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Seasonal changes in network 
connectivity and consequences 
for pathogen transmission 
in a solitary carnivore
Marie L. J. Gilbertson 1,6*, S. Niamh Hart 1, Kimberly VanderWaal 1, Dave Onorato 2, 
Mark Cunningham 3, Sue VandeWoude 4 & Meggan E. Craft 1,5

Seasonal variation in habitat use and animal behavior can alter host contact patterns with potential 
consequences for pathogen transmission dynamics. The endangered Florida panther (Puma concolor 
coryi) has experienced significant pathogen-induced mortality and continues to be at risk of future 
epidemics. Prior research has found increased panther movement in Florida’s dry versus wet seasons, 
which may affect panther population connectivity and seasonally increase potential pathogen 
transmission. Our objective was to determine if Florida panthers are more spatially connected in dry 
seasons relative to wet seasons, and test if identified connectivity differences resulted in divergent 
predicted epidemic dynamics. We leveraged extensive panther telemetry data to construct seasonal 
panther home range overlap networks over an 11 year period. We tested for differences in network 
connectivity, and used observed network characteristics to simulate transmission of a broad range 
of pathogens through dry and wet season networks. We found that panthers were more spatially 
connected in dry seasons than wet seasons. Further, these differences resulted in a trend toward 
larger and longer pathogen outbreaks when epidemics were initiated in the dry season. Our results 
demonstrate that seasonal variation in behavioral patterns—even among largely solitary species—can 
have substantial impacts on epidemic dynamics.

Outbreaks of infectious diseases pose significant threats to the population health and conservation of free-
ranging  wildlife1,2, and seasonality can have profound impacts on the dynamics of these  outbreaks3. Langwig 
et al.4 outlined five mechanisms through which seasonality may alter transmission dynamics via: (1) variation in 
sociality, (2) birth pulses causing influxes of new susceptibles, (3) variation in habitat use, (4) variation in climatic 
factors, and (5) variation in host immune function. Yet these are not necessarily mutually exclusive mechanisms. 
For example, climatic variation itself can drive changes in habitat  use5,6 or animal social  behaviors7. Given this 
covariation, an emergent question is whether seasonality contributes to significant changes in behavior and host 
contact patterns, which then translate to consequent changes in transmission dynamics.

While seasonal changes to host contact structure have been associated with predicted changes in outbreak size 
and speed of pathogen  spread8, the relative impact of seasonality on pathogen dynamics likely varies by factors 
such as the magnitude of  seasonality9, individual pathogen characteristics (e.g., incubation period), and local con-
text. For example, seasonal variation in habitat selection by zebra (Equus quagga) in Namibia has been associated 
with increased anthrax mortalities in the wet season. However, during a period of severe drought, zebra altered 
their habitat selection with a consequent reduction in wet season anthrax  mortalities6. The relative importance 
of seasonality on pathogen transmission may be of particular significance for species of conservation concern, 
for heavily managed populations, or in resource-limited conditions, where such seasonal effects may dictate 
optimal timing of surveillance, interventions, or other management activities to protect at-risk  populations10,11.
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One such relevant example is the Florida panther (Puma concolor coryi), an endangered subspecies of puma 
found only in south Florida. In the early 1990s, only an estimated 20–25 adult panthers  remained12. Panther 
genetic diversity was extremely limited, suggestive of depressive  inbreeding12, and appeared to be associated 
with increased disease burden among  panthers13,14. Panthers have been infected with pathogens such as pseu-
dorabies, rabies, notoedric mange, dermatophytosis, and feline leukemia virus (FeLV), which have all resulted 
in  mortality15. Additionally, infectious agents including feline calicivirus, feline immunodeficiency virus, feline 
panleukopenia virus, and Toxoplasma gondii have all been documented in  panthers13,16,17. FeLV spillover from 
domestic cats, in particular, was responsible for a deadly outbreak among panthers in 2002–200418,19 and is an 
ongoing threat to the  population20,21. While recent research has devoted much effort to discerning drivers of 
transmission among panthers (e.g.22,23), far less effort has been devoted to understanding how transmission 
dynamics among panthers may be subject to seasonal variations.

Southern Florida is subject to seasonal climatic variability with a tropical monsoon climate, wherein 75% of 
total annual precipitation falls on the landscape during the wet season (from May to  October24). Ground that is 
dry one month can shift to non-traversable swampland the next. Such hydrologic changes have been implicated in 
observed seasonal variation in movement patterns among Florida panthers, with increased movement observed 
in the dry  season25,26. Although contact rates between puma (Puma concolor) in the Greater Yellowstone area 
have been shown to vary  seasonally27, it is unknown if seasonal hydrological changes in the subtropical climate 
of south Florida and their effect on panther movement or behavior translate to changes in panther population 
connectivity. Further, it is unclear if seasonal changes in population connectivity would impart measurable, 
biologically significant impacts on epidemic outcomes.

