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Prediction model of spontaneous 
combustion risk of extraction 
borehole based on PSO‑BPNN 
and its application
Wei Wang 1,2,5*, Ran Liang 2,5*, Yun Qi 1,2,4,5*, Xinchao Cui 2 & Jiao Liu 3,4

The feasibility and accuracy of the risk prediction of gas extraction borehole spontaneous combustion 
is improved to avoid the occurrence of spontaneous combustion in the gas extraction borehole. A 
gas extraction borehole spontaneous combustion risk prediction model (PSO-BPNN model) coupling 
the PSO algorithm with BP neural network is established through improving the connection weight 
and threshold values of BP neural network by the particle swarm optimization (PSO) algorithm. 
The prediction results of the PSO-BPNN model are compared and analyzed with that of the BP 
neural network model (BPNN model), GA-BPNN model, SSA-BPNN model and MPA-BPNN model. 
The results showed as follows: the average relative error of the PSO-BPNN model was 4.38%; the 
average absolute error was 0.0678; the root mean square error was 0.0934; and the determination 
coefficient was 0.9874. Compared with the BPNN model, the average relative error, average absolute 
error and root mean square error decreased by 9.35%, 0.1707 and 0.2056 respectively; and the 
determination coefficient increased by 0.1169. Compared with the GA-BPNN model, the average 
relative error, average absolute error and root mean square error decreased by 3.19%, 0.0602 and 
0.0821 respectively; and the determination coefficient increased by 0.0320. Compared with the 
SSA-BPNN model, the average relative error, average absolute error and root mean square error 
decreased by 5.70%, 0.0820 and 0.1100 respectively; and the determination coefficient increased by 
0.0474. Compared with the MPA-BPNN model, the average relative error, average absolute error and 
root mean square error decreased by 3.50%, 0.0861 and 0.1125 respectively; and the determination 
coefficient increased by 0.0488, proving that the PSO-BPNN model is more accurate than the BPNN 
model, GA-BPNN model, SSA-BPNN model and MPA-BPNN model as for prediction. When the 
PSO-BPNN model was applied to three extraction boreholes A, B, and C in a coal mine of Shanxi, the 
prediction results were better than the BPNN model, GA-BPNN model, SSA-BPNN model and MPA-
BPNN model, proving the accuracy and stability of the PSO-BPNN model in predicting risk of borehole 
spontaneous combustion in other mine.

Spontaneous combustion in gas extraction borehole is a internal-caused fire in coal mines influenced by multiple 
factors, which seriously restricts the high production efficiency and safety of mines1,2. The initial temperature 
of the coal seam rises due to the increase of mining depth and intensity, bringing new challenges to the preven-
tion and control of coal spontaneous combustion disasters3,4. Therefore, the risk of spontaneous combustion in 
extraction borehole is becoming increasingly serious, especially for high gas-prone spontaneous combustion coal 
seams. Spontaneous combustion often occurs in the deep of a certain distance from the exposed face of the coal 
seam so that the location of the fire source is difficult to determine5,6. Once spontaneous combustion occurs in 
the extraction borehole, the borehole will be suspended or scrapped, even causing the explosion of the extraction 
pipeline. Therefore, studying the prevention and control of spontaneous combustion in the extraction borehole 
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is an urgent and significant issue. Determining the risk of spontaneous combustion in borehole is an essential 
basis for taking fire prevention measures. Scientific and reasonable methods to improve the prediction accuracy 
is an important guiding meaning for the control of spontaneous combustion in borehole.

