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Estimation and sensitivity analysis 
of fouling resistance in phosphoric 
acid/steam heat exchanger 
using artificial neural networks 
and regression methods
Rania Jradi 1*, Christophe Marvillet 2 & Mohamed Razak Jeday 1

One of the most frequent problem in phosphoric acid concentration plant is the heat exchanger 
build-up. This problem causes a reduction of the performance of this equipment and an increase of 
energy losses which lead to damage the apparatus. In this study, estimation of fouling resistance 
in a cross-flow heat exchanger was solved using a linear [Partial Least Squares (PLS)] and non 
linear [Artificial Neural Network (ANN)] methods. Principal Component Analysis (PCA) and Step 
Wise Regression (SWR) were preceded the modeling in order to determine the highest relation 
between operating parameters with the fouling resistance. The values of correlation coefficient (r2) 
and predictive ability which are equal to 0.992 and 87%, respectively showed a good prediction of 
the developed PLS model. In order to improve the results obtained by PLS method, an ANN model 
was developed. 361 experimental data points was used to design and train the network. A network 
containing 6 hidden neurons trained with Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm and 
hyperbolic tangent sigmoid transfer function for the hidden and output layers was selected to be 
the optimal configuration. The Garson’s equation was applied to determine the sensitivity of input 
parameters on fouling resistance based on ANN results. Results indicated that acid inlet and outlet 
temperatures were the high relative important parameters on fouling resistance with importance 
equal to 56% and 15.4%, respectively.

The supply of heat is a vital step in production chains for almost all industrial activities. This supply is generally 
carried out by various equipment such as heat exchangers1.

The functioning of these equipment is made by two modes of heat transfer as either directly, where two fluids 
exchange heat between them without any separation, or indirectly where the hot fluid gives up its heat through 
a material that separates it from the cold fluid2.

In the aim to better suit their various applications, heat exchangers are widely used in industry in different 
configurations and sizes. Several mechanism can affect the proper functioning of these equipment. The major 
mechanism is the phenomenon of dirt deposition on the heat exchange walls of heat exchangers. This phenom-
enon is commonly known as fouling3. It is defined as the accumulation of any unwanted deposit such as crystal-
line, biological, particulate or chemical reaction product on the surface of the heat exchanger. This phenomenon 
has an adverse impact on the thermal and hydraulic performances of the heat exchanger4,5. The presence of this 
deposit on heat exchanger surface causes an additional thermal resistance which leads to reducing heat transfer 
efficiency6. The fouling layer can cause also erosion of heat exchanger surfaces and may even cause a catastrophic 
failure of heat exchanger2. Fouling deposition tends to reduce the free space for flow movement, which degrades 
the hydraulic performance and can include additional problems such as higher maintenance costs for removal 
of fouling deposits and replacement of corroded equipment2,7.

To this day, fouling remaining the main unresolved problem in heat transfer and an almost universal problem 
in the design and operation of heat exchanger equipment. Several factors can influence the formation of fouling 
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in the heat exchanger such as the operating parameters, fouling fluid properties and design parameters of the 
heat exchanger6.

Recently, the application of proficient methods are used to counter this problem. Among these methods, 
artificial neural networks are used in order to establish a relation between affecting factors of the process as input 
variables and fouling resistance as output variable1,8,9. Artificial neural networks is a technique that can provide 
useful tools for modeling and correlating practical heat transfer problems. One of the most advantages of this 
method is their ability to learn massive amounts of data10.

By using ANN approach, Jradi et al. predicted fouling resistance in cross flow6,9 and in shell and tube1 heat 
exchanger in order to plan suitable cleaning schedules. Besides, the ANN method was used by Jradi. et al. to 
develop the predictive models to estimate the fouling resistance in order to predict a cleaning schedule and to 
control operation of the phosphoric acid concentration plant7.

Another mentionable approach to depict the relation between inputs and output variables is Partial Least 
Square (PLS) regression. PLS is a powerful statistical parameter tool which can explore the mathematical cor-
relation between input and output variables based on input matrix7. It is used in situations where a response is 
influenced by several independent variables.