The objectives of this study were to determine (1) if the panther population is more spatially connected in 
dry seasons than wet seasons, as measured by home range overlap, and (2) if any differences in connectivity 
could result in different epidemic outcomes in dry versus wet seasons, and identify transmission conditions 
under which those difference may be the greatest. We use the term spatial connectivity, hereafter, to refer to 
the connectedness of individuals within our population as a result of home range or spatial overlap. Results of 
this study shed light on the impact of social ecology on subsequent pathogen transmission and management in 
free-ranging wildlife.

Materials and methods
We used very high frequency (VHF) telemetry data previously collected from Florida panthers captured and 
radiocollared by the Florida Fish and Wildlife Conservation Commission and National Park Service. Captures 
followed FWC agency guidelines for the immobilization and handling of wild panthers, which have been modeled 
to closely follow the American Society of Mammalogists’ guidelines for the use of wild mammals in  research28. 
We selected the years of 1996–2007 as our study period, as telemetry coverage during this window showed con-
sistent, high numbers of monitored individuals, with a mean of 36 panthers monitored per year (range 26 to 47; 
minimum panther population size was approximately 30–90 individuals during this  period29). Relocations of 
radiocollared panthers were recorded from aircraft during the day, typically three times per week. We followed 
Criffield et al.25 in defining the south Florida wet season as 15 May through 14 October, and dry season as 15 
October through 14 May each year (Fig. S1). We reviewed telemetry locations for each individual in each season 
per year to identify errant or outlier points that were likely erroneous based on extreme divergence from all 
other points, implying unrealistic speeds of travel; this process resulted in the removal of 13 relocations across 
the 11 year dataset.

Panther seasonal spatial connectivity
We evaluated seasonal changes in the potential for individuals to interact by estimating spatial overlap between 
panther home ranges in each year and  season30–32. We chose spatial overlap as a representation of potential 
interactions because our data were limited to relocations collected three times per week, which precluded reli-
ably identifying direct contact events. Spatial overlap is representative of the potential for individuals to interact 
indirectly, and can be representative of direct  interactions30, with this approach having been used previously 
in solitary (Puma concolor33) and social carnivores (wolves, Canis lupus, and lions, Panthera leo34). Further, the 
long-term nature of our relocation data provided a unique opportunity to examine seasonal patterns across an 
11-year period; this is often not feasible with higher temporal resolution GPS collar data due to the shorter bat-
tery life of these  devices35.

To quantify spatial overlap between panthers, we used the utilization distribution overlap index  (UDOI36) 
with the 95% bivariate normal kernel home range. We chose to use UDOI, as it is the preferred metric when 
measuring space-use sharing between individuals (as compared to metrics such as volume of intersection and 
Bhattacharyya’s affinity)36,37. Home range kernels, 95% isopleth areas, and UDOI were estimated using the ade-
habitatHR package in R (R version 3.6.3 and 4.2.038,39), as the coarseness of our relocation data did not require 
the use of autocorrelated kernel density  estimators40,41.

Weighted networks were then constructed for each season and year, whereby individuals were connected 
in the network with edges weighted by UDOI (i.e., panthers with very little home range overlap had low edge 
weights). Our primary analysis did not subset networks by a minimum or threshold UDOI value (hereafter, filter), 
as such filtering is generally not recommended in network  analysis42. However, we also replicated analyses with 
networks where edges were filtered for UDOI greater than or equal to 0.01 and 0.1 (an additional 44 networks) 
in order to test the sensitivity of our results to edge definitions.

For each network, we calculated node metrics of degree and strength, and network metrics of density and 
 modularity43, all of which are key indicators of network connectivity and pathogen  transmission44. Degree and 
strength are the number of connections and sum of weighted connections for each node, respectively. Individuals 
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with high degree and/or strength may be candidates as “superspreaders”45. Density is a network-level measure 
of overall connectivity, while modularity is a measure of network subdivisions which may affect transmission 
 dynamics46. Because networks were different sizes across seasons and years, we calculated the normalized degree 
for each node (degree divided by n-1, where n is the number of nodes in the network) to facilitate comparisons of 
networks across the study period. Strength was calculated using UDOI as the edge weight. Density was calculated 
as the proportion of realized versus possible edges in a  network47. Modularity was calculated using a walktrap 
community-finding algorithm with 4 and 7 steps (to test sensitivity to this choice), with inverse UDOI as the 
edge weight. All network metrics were calculated using the igraph package in  R48.

We tested for differences in the node- and network-level metrics in dry versus wet seasons. Because panthers 
were often monitored for multiple numbers of seasons and years (i.e., repeated measures within individuals), for 
node-level metrics (normalized degree and strength), we used a cluster level  bootstrap49 to model metric values 
as a function of log home range area (in square kilometers) and season. We treated individual panthers as clus-
ters (i.e., panthers were the unit that we resampled). Duration of observation (i.e., the number of seasons) was 
variable across the population, however, resulting in unequal cluster sizes, so our bootstrap approach sampled 
with replacement based on cluster size (we sampled with replacement individuals who were monitored for two 
seasons, three seasons, and so on)49. In each bootstrap iteration, we fitted the above linear model and recorded 
coefficient estimates (bootstrap statistics). We used 1000 iterations per bootstrap analysis, then extracted 95% 
confidence intervals for each coefficient from the quantiles of the resulting coefficient bootstrap distributions.