With the development of computer science and technology, meta-heuristic algorithms are widely used in 
engineering practice7–9, many scholars have begun to combine the early warning indicators of coal spontaneous 
combustion with machine learning and intelligent algorithms for prediction of coal spontaneous combustion in 
recent years, improving the accuracy of prediction results10,11. WEN Tingxin et al.12 proposed a coal spontaneous 
combustion prediction model based on KPCA-Fisher discriminant analysis.They used kernel principal compo-
nent analysis method to extract nonlinear features from characteristic indicators with a high degree of correlation, 
and then the extracted principal components taken as discriminators in the Fisher discriminant model. ZAN 
Juncai et al.13 used gas composition analysis and BP neural network to establish a prediction model, and then 
selected coal spontaneous combustion index gas concentration as the input layer of the neural network and coal 
temperature as the output layer to predict the coal spontaneous combustion. The results were basically consist-
ent with the actual situation. QI Yun et al.14 established a comprehensive evaluation method based on set-value 
statistics-Entropy, simulating human decision thinking process and mathematically processing the multi-factor 
data which causes the risk of spontaneous combustion, thereby avoiding the bias of the classical fuzzy evalua-
tion method to assess the quantification. XING Yuanyuan et al.15 used the inverse entropy weighting method to 
determine the weights of evaluation indexes based on the principle of minimum information identification, and 
then constructed a coal spontaneous combustion risk evaluation model based on the TOPSIS method. Wang Wei 
et al.16 proposed a dynamic weighting method, and then established a dynamic prediction model for the risk of 
coal spontaneous combustion according to the characteristics of dynamic changes in the goaf. Shuang et al.17 
proposed an improved grey wolf optimized support vector regression coal spontaneous combustion temperature 
prediction model based on nonlinear parameter control, dynamic inertia weights and grey wolf social hierarchy. 
The effectiveness of the improved grey wolf optimizer algorithm was verified by numerical experiments. Jun Det 
al.18 proposed a SA-SVM prediction model to reflect the complex nonlinear mapping between characteristic gases 
and the coal temperature. The risk degree of coal spontaneous combustion was estimated in the time domain, 
and the model was verified by using in situ data from an actual working face. CHANG Xuhua et al.19 used the 
improved G1 method, entropy weight method and improved game theory to calculate the comprehensive weights 
of evaluation indexes. A topizable evaluation model of coal spontaneous combustion hazard with improved game 
theory empowerment was proposed based on the the hazard level and ranking of evaluation elements identified 
by the comprehensive correlation. WANG Minhua et al.20 obtained a training dataset for coal spontaneous com-
bustion prediction with data augmentation expansion by generating virtual samples through WGAN-GP model, 
and then used AI model for learning training of the dataset to establish a model for coal spontaneous combustion 
prediction in the goaf. The literature on spontaneous combustion in gas extraction borehole is relatively rare. 
Some scholars adopted numerical simulation and model prediction to study spontaneous combustion in gas 
extraction borehole. QI Yun et al.21 applied Comsol Multiphysics software to conduct a comprehensive study of 
two indicators, sealing depth and sealing length, for the spontaneous combustion of gas extraction borehole in 
Pingmei No. 10 Mine. The sealing parameters were optimized to effectively prevent spontaneous combustion of 
the coal around the borehole. WANG Wei et al.22 first used a mathematical prediction model to study the risk 
of spontaneous combustion in gas extraction borehole, then proposed an improved CRITIC method to modify 
the G2 weighting model, and established a G2-TOPSIS prediction model to judge the risk of spontaneous com-
bustion in borehole by combining with TOPSIS method. QI Qingjie et al.23 optimized the sealing depth and 
negative pressure of gas extraction borehole by numerical simulation and obtained the best sealing parameters 
of extraction borehole by verifying with the field engineering test results.

The coal spontaneous combustion prediction model proposed in the above research has played a certain 
role in promoting the prevention and control of spontaneous combustion fires in mines. However, the limita-
tions of some methods includes the tendency to fall into local optimal solutions, low generalization ability and 
slow convergence speed because of the difficulties in determining the weights of some evaluation indicators 
in the practical application, the incomplete consideration of the model indicator factors, and lack of clarity of 
the primary and secondary factors affecting coal spontaneous combustion. In addition, borehole spontaneous 
combustion occurs frequently due to lack of studying the influence factors and prevention of extraction borehole 
spontaneous combustion. The coal seam is deep and the gas content is high in a coal mine in Shanxi. Some of the 
boreholes exhibited spontaneous combustion due to the poor sealing of the boreholes in gas extraction process, 
which led to the suspension of extraction and even the scrapping of the boreholes.

