features are used to obtain accurate results. 
On the other hand, not all the extracted features are important or play a strong influence in the classification 
processes. Therefore, it is required to create a classification model that includes the most important features, 
called "Feature Selection". This makes the model simpler, reduces the computational time, and reduces the 
model variance.

The feature selection can be performed by using a Recursive Feature Elimination procedure62,63. In this study, 
after creating the classification model, the less relevant feature is removed. Features are ranked by the model 
performance measures, eliminating the less important features per loop. Repeat the procedures until reaches 
the high-ranked features.

The workflow of the proposed methodology can be summarized as shown in Fig. 8.

Figure 7.   The random forest algorithm.
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Results and discussions
The dataset demographic characteristics
The proposed methodology based on using the archived images in Davis Alzheimer’s Disease Center Brain Bank64 
at California University. These samples had the following features:

1)	 In order to ride of endogenous protein, the samples were pretreated with formic acid.
2)	 An amyloid-β antibody had been used to stain the tissue.
3)	 The samples were 5 μm formalin fixed
4)	 Portions of the human brain’s superior and middle temporal gyrus that had been encased in paraffin.
5)	 Aperio Digital Pathology Slide Scanners were used for digitalizing the slides with magnification factor up to 

40x.

The dataset demographic characteristics can be summarized in Table 2.

The image singularity spectrums
The image analyses using multifractal are shown in Figs. 9, 10, 11. Figure 9 shows the singularity spectrum for 
diffuse cases. Figure 10 shows the singularity spectrum for the CAA cases. Figure 11 shows the singularity spec-
trum for the Dense-core cases. As the amyloid plaques increase, the heterogeneity in the brain tissue increases. 

Figure 8.   The workflow of the proposed methodology.

Table 2.   The demographic characteristics.

Type Samples Training samples (75%) Testing samples (25%)

Diffuse 400 300 100

CCA​ 400 300 100

dense-core plaques 400 300 100

Total of samples 1200 900 300
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Therefore, the spectrum became wider with different asymmetrical shapes as shown in Fig. 12. As the amyloid 
plaques increase, the curves have moved to the right as the image heterogeneities have grown, with differing 
singularity spectrum start and end values αmin and αmax respectively. Table 3 summarizes 15 sample images for 
AD with the extracted feature values.

According to the proposed methodology, eleven features have been extracted; they described the changes 
in the brain tissue related to AD. To reduce the used features, the RF algorithm is employed to remove the less 
relevant features and is described in Fig. 13. According to Fig. 13; the important features can be concluded as 
lacunarity, αmax, αmin, Symmetrical shift, and D0. They have an importance weight of not less than 0.5.

The Figure 14 shows the ranking of the feature importance provided by RF59. It represents the raking of the 
feature importance for the diffuse cases, CCA, and dense-core cases for different thresholds. The blue pars (fea-
tures) are discarded as being under the threshold value. Performing a model evaluation using multiple thresholds, 
the optimum threshold value can be chosen as 0.5, due to the lack of importance of the discarded features as 
f(αmax), α0, f(αmin), The width, D1, and D2.

Figure 9.   The Diffuse images singularity spectrum.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18568  | https://doi.org/10.1038/s41598-023-45972-w

www.nature.com/scientificreports/

To explain the importance of the selected features, Figure 15 illustrates the statistical representation of the 
most important features.

As shown in Figure 15a,b, the diffuse stage has the lowest values of (αmax) and (αmin) while the dense-core 
stage has the largest value due to the increase in the amyloid plaques accumulation. In Figure 15c,d, the diffuse 
stage has achieved the highest (D0) and (Lacunarity) due to fewer Amyloid-beta plaques, which resulted from 
more homogeneity in the diffuse dataset images than other stages. As illustrated in Figure 13 and 15e, the diffuse 
stage has a shift left to the symmetrical axis of the singularity spectrum rather than CCA and dense-core stages 
have a shift right to the symmetrical axis.

Performance measures
To ensure the effectiveness of the proposed NB algorithm using the most important features, another classifier 
as K-Nearest Neighbor (KNN) classifier has been used as a benchmark analysis. Several performance measures 
have been calculated as shown in Tables 4 and 5, and Fig. 16.

Figure 10.   The CCA images singularity spectrum.
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Figure 11.   The Dense-core images singularity spectrum.

Figure 12.   The singularity spectra for the AD stages.
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The statistical characteristics obtained from the shown tables demonstrate that the proposed Naïve Bayes 
classifier has achieved the best performance. It has an accuracy of 99%. The classification method achieves a 
sensitivity of 100%, specificity of 98.5%, precision of 97.1%, and F-score of 98.5%.