In addition, to specifically test if seasonal differences in panther connectivity were linked to hydrological 
changes (versus an unmeasured metric of seasonality), we compared our node-level metrics to seasonal precipi-
tation. Precipitation data was accessed from the National Oceanic and Atmospheric Administration’s Climate 
Data Online  service50. We averaged daily precipitation totals across Collier County weather stations from May 
15, 1996 to May 14, 2007 and summed these averages per season per year to give seasonal total average precipita-
tion values for each year and season. We used Spearman correlation to test for correlations between these total 
average precipitation values and median node-level metrics per season and year.

For the network-level metrics of density and modularity, we used non-parametric Kruskal–Wallis rank sum 
tests to test for differences in these metrics in the dry versus wet seasons across the 22 networks (2 seasons for 
each of 11 years). All Kruskal–Wallis tests were performed using the stats package in  R38.

Seasonal network connectivity and epidemic outcomes
We used a simulation approach to determine if differences in network connectivity alter epidemic outcomes in 
dry versus wet seasons. A simulation approach allowed us to examine transmission of a range of potential patho-
gens through empirically-informed networks, a strategy that can be helpful for highlighting the conditions or 
parameter space under which we expect to see the greatest impact of host or pathogen characteristics on epidemic 
 outcomes5,46,51–54. Furthermore, network size was variable across years and seasons, and the degree distribution 
of networks can be influenced by network size and  density42. Hence, a simulation approach allowed us to limit 
epistemic uncertainty (variation resulting from experimental  uncertainty55) resulting from variation in network 
size, such that our simulation results would be indicative of differences between wet and dry season networks.

We simulated networks based on normalized degree and UDOI distributions from the observed networks, 
using separate distributions for dry and wet seasons. For each observed network, we fit a beta distribution to 
the normalized degree, and a gamma distribution to the observed UDOI edge weights using the fitdistrplus 
package in  R56. We then took the mean of the beta and gamma distribution parameters across the dry and wet 
seasons, respectively. In addition, we recorded the number of isolates (completely unconnected individuals) in 
each observed network and, across all dry and all wet season networks, fit separate Poisson distributions to their 
respective counts of isolates. This approach resulted in three distributions per season describing normalized 
degree, UDOI, and the number of network isolates.

We then simulated new networks based on these three distributions for each season (degree, UDOI edge 
weight, and number of isolates). Simulated networks each had 33 nodes, which was the average network size 
across all observed networks. We simulated networks as single large components (rather than two or more sub-
components), then added isolated individuals by drawing from the corresponding dry or wet season Poisson 
distribution. Among non-isolates, we simulated a normalized degree distribution from the corresponding dry 
or wet season beta distribution, and transformed these values to standard degree values based on the population 
size. We then used simulated annealing in the ergm package in  R57 to generate a network with the target degree 
distribution. Simulated annealing is not always precise, and because we did not detect statistically significant 
differences in network density between dry and wet seasons (see results), we constrained simulated network 
density to ± 25% of the average network density across all networks.

To assign edge weights, we followed Reynolds et al.8 and randomly assigned edge weights by drawing from 
the corresponding gamma distribution for dry versus wet season UDOI values. There was no evidence of correla-
tion between degree and UDOI (treating each UDOI estimate as independent, Kendall’s τ =  − 0.06), supporting 
random assignment of UDOI values in our simulations. Because UDOI values can be greater than  one36, we 
scaled simulated UDOIs by the maximum drawn UDOI per simulated network so all values fell between 0 and 
1 for transmission simulations (see Fig. S2 for representative examples of simulated networks).

Network metrics that reflect higher order or indirect network structure (e.g., clustering coefficient, between-
ness) are typically less robust to undersampling of  populations58–60, so we did not simulate networks constrained 
by these metrics. The impact of undersampling on modularity is less  clear60, and we did not specifically constrain 
the modularity of simulated networks. However, to ensure our simulated epidemic outcomes were robust to 
higher order network structure (in the form of modularity), we evaluated epidemic outcomes (see below) for 
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the subset of simulations in which simulated network modularity was within the bounds of observed modularity 
in respective dry and wet seasons.

With each simulated network, we simulated pathogen transmission through that network in weekly time steps. 
Transmission was initiated with a randomly selected individual and simulations continued for a maximum of six 
months (representing the length of our seasons). Because our networks were based on spatial overlap between 
panthers, we expected that our simulations would be most representative of indirectly or environmentally trans-
mitted pathogens (e.g., gastrointestinal helminths, feline panleukopenia virus). However, spatial overlap has been 
used to represent the potential for direct social interactions between Puma concolor and bobcat (Lynx rufus)33, 
as well as direct intraspecific associations in other species (e.g.30–32). Our simulations may therefore also have 
relevance to directly transmitted pathogens, assuming a direct relationship between spatial overlap and direct 
contact. As such, transmission simulations were designed to represent a broad range of potential pathogen 
types, including those that cause chronic infections (susceptible-infectious model, SI; e.g. directly transmitted 
feline immunodeficiency virus), those that cause infections that can recur after recovery (susceptible-infectious-
susceptible model, SIS; e.g. many indirectly transmitted gastrointestinal helminths), and those that cause infec-
tions that induce immunity (susceptible-infectious-recovered model, SIR; e.g. directly or indirectly transmitted 
feline panleukopenia virus).