In this view, taking the problem of spontaneous combustion in gas extraction borehole in a coal mine in 
Shanxi as the research background, the author intends to introduce PSO algorithm and BP neural network into 
the prediction of spontaneous combustion risk in borehole. The PSO algorithm is used to improve the connec-
tion weight and threshold of the BP neural network, thereby overcoming the deficiency that BP neural network 
is easy to fall into local optimum. A prediction model of spontaneous combustion risk in borehole is established 
based on PSO-BPNN. The approach is expected to improve the accuracy of spontaneous combustion prediction 
in gas extraction borehole, laying the foundation for adopting scientific and reasonable borehole spontaneous 
combustion prevention and control measures. Meanwhile, the research results can provide theoretical support 
for other mines to solve the problem of spontaneous combustion in extraction borehole.

BP neural network model
BP neural network is a multilayer feed-forward neural network, whose main feature is that the error propagates 
backwards while the signal passes forward24. First, the original sample data is imported into the BPNN prediction 
model, then obtaining the actual output after the calculation. If the relative error between the actual output and 
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the desired output does not satisfy requirement of the error accuracy, the error is propagated backwards. Thus, 
the weights and thresholds in the BPNN model can be adjusted in time. Then importing and calculating the 
original sample data again gradually reduce the relative error between the actual output and the desired output, 
meeting the requirements of the error accuracy. The calculation process of the BPNN model is shown in Fig. 1, 
and the main steps are as follows:

(1)	 Initialize the network, determine the number of nodes in the input layer, the number of nodes in the out-
put layer, the number of nodes in the implied layer of the model, the weights between the layers, and the 
implied layer threshold;

(2)	 Calculate the output of the implicit layer;
(3)	 Calculating the output variables;
(4)	 Calculating the error between the output value of the test set and the actual output value;
(5)	 Continuously adjust the weights and thresholds of the network by error reversal training, and then carry 

out feed-forward training many times;
(6)	 Finally, when the training error is less than the set error, the training ends.

The BPNN model consists of three parts: input layer, hidden layer, and output layer. Its mathematical expres-
sion is as follows:

where hj is the output value; f (x) is the activation function; xj is the input value; lj is the connection weight of 
the hidden nodes; bj is the threshold between the hidden nodes; ε is the threshold of the hidden nodes; p is the 
number of hidden nodes.

The input layer can select each influencing factor, and the output layer selects the result that needs to be pre-
dicted. The number of nodes in the hidden layer of the BP neural network is the core part of the neural network 
topology structure25. Fewer nodes in the hidden layer lead to drop the learning ability of network, affecting the 

(1)hj = f (xj) =
1

1+ exp(−
∑p

j=1 ljbj + ε)
, j = 1, 2, . . . , p

Figure 1.   Calculation process of BPNN model.
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prediction accuracy. A large number of nodes give rise to increase training time, generating overfitting of net-
work. The formulas for calculating the number of neurons in the hidden layer include the traditional formula 
l=
√
mn and the empirical formula l = 2n + 126,27, where: l is the number of nodes in the hidden layer; n is the 

number of nodes in the input layer; and m is the number of nodes in the output layer. The results obtained from 
the two formulas are respectively substituted into the BPNN prediction model. The final results show that the 
BP neural network converges well and has high prediction accuracy when the number of neurons in the hidden 
layer is 19. Finally, the topology structure of the BPNN model is finally determined to be 9-19-1.

50 sets of sample data that meet the conditions are selected from references28,29. After randomly shuffling 
the data, the former 40 sets of data is taken as training samples, while the later 10 sets of data is taken as predic-
tion samples. The input layer of the BP neural network consists of 9 parameters, including O2, N2, CO, CH4, 
CO2, C2H4, C2H6, C2H4/C2H6, CO2/CO, and the output layer is the hazard level. 22 samples are hazard level 1; 
16 samples are with hazard level 2; and 12 samples are hazard level 3. When the hazard level is 1, it is a safer 
situation. Level 2 is a relatively dangerous situation, requiring to pay attention to the development trend of the 
risk of borehole spontaneous combustion. When the level 2 warning lasts for three days or more, it is necessary 
to alert the dangerous situation and take preliminary fire prevention measures. Level 3 is a dangerous situation. 
When the level 3 warning lasts for three days or more, the borehole spontaneous combustion is in an extremely 
dangerous state, requiring to take intensive fire prevention measures. The specific sample data is shown in Table 1.