A Comparative analysis
A comparison of the suggested classification system with different classification parameters has been included 
in Table 6 to confirm its efficacy. Only one scientific paper43 used the same working datasets; the comparison 
with other researchers who used other datasets may not be fair for all algorithms. Therefore, the comparative 
results are as follows:

As shown in Table 6, the proposed methodology has achieved high accuracy with less dataset images.

Table 3.   Sample of the extracted features data.

Image D(Q) f(α)

LacunarityId D0 D1 D2 αmax f(αmax) α0 αmin f(αmin) Width Symmetric shift

Diff 1 1.4499 1.2395 1.1631 2.3671 1.0132 1.7631 1.0142 0.7126 1.3529 −0.07245 1.0913

Diff 2 1.6481 1.1189 1.0778 2.0758 0.5581 1.4377 0.9654 0.5881 1.1104 0.0829 1.2665

Diff 3 1.5035 1.3747 1.2796 2.359 0.3601 1.6402 1.0726 0.6333 1.2864 0.0756 0.6524

Diff 4 1.5738 1.1757 0.9652 2.1782 1.4797 1.9434 0.7155 0.259 1.4627 −0.09655 2.885

Diff 5 1.7157 1.5076 1.3894 2.271 1.4144 1.9425 1.163 0.6775 1.108 −0.0255 1.4289

CCA 1 1.4126 1.145 1.0916 2.4546 1.0451 1.85 0.9955 0.7055 1.4591 −0.12495 1.0051

CCA 2 1.0602 0.878 0.8517 2.5816 0.6126 1.6599 0.7921 0.6203 1.7895 0.22695 0.5611

CCA 3 1.3836 1.098 1.0701 2.5736 1.1561 1.9161 1.0392 0.8893 1.5344 −0.2097 1.0921

CCA 4 1.3168 1.1295 1.0189 2.3581 1.2853 1.9803 0.9182 0.6754 1.4399 −0.34215 2.8685

CCA 5 1.1931 0.9439 0.9035 2.5453 0.8607 1.7091 0.7891 0.4433 1.7562 −0.1419 0.7133

Dense-core 1 1.3951 1.2956 1.293 2.7623 0.53 1.6265 1.2698 1.0551 1.4925 0.38955 0.5713

Dense-core 2 1.5864 1.5693 1.5389 2.6562 0.9811 1.9011 1.4546 1.1626 1.2016 0.1543 0.9127

Dense-core 3 1.4524 1.4306 1.3833 2.9044 0.9105 1.0321 1.2964 1.0203 1.608 0.1683 0.7929

Dense-core 4 1.563 1.4087 1.3803 2.7442 0.9178 1.8684 1.3012 0.9911 1.443 0.1543 0.6149

Dense-core 5 1.4206 1.4081 1.3552 2.6806 1.074 1.9691 1.2599 0.9974 1.4207 0.115 0.8102

Figure 13.   The features importance using RF algorithm 1) The lacunarity, 2) αmax, 3)f(αmax), 4) α0, 5) αmin, 6) 
f(αmin), 7) The width, 8) Symmetrical shift, 9)D0, 10) D1, and 11) D2.
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Conclusion
Alzheimer’s disease (AD) is one of the most dreadful and generic classes of dementia, which causes a progressive 
loss of memory and cognitive function, leading to poor quality of life. The deposition of amyloid plaques is the 
cause of AD. Amyloid plaque aggregates are composed of amyloid-beta (Aβ), which causes the progression of AD 
disease. The current study proposed the assessment of the amyloid-beta using multifractal geometry. To automate 
the classification of AD stages, Naïve Bayes and Random Forest as a Feature selection were used. The proposed 
methodology achieved an accuracy of 99% and a sensitivity of 100%. The quality of the dataset images is the 
main limitation of the proposed methodology. It should be not less than 35% to obtain good extracted features.

Future work

•	 Design a new Graphical User Interface application (GUI) to extract the most important features related to 
amyloid plaque morphologies as an aiding diagnosis tool.

•	 Using multifractal geometry as an analysis tool for detecting or classifying brain tumors.

Figure 14.   Raking of the feature importance provided by RF.
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Figure 15.   The statistical representation of the most important features of the AD stages.

Table 4.   The classification data.

Items

Naïve Bayes K-Nearest Neighbor

TotalDiffuse CCA​ Dense-core Diffuse CCA​ Dense-core

Subjects 100 100 100 100 100 100

300Correctly classified images 100 99 99 99 98 98

False classified images 0 1 2 1 2 2

Classification accuracy 297

300
× 100 = 99%

295

300
× 100 = 98.3%
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Data availability
The datasets were collected from https://​www.​keise​rlab.​org/​resou​rces/.
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