Transitions between infection states occurred through a stochastic chain binomial process. In each time step, 
transmission (transition from susceptible to infectious) occurred for an individual if all the following conditions 
were met: (1) the existence of an edge between a susceptible and infectious individual; (2) a random binomial 
draw based on scaled UDOI edge weight (high edge weight = high probability of success); (3) a random binomial 
draw based on an additional edge weight scaling parameter, ρ, used to adjust the relative effect of UDOI-based 
edge weights; and (4) a random binomial draw based on the probability of transmission, given contact, repre-
sented by β (note that this is different from the conventional β in most compartmental models). UDOI can range 
from zero to greater than one, and even scaled to range from zero to one, empirical evidence from Puma concolor 
demonstrates that it is unlikely that even highly overlapping panthers interact on a weekly  basis27. We therefore 
included the parameter ρ to scale UDOI-based contact probabilities to better represent the expected low rate of 
weekly contact in panthers. Further, inclusion of ρ allowed us to explicitly evaluate epidemic outcomes across a 
range of probabilities of contact. We repeated all simulations using binary (unweighted) edges instead of UDOI-
weighted edges, but still including ρ. In SIS and SIR models, recovery from an infectious state (to susceptible or 
recovered, respectively) occurred at a rate γ, representing the weekly probability of recovery.

All parameters were varied across a range of parameter space in a full factorial design (Table 1). The combina-
tion of three model types (SI, SIS, SIR), weighted versus binary networks, and the potential values for the three 
transmission parameters (ρ, β, γ) resulted in 210 parameter sets which were instituted across dry and wet season 
simulation scenarios (for a total of 420 parameter sets). For each parameter set, a full simulation consisted of 
simulation of either a single dry or wet season network, and a transmission simulation through that network. 
100 full simulations were completed for each parameter set in each of dry and wet season scenarios, resulting 
in a total of 42,000 full simulations.

To compare outcomes of simulated epidemics between dry and wet season scenarios, we recorded several key 
outcomes from each simulated epidemic. These included: outbreak duration (for SIS and SIR), total number of 
individuals ever infected, and proportion of outbreaks that failed. Failed outbreaks were defined as those that 
initiated in an unconnected isolate or in a non-isolate but only affected 1 individual; otherwise, epidemics were 
considered “successful”. We compared outcomes between wet and dry seasons using heat maps; for outbreak 
duration and total individuals infected, we compared mean values from successful epidemics. In addition, for 
the key result of “total ever infected”, we fit a generalized linear mixed model (GLMM), assuming a gamma 
distribution and log link. In this model, our response variable was the total number of panthers ever infected, 
with fixed effects for season and simulated network density, and a random intercept for parameter set (which 
incorporated model type). We controlled for simulated network density in this model to determine if differences 
in epidemic size were the result of season or simply differences in network density that emerged from simulations. 
Finally, to examine how our transmission parameters contributed to total infections and outbreak durations, 
we performed a variable importance analysis using the randomForest package in  R61,62. For each of these two 
outcome variables, we performed a random forest regression with 2000 trees for all simulations infecting more 
than one individual. For outbreak duration, we only analyzed results from the SIR model type (these outbreaks 
were less likely to persist through the whole simulation duration).

Table 1.  Transmission model types and simulation parameters. The parameter types and values used across 
the full factorial design for transmission simulations. Values represent probabilities used in random binomial 
draws. Each unique set of parameters was used for 100 simulations in each of dry and wet season scenarios. 
*The weekly probability of recovery applied only to SIS and SIR model types.

Parameter Parameter values

Model type SI, SIS, SIR

Edge weight modifier (ρ) 0.6, 0.8, 1.0

Probability of transmission, given contact (β) 0.2, 0.4, 0.6, 0.8, 1.0

Weekly probability of recovery (γ)* 0.125, 0.25, 0.5
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Results
Panther spatial connectivity was higher in dry seasons than in wet seasons
Florida panther home range overlap networks were generally highly connected, with few observed unconnected 
individuals across the 22 seasonal networks (Fig. 1, Figs. S3–S13). Overlap, as quantified by UDOI, was right-
skewed such that most pairs had low overlap and a smaller proportion had high degrees of overlap (Table S1, 
Fig. S14). Node-level metrics of normalized degree and strength were higher in dry seasons than in wet seasons 
(Fig. 2, Table 2). Because we used normalized degree as our response variable in the former model, effect sizes 