The BPNN prediction model is constructed by the Matlab software. The number of neurons in the input layer 
is set to 9, the number of neurons in the hidden layer to 19, the number of neurons in the output layer to 1, the 
maximum training times to 1000, the training target error to 0.00001, and the learning rate to 0.001. The results 
of the training and prediction of the BPNN model are shown in Figs. 2, 3 and Table 2. According to Table 2, 
the relative errors between the predicted and real values of the BPNN model operations ranges from 1.90% to 
30.98%, with a difference of 29.08% and an average relative error of 13.73%, while the absolute errors ranges 
from 0.0242 to 0.6195, with a difference of 0.5953 and an average absolute error of 0.2385. According to Fig. 2, 
goodness-of-fit between output value and target value of the training set, validation set and test set is higher with 
the correlation coefficients to over 0.97, indicating that the training results are valid. Figure 3 shows that change 
rule of the predicted values of the BPNN model is roughly similar trend with that of the real data, but errors of 
some predicated values still is larger. Therefore, the prediction accuracy needs to be improved.

PSO‑BPNN model
Particle swarm optimization
The particle swarm optimization algorithm is a stochastic search algorithm discovered in the study of the food-
seeking behavior of bird flocks30, which uses the concepts of “swarm” and “evolution” with the characteristic of 
information sharing and co-evolution between groups. Particle swarm optimization algorithm belongs to one 
of the metaheuristic algorithms, which is a global search optimization algorithm constructed based on experi-
ence and intuitive observation, and the variety is very rich and increasing, including genetic algorithms, ant 
colony algorithms, wolf pack optimization algorithms, artificial bee colony optimization algorithms, simulated 
annealing algorithms and other kinds of algorithms, which is proposed for the to get the optimal solution of 
global optimal solution, which can be obtained by these metaheuristic algorithms to get the optimal solution. 
Among the meta-inspired algorithms, the PSO algorithm is one of the more effective and widely used ones, on 
the one hand, because of its strong optimization ability and high accuracy of the results, and on the other hand, 
its structure is simple and easy to code, so it is widely used by scientific researchers and technicians.

The basic idea of the PSO algorithm is that the solution of each problem is considered as the position of each 
particle. The particle swarm composed of all the particles searches in a D-dimensional space31. Direction and 
distance of every particles are determined by their velocity. Every particle has a adaption value. Therefore, the 
particle search direction and distance constantly changes with the change of the particle’s velocity and adaption 
value. When the particle moves in the preconditioned space, it constantly changes its position according to the 
obtained individual and global extremes, and then updates the solution by constantly correcting its position, 
thereby achieving the purpose of finding an optimum in the preconditioned space. The individual extremes 
is the optimal solution found by the particle itself while the global extremes is the optimal solution found by 
the whole population. Compared with other algorithms, the BP neural network has simple initial parameter 
selection, strong learning ability, and nonlinear mapping ability, and the network structure based on error back-
propagation can substantially improve the prediction accuracy, and is more fault-tolerant and adaptable to the 
predicted sample data. At the same time, using a particle swarm algorithm to optimize the BP neural network 
can avoid falling into local optimum and improve its convergence speed. Therefore, this paper chooses to use a 
particle swarm algorithm to optimize the BP neural network to predict the degree of spontaneous combustion 
hazard of coal in the mining area.

In the PSO, the set of particles is xi = (xi1, xi2, …, xid), and the set of velocities is vi = (vi1, vi2, …, vid), where 
v is the velocity of each particle, 1 ≤ d ≤ n. If the global and individual extremes are gBesti and pBesti at the t times 
iteration, the particle velocity and position update equations are as follows:

where t is the current iterations number of times; r1, r2 are randomly distributed numbers on the interval [0, 1]; 
c1, c2 are learning factors; and ω is the inertia weight and a parameter, balancing the global search ability and 
local search ability of the population.