Figure 1.  Florida panther 95% home range isopleths and locations (A,B) and home range overlap networks 
(C,D) from the wet (A,C) and dry (B,D) seasons in 2000. Locations of Collier county weather stations are 
indicated by red diamonds in (A,B). In (C,D), each node is a unique panther, node size reflects degree (number 
of connections in the network), and edge width corresponds to utilization distribution overlap index (UDOI). 
Node position in the networks does not correspond to geographic location. Colors of individuals match between 
the map and corresponding network (i.e., the teal individual in the central north of map B is the same teal 
individual at the left of the network in (D)), but do not match between maps or between networks. Results from 
2000 were chosen as a representative example, with all networks available in Supplementary Figs. S3–S13. Maps 
were generated using Mapbox (https:// www. mapbox. com/ about/ maps/) and OpenStreetMap (http:// www. opens 
treet map. org/ copyr ight); Mapbox encourages map improvement feedback. (https:// www. mapbox. com/ map- 
feedb ack/).

https://www.mapbox.com/about/maps/
http://www.openstreetmap.org/copyright
http://www.openstreetmap.org/copyright
https://www.mapbox.com/map-feedback/
https://www.mapbox.com/map-feedback/
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represent changes in node degree per n-1 individuals in a network. As such, seemingly small effect sizes can 
be associated with larger impacts in realized networks. Larger home range (HR) sizes contributed to higher 
node level metrics, but did not wholly account for the observed seasonal differences (Table 2, Figs. S15, S16). 
Furthermore, dry seasons had higher node-level metrics than wet seasons even when filtering edges by higher 
UDOI values (Table S2). Median values for both node-level metrics were positively correlated with seasonal total 
average precipitation in dry seasons, while wet seasons were negatively correlated, though these correlations did 
not achieve statistical significance (note small sample sizes; Fig. 3, Table S3).

In contrast, network-level metrics showed little to no differences between wet and dry seasons, and this was 
largely consistent across levels of UDOI edge filtering (Table S4). Modularity was higher in dry seasons than 
wet seasons (median modularity with 4 steps: dry = 0.62, wet = 0.47; with 7 steps: dry = 0.64, wet = 0.47), but only 

Figure 2.  Node-level metrics from Florida panther spatial overlap networks in the context of season. (A) Shows 
normalized degree over time; (B) shows strength over time. In both panels, dry season results are dark tan and 
wet season results are aqua blue. All degree and strength results are from networks with no edge filtering.
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without UDOI filtering for edges, and this difference did not reach statistical significance (with no edge filter-
ing, rank sum = 3.75; p = 0.053; Table S4). Network density was not statistically significantly different between 
wet and dry seasons at any level of UDOI filtering (with no edge filtering, rank sum = 1.99; p = 0.16; Table S4).

Greater dry season connectivity led to more infected individuals
Simulated epidemic outcomes demonstrated a trend toward more infected individuals, more successful epi-
demics, and longer durations of epidemics when the onset was in the dry season versus the wet season (Fig. 4, 
Figs. S17–S23). These findings were largely consistent across model types and parameter space. The maximum 
difference in mean proportion of individuals infected in the dry season relative to the wet season for SI, SIS, 
and SIR models was 12.5%, 17.8%, and 16.5%, respectively (Fig. 4, Figs. S17, S18). More generally, the great-
est differences in number of individuals infected per season were typically apparent with intermediate to high 
transmission potential (combination of probability of transmission and edge weight scaling), and intermediate 
to long duration of infection (intermediate to low weekly probability of recovery; Fig. 4, Figs. S17, S18). When 
repeating simulations with networks with binary edges (no UDOI weighting), epidemics were typically much 
larger (often affecting all individuals) than in simulations with weighted edges, yet still showed a consistent trend 
for larger epidemics in the dry season than the wet season (Figs. S24–S26).

Examination of epidemic curves demonstrated that the differences in epidemic dynamics were more pro-
nounced at some time points (Fig. 5, Fig. S27). For the SIR model producing the largest differences between dry 
and wet season outbreak sizes (probability of transmission given contact = 0.6, edge weight modifier = 1, weekly 
probability of recovery = 0.25), dry season epidemics had up to about two more infectious individuals at one 
time, compared to the wet season (Fig. S27). Because simulated population sizes were only 33 individuals, this 
reflects about 6% more of the population being infected at a single time point.

While observed networks did not show differences in density between dry and wet seasons, simulated network 
density, which was an emergent property of simulations, was higher in simulated dry season networks than wet 
season networks (Fig. S28). This was true despite having constrained densities to the same range of values for wet 
and dry seasons in our network simulation process, and therefore likely emerged from the differing underlying 
degree distributions. When accounting for simulated network density in our GLMM, season did not predict 
the total number of individuals infected in simulations (season: estimate = 0.01, standard error = 0.02, p = 0.7; 
network density: estimate = 5.4, standard error = 0.38, p < 0.001).

When evaluating the subset of simulation results in which simulated network modularity was within the 
ranges from observed networks, differences in epidemic sizes between dry and wet seasons were reduced but not 
eliminated (Figs. S29–S31). Again, this finding was true across model types and parameter space.

Our variable importance analysis found that the edge weight modifying and transmission probability param-
eters (ρ and β) were the most important for total simulated infections, and, along with the recovery probability 
parameter (γ), had a nonlinear relationship with this simulated outcome (Figs. S32, S33). In contrast, the recovery 
probability parameter (γ) was most important for the duration of SIR outbreaks, with a more linear relationship 
(Figs. S34, S35).

Discussion
In this study, we first tested for differences in seasonal spatial connectivity in an endangered carnivore, the Florida 
panther. Our network approach indicated more and stronger spatial overlap among panthers during Florida’s 
dry season. We then determined if the observed differences in connectivity resulted in changes to predicted 
epidemic dynamics, finding that dry season outbreaks were consistently larger, of longer duration, and more 
likely to be successful.

We found that panther spatial overlap networks were more highly connected in dry seasons than wet sea-
sons. This seasonality in overlap means that panthers likely have increased indirect contact in the dry season, 
and may also have increased direct contact during this period, assuming that direct contact is directly related 
to spatial overlap. Our results were consistent even when filtering network edges by higher home range overlap 
values (UDOI) and accounting for panther home range size, suggesting that the increased connectivity in dry 

Table 2.  Cluster level bootstrap of node-level metrics from Florida panther spatial overlap networks. Linear 
model coefficient estimates with 95% confidence intervals (CI) from cluster level bootstrap. Home range (HR) 
area was modeled as the log of the home range area in square km; dry season was the reference level for season, 
so coefficient estimates represent the effect of wet season on the respective node level metric. 95% CIs that do 
not include zero are considered statistically significant (bolded and marked by *), as they do not include the 
null hypothesis  value63. Results are from networks with no edge filtering.

Node metric Variable Estimate Coefficient 95% CI

Normalized degree

Intercept  − 0.1 (− 0.2, 0.007)

Log(HR area) 0.06 (0.04, 0.08)*

Season (Wet)  − 0.02 (− 0.03, − 0.006)*

Strength

Intercept 0.04 (− 0.4, 0.5)

Log(HR area) 0.2 (0.09, 0.3)*

Season (Wet)  − 0.1 (− 0.2, − 0.08)*
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seasons is not simply the result of weak home range overlap connections. Rather, seasonal behavioral changes 
or alterations in specific habitat use or movement likely contribute to increased spatial connectivity in panthers.

Panthers will reproduce throughout the year, but the majority of litters are born in February–June; with a 
90 day gestation, this places most mating interactions in the dry  season64. Furthermore, the dry season coincides 
with peak parturition of key panther prey species (i.e., white-tailed deer, Odocoileus virginianus, and feral swine, 
Sus scrofa64), which could alter panther habitat use as female panthers prioritize these young prey resources. Pre-
vious work has also implicated hydrological changes during the wet season with changes in panther movement; 
specifically decreased daily movements and shorter step  lengths25. Decreased “ease of movement” during the 
wet season would explain the decreased spatial overlap connectivity we observed. In support of this hypothesis, 
we observed negative correlations between median values of node-level metrics of connectivity (degree and 
strength) and wet season precipitation (as total average precipitation), though this relationship did not achieve 
statistical significance. However, contrary to our expectations, we also observed positive correlations between 
node-level metrics and dry season precipitation, suggesting that spatial connectivity is the lowest in the driest 
dry seasons and the wettest wet seasons. This seemingly non-monotonic relationship between precipitation and 

Figure 3.  Among Florida panther spatial overlap networks, median values for node-level (A) normalized 
degree and (B) strength per season and year compared to seasonal precipitation. “Total average precipitation” 
was calculated per season and year, and averaged across Collier County weather stations. Dry seasons are 
colored dark tan, and wet seasons are in teal. All degree and strength results are from networks with no edge 
filtering.
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spatial connectivity could be explained by increasing availability of usable habitat (e.g., unflooded) in the driest 
dry seasons, thereby reducing competition for spatially structured resources and consequent spatial overlap. 
In contrast, the wettest wet seasons may then favor increasing spatial isolation of individuals. Alternatively, 
if prey species become congregated in small areas during wet seasons, panthers may aggregate in these areas, 
facilitating increased competition and potential aggressive interactions. Aggregations of prey can also facilitate 
trophic transmission of pathogens like pseudorabies virus, where higher local prey densities increase intra-
species transmission, thereby increasing the probability of spillover to  predators65. The nature of interactions 
between panthers in areas of spatial overlap therefore merits investigation, particularly for the study of directly 
transmitted pathogens.

The mechanisms underlying the seasonal changes in spatial connectivity we observed here are likely nonlinear 
and multifactorial. Future work with higher resolution movement data could refine our understanding of the 
relationship between hydrology and panther space use, as well as examine if the changes we observed in panther 
spatial connectivity are due to increases in specific interactions (e.g., mating) or increased overlap in key habitat 
areas such as movement corridors or high-quality hunting areas. In panthers and other species of conservation 