(2)vi(t+1) = ωvi(t) + c1r1
(

pBesti − xi(t)
)

+ c2r2
(

gBesti − xi(t)
)

(3)xi(t+1) = xi(t) + v1(t+1)
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PSO‑BPNN model prediction steps
The calculation process of the PSO-BPNN model is shown in Fig. 4, and the main steps are as follows:

Table 1.   Sample data28,29.

NO O2/% N2/% CO/ppm CH4/% CO2/% C2H4/ppm C2H6/ppm C2H4/C2H6 CO2/CO Level

1 20.35 79.58 1.54 0.05 0.011 0 0 0 7.14 1

2 20.4 79.47 3.21 0.02 0.01 0 0 0 3.12 1

3 20.19 79.65 9.73 0.12 0.017 0 0 0 1.75 1

4 20.57 79.35 5.38 0.07 0.014 0 0 0 2.6 1

5 20.31 79.51 5.59 0.15 0.022 0 0 0 3.94 1

6 17.46 80.77 37.01 1.73 0.051 1.55 0 0 1.38 2

7 15.2 80.86 31.31 3.89 0.057 1.42 0 0 1.83 2

8 14.23 80.42 41.74 5.28 0.073 0.85 0.21 4.05 1.75 2

9 17.21 81.37 14.13 1.39 0.039 3.03 0.94 3.22 2.76 2

10 14.16 79.93 22.58 5.91 0.027 3.74 0.57 6.52 1.2 2

11 15.34 79.3 134.54 5.28 0.087 7.15 4.56 1.57 0.65 3

12 12.55 79.6 182.66 7.76 0.088 8.05 5.73 1.4 0.48 3

13 14.81 80.07 142.5 5.03 0.09 6.42 4.65 1.41 0.63 3

14 12.25 78.2 193.83 9.47 0.077 8.12 4.04 2.01 0.4 3

15 16.77 80.26 45.27 2.92 0.056 4.28 3.92 1.09 1.21 2

16 12.73 81.02 52.5 6.18 0.074 3.12 1.82 1.71 1.41 2

17 14.42 80.63 57.16 4.88 0.068 3.93 7.44 0.53 1.19 2

18 13.34 78.64 53.87 7.95 0.073 4.07 2.12 1.92 1.36 2

19 10.6 80.24 43.08 9.1 0.029 5.17 3.36 1.54 0.67 2

20 14.61 79.81 46.24 5.6 0.048 2.45 1.07 2.29 1.04 2

21 8.22 79.42 54.3 12.3 0.066 3.63 1.69 2.15 1.22 2

22 20.09 79.66 10.29 0.23 0.025 0 0 0 2.43 1

23 20.45 79.23 14.18 0.32 0.023 0 0 0 1.62 1

24 20.34 79.27 4.89 0.37 0.012 0 0 0 2.45 1

25 19.47 79.36 6.59 1.14 0.03 0 0 0 4.55 1

26 18.22 80 13.25 1.75 0.028 0 0 0 2.11 1

27 12.68 79.47 202.65 7.75 0.091 8.44 6.59 1.28 0.45 3

28 11.97 79.67 170.2 8.3 0.059 17.94 16.25 1.1 0.35 3

29 14.13 81.73 165.77 4.14 0.064 8 13.12 0.61 0.39 3

30 11.18 80.66 248.15 8.09 0.068 12.78 6.55 1.95 0.27 3

31 20.06 79.38 17.04 0.56 0.033 0 0 0 1.94 1

32 17.47 80.97 15.87 1.56 0.021 0 0 0 1.32 1

33 20.08 78.98 7.77 0.92 0.016 0 0 0 2.06 1

34 19.9 79.32 2.93 0.63 0.015 0 0 0 5.12 1

35 20.26 78.86 6.08 0.87 0.017 0 0 0 2.8 1

36 19.87 79.18 18.47 0.91 0.052 0 0 0 2.82 1

37 16.91 80.16 15.2 2.87 0.068 0 0 0 3.42 1

38 12.01 80.28 47.95 7.63 0.085 2.67 1.05 2.54 1.77 2

39 13.82 80.17 210.48 5.94 0.062 13.16 16.81 0.78 0.29 3

40 19.06 79.73 5.66 1.21 0.024 0 0 0 4.24 1

41 9.36 78.96 258.71 11.6 0.085 12.62 14.93 0.85 0.33 3

42 13.35 79.54 230.13 7.01 0.092 9.46 7.63 1.24 0.4 3

43 15.19 80.45 33.69 4.32 0.044 0.31 0 0 1.31 2

44 18 80.54 11.63 1.41 0.042 0 0 0 3.61 1

45 10.52 81.97 75.52 7.45 0.063 3.55 5.87 0.6 0.83 2

46 20.62 78.81 8.58 0.55 0.02 0 0 0 2.33 1

47 19.89 79.05 4.81 1.06 0.036 0 0 0 7.48 1

48 11.33 79.76 108.15 8.82 0.086 14.75 11.74 1.26 0.8 3

49 11.9 78.86 43.59 9.21 0.035 4.76 2.85 1.67 0.8 2

50 16.71 81.09 19.34 2.12 0.078 0 0 0 4.03 1
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Figure 2.   Training regression state curve of BPNN model.

Figure 3.   Prediction results curve of BPNN model.
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(1)	 The parameters of the PSO algorithm are initialized according to the BPNN model in the previous section. 
The particle swarm size, velocity, particle dimension and iteration number are determined, then establish 