Figure 4.  Heat maps from a SIR (susceptible-infectious-recovered) transmission model through Florida 
panther home range overlap networks showing (A) the mean total proportion of individuals infected in a 
simulated outbreak, and (B) the difference between these mean proportions for dry and wet seasons (relative 
to the dry season value) across simulation parameter space. The y-axes (left axes) give the probability of 
transmission. The panel rows (right axes) represent the weekly probability of recovery from infection (gamma), 
where a larger number equates to a faster recovery rate. In (B), red indicates more infections in the dry season, 
white is no difference, and purple represents more infections in the wet season.
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concern, these key overlap areas may be particular regions to target for landscape  preservation66 to conserve 
population genetic connectivity and key resources (e.g. hunting  sites67). Alternatively, these could be locations 
supporting specific behaviors that can facilitate pathogen  transmission68,69. For example, in territorial species, 
scent marking sites may be attractive during mating seasons but otherwise avoided, yielding seasonal differ-
ences in indirect contact and potential variation in pathogen outbreak  dynamics62,70. Similarly, sharing kill sites 
of large prey may facilitate panther interactions (as in Puma concolor71) and consequent disease transmission 

Figure 5.  Epidemic curves from successful epidemics among simulated Florida panther populations with a 
SIR (susceptible-infectious-recovered) model. (A) Shows simulation results under the SIR parameterization 
conditions that produced the largest difference in total proportion of population infected between dry and 
wet seasons (probability of transmission given contact = 0.6, edge weight scaling = 1.0, weekly probability of 
recovery = 0.25). In contrast, (B) shows epidemic curves for the set of parameters producing the largest overall 
SIR epidemic sizes (probability of transmission given contact = 1.0, edge weight scaling = 1.0, weekly probability 
of recovery = 0.125). Dark tan lines show dry season results; teal lines show wet season results. Lighter lines are 
for individual simulations, and thick lines are mean values per time step across simulations. Note that y-axis 
scales differ between panels.
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as availability of larger prey varies over space or time. In addition, climate change is likely to compound or alter 
seasonal variation in spatial connectivity in panthers and other wildlife species. For example, sea level rise and 
precipitation changes as a result of climate change are expected to significantly alter Florida’s seasonal hydrologi-
cal  dynamics72. As such, future work should consider how such climate-induced landscape changes may affect 
resource availability, habitat quality and fragmentation, and how these changes may interact with other stressors 
to wildlife (e.g., human encroachment or alterations in prey availability) or additional climate change effects, 
such as increased survival of environmental  pathogens2.

As a result of seasonal changes in panther spatial connectivity, simulated epidemics were consistently larger 
among panthers when an outbreak was initiated in the early dry season. This was particularly true for parameter 
space which may represent moderate to highly transmissible pathogens such as feline panleukopenia virus or 
feline  herpesvirus73. Our variable importance analysis identified a potentially nonlinear relationship between 
outbreak size and the parameters representing pathogen transmissibility and scaled contact rates (β and ρ, 
respectively), with rapid increases in outbreak size observed at intermediate values of these parameters. This 
nonlinearity may contribute to a thresholding effect, above which outbreaks are more substantial and likely to 
produce biologically significant differences between seasons. While we lacked seasonal epidemiological data for 
specific pathogens in panthers, our results are consistent with observed seasonal differences in pathogen preva-
lence in other species, including cases that appear to be driven by seasonality in host contact patterns, behavior, 
or movement (e.g., rabies in several skunk  species74; Mycoplasma gallisepticum in house finches, Haemorhous 
mexicanus75,76; phocine distemper virus in harbor seals, Phoca vitulina77,78). However, in the case of Tasmanian 
devils (Sarcophilus harrisii), observed seasonality in contact and biting  patterns79–81 has not been associated with 
seasonal variation in new devil facial tumor disease  cases82. This discrepancy may be the result of heterogene-
ity in the latent period before tumors become  apparent54, and highlights that our results for simulated panther 
outbreaks could be altered by individual-level heterogeneities that we did not include here.

While observed dry season networks tended to be more modular—which might be expected to reduce out-
break  size44—even when constraining simulation results to match this pattern, dry season outbreaks still resulted 
in more infected individuals than wet season outbreaks. This supports the conclusion that observed modularity 
was inadequate to overcome the increased transmission resulting from increased connectivity in dry seasons. 
Alternatively, our simulated networks were predominantly single large components, rather than multiple smaller 
subcomponents, the latter of which was observed in our empirical panther networks and might be expected to 
limit the extent of outbreaks. Panthers located in the Everglades at the far southeastern extent of panther habitat 
can be somewhat isolated from the broader population, but pathogens from the broader population can still 
reach these  individuals22. Thus, our simulated, single component networks are still representative of broader 
population connectivity patterns, and reinforce the findings of Sah et al.46 that the ability of modularity to mitigate 
epidemics appears to be strongest with extremely high subdivision of networks.

The differences in predicted epidemic sizes between dry and wet seasons were typically minor but substantial 
in some cases, particularly for parameter space that generally produced intermediate to large epidemics (i.e., 
again most representative of pathogens such as feline panleukopenia virus or feline herpesvirus). When manag-
ing small populations, especially those such as panthers with limited host genetic  diversity12, seemingly minor 
epidemic changes may pose significant risk to population health. For example, a cumulative increase in average 
infections approaching 18%—which we observed here—may represent substantial risk to population viability, 
where single individuals may be important for population genetic  diversity83. Given that climate and land-use 
change are expected to increase novel inter-species viral transmission  events84, we can expect that species of 
conservation concern like panthers will face new and emerging pathogen threats into the future. Our results 
help highlight seasonal vulnerability of the panther population and can direct management actions moving 
forward. For example, Florida panther capture and management activities predominantly occur during Florida’s 
dry season, and our results indicate this timing should be helpful for detecting emerging outbreaks when they 
could be more dangerous to population-level panther health.