the PSO-BPNN model.

(2)	 The sample data in Table 1 are divided into two parts according to the grouping of the BPNN model, that 
is, the training group and the test group, and then importing into the PSO-BPNN model.

(3)	 The PSO-BPNN model begins to be trained to get values, then calculating adaption values of each parti-
cle. The current individual optimal position pBest and the global optimal position gBest are obtained by the 
calculation results of the fitness value.

(4)	 When the global optimal position is outside the set convergence accuracy range, the calculation of the 
adaptation value continues to update the individual optimal position and the global optimal position. 
When the global optimal position enters the convergence accuracy range, the calculation terminates.

(5)	 The solution with the highest adaption value is assigned to the BP neural network weights and thresholds. 
Then the optimal solution is obtained after the model is trained.

Table 2.   Comparison between real values and predicted values of BPNN model.

NO Real value Predicted value Absolute error Relative error/%

1 3 2.8154 0.1846 6.15

2 3 2.9431 0.0569 1.90

3 2 1.9095 0.0905 4.52

4 1 0.8155 0.1845 18.45

5 2 2.6195 0.6195 30.98

6 1 1.0242 0.0242 2.42

7 1 1.2027 0.2027 20.27

8 3 2.5461 0.4539 15.13

9 2 1.6127 0.3873 19.36

10 1 1.1811 0.1811 18.11

Figure 4.   Calculation process of PSO-BPNN model.
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Example application and analysis of results
PSO‑BPNN model prediction results
The Matlab is used to establish a PSO-BPNN model with allowable error of 0.00001, the maximum number 
of particle iterations of 50, all learning factors of 2, inertial factor of 0.6 and maximum flying velocity of parti-
cles of 0.8. The results of training and prediction are shown in Figs. 5, 6 and Table 3. The comparison between 
prediction values and real values of PSO-BPNN model is shown in Table 3. From Table 3, the relative error of the 
predicted values and real values ranges from 0.35 to 13.65% with a difference of 13.30% and an average relative 
error of 4.38%. Its absolute error ranges from 0.0105 to 0.2042 with a difference of 0.1937 and an average absolute 
error of 0.0678. The training regression state curve of the PSO-BPNN model is shown in Fig. 5. From Fig. 5, the 
correlation coefficients of fits between the output and target values of the training set, validation set and test set 
of the model are all above 0.97 and the correlation coefficient of all the data is 0.99, indicating that goodness-of-
fit between network output and target values is higher. Therefore, the training results are valid. The prediction 
result curves of PSO-BPNN model are shown in Fig. 6, exhibiting the comparison between the predicted and 
real values curves of PSO-BPNN model. According to Fig. 6, the real values has the similar variation tendency 
to the predicted values with little difference between the two values, indicating higher prediction accuracy.

The results of this study can be used in future applications not only for predicting the risk of spontaneous 
combustion in boreholes but also for predicting the gas content, dust concentration, or other toxic and hazardous 
gases in coal seams, as well as other aspects.