The differences in epidemic outcomes that we observed here are likely mitigated by the low contact rates 
exhibited by Puma concolor more  generally27. In contrast to solitary panthers, more gregarious or fission–fusion 
species would be expected to demonstrate larger differences in epidemic dynamics between seasons in the con-
text of seasonal differences in connectivity. For example, seasonal contact differences in pastoral cattle herds in 
eastern Africa were found to result in significant changes in simulated epidemic  dynamics5. The risks of sociality, 
however, may be mitigated by heterogeneity in individual  associations53. Together, these results demonstrate the 
importance of linking movement, social, and disease ecology in order to understand the impact of seasonal space 
use and behavior changes on pathogen transmission.

An important observation in this study was finding that node-level metrics of connectivity were increased in 
dry seasons, while the network-level metric of connectivity, density, did not appear to vary between seasons. Prior 
research has shown that degree and strength are generally less sensitive to sampling limitations than  density60. 
This suggests that our observed node-level metrics were more representative of connectivity differences than the 
observed densities. Interestingly, simulated network densities, emergent properties of our network simulations, 
did show differences between wet and dry seasons, and were an important predictor in simulated outbreak sizes. 
Degree distribution and density are closely  linked43, suggesting that our empirical degree distributions should 
have been associated with more significant differences in network density than were captured by the sampling 
approach used here. As such, the predicted differences in outbreak dynamics by season likely represent a real 
but empirically unobserved effect of network connectivity, especially given the negligible effects of network 
modularity we observed. This finding highlights the importance of considering a suite of network attributes 
when assessing network connectivity and the effect of connectivity on outbreak dynamics.

This study made use of an extensive database of Florida panther relocations, but the frequency of relocations 
was limited to three weekly (which is a remarkable achievement for aerially relocated VHF collars over more 
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than three decades). This limited our analysis of panther connectivity to an assessment of home range overlap. 
Home range overlap can sometimes be representative of direct contact and contact rates in free-ranging wildlife 
(e.g.30), and has been used previously to describe network structure in Puma concolor33. While research suggests 
that the amount of home range overlap may not correlate well with the number of direct contacts in territorial 
species, the spatial constraints imposed by hard habitat boundaries on the Florida panther population (along with 
a growing panther  population29,85) result in a more aggregated population that is more amenable to extrapolat-
ing spatial overlap to direct contact network  structures60. We therefore consider our simulations most relevant 
to indirectly transmitted pathogens, as well as potentially applicable to directly transmitted agents. Additional 
work comparing spatial overlap to direct contact rates in panthers and other wildlife species would help refine 
our understanding of when spatial overlap is most relevant as a proxy for direct contact rates. Thus, while we did 
not simulate specific pathogens and were limited to spatial overlap as an indicator of population connectivity, our 
results are able to set expectations for relative epidemic size between seasons across a range of pathogen types.

A significant uncertainty in our simulations was the expected weekly contact rate between panthers. We 
addressed this uncertainty by exploring epidemic dynamics across a range of possible contact rates, as represented 
by our edge weight scaling parameter; however, poorly characterized contact rates are an ongoing challenge in 
studies of panthers and other elusive wildlife  species35. Further research with higher resolution movement data, 
especially in conjunction with proximity loggers, would be ideal to characterize contact rates and behaviors for 
future behavioral studies and pathogen transmission models. In addition, while we incorporated individual-level 
heterogeneity in contact patterns through our network approach, additional layers of heterogeneity are likely 
to affect seasonal variability in epidemic outcomes. For example, host immune response (i.e., susceptibility) or 
pathogen shedding may vary between  individuals86 and  seasons3, adding to the complexity of seasonal outbreak 
dynamics. Furthermore, while we assumed transmission within a single host species, multi-host pathogens are 
also affected by seasonality, including temporal variation in contact patterns between host species (e.g.87). As 
such, future work would benefit from examining how additional host and pathogen heterogeneities interact with 
seasonal dynamics to alter transmission processes.

Conclusions
Florida panther spatial connectivity increased during south Florida’s dry season; these changes can result in 
substantial differences in epidemic dynamics, though these effects are likely mitigated by the low contact rates 
exhibited by this solitary carnivore. Regardless, ongoing conservation and management of panthers should 
benefit from a precedent of performing most capture and handling activities in the dry season, which may 
facilitate detection of outbreaks when they would have the greatest negative impact. This work demonstrates 
the importance of linking movement, social, and disease ecology to understand temporally dynamic risks to 
population health.

Data availability
Full R code for all analyses and simulations is available on GitHub (https:// github. com/ mjone s029/ Seaso nal_ 
panth er_ netwo rks) and archived at Zenodo (https:// doi. org/ 10. 5281/ zenodo. 10011 452).
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