Comparative analysis
In order to verify the accuracy of the prediction results of PSO-BPNN model, Genetic Algorithm (GA), Spar-
row Search Algorithm (SSA), and Marine Predators Algorithm (MPA) were used to optimize the BPNN to train 
and predict the samples, respectively, and the prediction results of each model were compared and analyzed.

Figure 5.   Training regression state curve of PSO-BPNN model.
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The iterative changes of each of these models are shown in Fig. 7, from which it can be learned that the 
PSO-BPNN model has the optimal convergence performance and convergence speed, and most of the curves 
of PSO-BPNN are located below those of GA-BPNN, SSA-BPNN, and MPA-BPNN, which indicates that the 
model has higher solution accuracy and better global optimization seeking ability.

By recording the analysis duration of each model, Table 4 can be obtained, from which it can be understood 
that among the four models, PSO-BPNN, GA-BPNN, SSA-BPNN and MPA-BPNN, the analysis duration of 
PSO-BPNN is the shortest, and the analysis durations of the other models are longer than PSO-BPNN, which 
indicates that the computation rate of this model is better than the other models.

The comparison results of the absolute and relative errors calculated by each model are shown in Figs. 8 and 
9, respectively. Comparison is made and it is found that the great and small values of the relative errors of the 
PSO-BPNN model prediction results are smaller than the great and small values of the prediction results of 
the other models. The comparison of the performance indexes of each model is shown in Table 5. The average 
relative error of the BPNN model is 13.73%, the average absolute error is 0.2385, the root mean square error is 
0.2990, and the coefficient of determination is 0.8705; the average relative error of the GA-BPNN model is 7.57%, 
the average absolute error is 0.1280, the root mean square error is 0.1755, and the coefficient of determination 
is 0.9554; the SSA-BPNN model has an average relative error of 10.08%, an average absolute error of 0.1498, a 
root-mean-square error of 0.2034, and a coefficient of determination of 0.9400; the MPA-BPNN model has an 
average relative error of 7.88%, an average absolute error of 0.1539, a root-mean-square error of 0.2059, and 
a coefficient of determination of 0.9386; while the PSO-BPNN model has an average relative error of 4.38%, 
an average absolute error of 0.0678, a root-mean-square error of 0.0934, and a coefficient of determination of 
0.9874. Compared with the BPNN model, the PSO-BPNN model’s average relative error, average absolute error, 
and root-mean-square error are reduced by 9.35%, 0.1707, and 0.2056, and the coefficient of determination 
increased by 0.1169; compared with the GA-BPNN model, the average relative error, average absolute error and 
root mean square error of the PSO-BPNN model decreased by 3.19%, 0.0602 and 0.0821, respectively, and the 

Figure 6.   Prediction results curve of PSO-BPNN model.

Table 3.   Comparison between predicted values and real values of PSO-BPNN model.

NO Real value Predicted value Absolute error Relative error/%

1 3 2.9895 0.0105 0.35

2 3 3.0164 0.0164 0.55

3 2 1.9405 0.0595 2.98

4 1 0.8635 0.1365 13.65

5 2 1.7958 0.2042 10.21

6 1 0.9885 0.0115 1.15

7 1 0.9865 0.0135 1.35

8 3 2.9658 0.0342 1.14

9 2 2.1349 0.1349 6.75

10 1 0.9431 0.0569 5.69
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coefficient of determination increased by 0.0320; and compared with the SSA-BPNN model, the mean relative 
error, mean absolute error and root mean square error decreased by 5.70%, 0.0820 and 0.1100, respectively, and 
the coefficient of determination increased by 0.0474; compared with the MPA-BPNN model, the PSO-BPNN 
model decreased the mean relative error, mean absolute error and root mean square error by 3.50%, 0.0861 and 
0.1125, respectively, and the coefficient of determination increased by 0.0488. In summary, the PSO-BPNN 
model is better than the other models in terms of analysis duration and accuracy of prediction results, which 
proves that the PSO-BPNN model has higher accuracy in predicting the spontaneous combustion of boreholes 
compared with the GA-BPNN model, SSA-BPNN model, and MPA-BPNN model.

Application of each model to other mines
Sample data from three gas extraction boreholes A, B and C in a coal mine in Shanxi are selected to further vali-
date the model. After comparing and analyzing these data in in the BPNN model, PSO-BPNN model, GA-BPNN 

Figure 7.   Changes in fitness of each model.

Table 4.   Duration of analysis for each model.

Name of the method Duration of the analysis/s

PSO-BPNN 9.38

GA-BPNN 11.44

SSA-BPNN 13.90

MPA-BPNN 33.87

Figure 8.   Absolute error comparison.
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model, SSA-BPNN model and MPA-BPNN model respectively, the average relative error of prediction results of 
each model under different extraction boreholes is shown in Fig. 10. The results show that the average relative 
error of the prediction results of PSO-BPNN model is in the range of 4.44–4.57%, while the average relative errors 
of the prediction results of BPNN model, GA-BPNN model, SSA-BPNN model and MPA-BPNN model are in 
the ranges of 12.40–14.92%, 7.68–8.56%, 9.86–10.88% and 7.96–8.36%, and the fluctuation ranges are larger than 
those of PSO-BPNN model. In conclusion, the PSO-BPNN model has the best accuracy of prediction results 
by comparing and analyzing predication results each model, which indicates that the PSO-BPNN model has 
good accuracy and stability in the application of spontaneous combustion prediction in other mine boreholes.

Conclusions
The PSO-BPNN model was constructed to predict the spontaneous combustion risk of gas extraction boreholes. 
The main conclusions were obtained by comparing with the prediction results of the BPNN model, GA-BPNN 
model, SSA-BPNN model and MPA-BPNN model as follows:

Figure 9.   Relative error comparison.

Table 5.   Comparison of performance indicators of different models.

Model

Performance indicators

Average absolute error Average relative error/% Root mean square error Determination coefficient

BPNN 0.2385 13.73 0.2990 0.8705

PSO-BPNN 0.0678 4.38 0.0934 0.9874

GA-BPNN 0.1280 7.57 0.1755 0.9554

SSA-BPNN 0.1498 10.08 0.2034 0.9400

MPA-BPNN 0.1539 7.88 0.2059 0.9386

Figure 10.   Comparison of average relative errors in predicted results of each extraction borehole.
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(1)	 A borehole spontaneous combustion prediction model based on BP neural network is proposed. The 
prediction results of the BPNN model show that there is good fitting correlation between the output and 
the target value of the training set, validation set and test set. The correlation coefficient for all data is 0.99, 
with an average relative error of 13.73% and an average absolute error of 0.2385.

(2)	 The BP neural network is optimized by the PSO algorithm, overcoming the disadvantages of slow conver-
gence and easy to fall into local optimum of BP neural network. The correlation coefficient of all the data 
predicted by the PSO-BPNN model is 0.99 with the average relative error of 4.38% and the average absolute 
error of 0.0678. The predicted values maintain the same trend with the real values with higher accuracy of 
the prediction.

(3)	 Compared with prediction results of the BPNN model, the mean relative error, mean absolute error and 
root mean square error of the PSO-BPNN model decrease by 9.35%, 0.1707 and 0.2056, respectively, and 
the coefficient of determination increases by 0.1169. Compared with that of GA-BPNN model, the mean 
relative error, mean absolute error and root mean square error decrease by 3.19%, 0.0602 and 0.0821, 
respectively, and the coefficient of determination increases by 0.0320. Compared with that of SSA-BPNN 
model, the mean relative error, mean absolute error and root mean square error decrease by 5.70%, 0.0820 
and 0.1100, respectively, and the coefficient of determination increases by 0.0474. Compared with that of 
MPA-BPNN model, the mean relative error, mean absolute error and root mean square error decrease by 
3.50%, 0.0861 and 0.1125, respectively, and the coefficient of determination increases by 0.0488. It proves 
that the prediction of PSO-BPNN model is more accurate than that of BPNN model, GA-BPNN model, 
SSA-BPNN model and MPA-BPNN model. The application of the model can provide real-time warning of 
the risk of spontaneous combustion in gas extraction boreholes, avoiding the occurrence of spontaneous 
combustion disasters of boreholes.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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