The combining approaches (PLS and ANN) were successfully applied by several researchers in the field of 
processes modeling. The performance of these two methods was evaluated and compared for hardness modeling 
during the ripening process of Swiss-type cheese using spectral profiles11 and for the quantitative analysis of 
quartz in the presence of mineral interferences12.

In the field of fouling modeling, from the experimental data, Jradi et al. developed accurate and reliable mod-
els of fouling phenomenon using PLS and ANN methods, in order to make a comparative study based on some 
statistical indices among these different models to the modeling, and the losses prediction of heat exchangers 
performances due to the fouling phenomenon7.

Recently, Principal Component Analysis (PCA) which precede PLS method is used to determine the effect 
of operating parameters on the output parameter13,14.

In this research, PLS and ANN methods were developed using data set collected from phosphoric acid 
concentration plant. Before undertaking modeling, PCA and SWR were used to study the variability of the 
system through the identification of relations between the collected variables in addition to outliers detection. 
Two accurate measurements (mean squared error (MSE) and correlation coefficient (r2)) were used to evaluate 
and to compare the developed models with experimental data. Moreover, the relative importance of each input 
parameters on fouling resistance was determined using Garson’s equation and based on ANN results.

Material and methods
Experimental process
Figure 1 presents a schematic drawing of the phosphoric acid concentration plant in Chemical Tunsian Group 
in Gabes (Tunisia). It consists of five equipment which are: a basket filter, a centrifugal pump, a cross flow heat 
exchanger, a boiler and a condenser15.

•	 Basket filter The dilute phosphoric acid (28% P2O5) and the circulating phosphoric acid (the undesired output 
which came from a piping system inside the boiler) blendes at the basket filter. This equipment is used to 
retain crusts and gypsum debris contained in the blending formed. Otherwise, if these impurities are not 
retained by the basket filter, they may damage the circulation pump as well as the heat exchanger tubes.

•	 Centrifugal pump The acid, free of coarse impurities, is send through the centrifugal pump to the heat 
exchanger.

•	 Cross flow heat exchanger The heat exchanger allows to raise the acid temperature from about 70 °C to about 
80 °C via steam.

Figure 1.   Schematic drawing of phosphoric acid concentration plant.
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•	 Boiler The superheated mixture of acid exiting the heat exchanger undergoes evaporation at the boiling point 
in the boiler with the aim of reaching the desired product concentration (54% P2O5).

•	 Condenser The main function of this equipment is to reduce the incurring non-condensable gases coming 
out from the boiler and also to reduce the amount of heat supplied by the heat exchanger.

Data collection and calculation procedure
Several operating data were collected from the phosphoric acid concentration unit for a period of 1 year. A total 
of 361 observations containing 7 operating cycles and 6 variables were gathered16. The parameters collected are 
classified into two major groups as shown in Table 1:

(a)	 Thermal operating parameters
(b)	 Hydraulic operating parameters

The first group includes inlet and outlet temperatures of cold fluid and temperature of hot fluid which were 
measured from the two extremities of the heat exchanger.

The second group includes suction and discharge pressure which were measured in the two extremities of 
the centrifugal pump. Moreover, it contains acid density which was measured in the inlet of the heat exchanger 
of the cold fluid.

Each parameter of the two group was measured every 2 h in the phosphoric acid concentration unit. In addi-
tion, the parameter time is also essential in the prediction of the fouling resistance. It is used for the cleaning 
schedule prediction. The ranges of these data is given in Table 19.

The data set collected were used to calculate the fouling resistance. The calculation procedure was carried 
out by using the following equations7:

where Rf and U are the fouling resistance and overall heat transfer coefficient, respectively.

where ύac , ρac, Cpac, Tin, ac, Tout,ac, Tst, A and F are the volume flow rate, acid density, specific heat capacity of 
phosphoric acid, inlet and outlet temperatures of the phosphoric acid, steam temperature, heat transfer area 
and corrective factor for the average logarithmic temperature difference (= 1 pure Counter Flow Arrangement), 
respectively.

where HMT, Pdischarge and Psuction are the total manometric head of the pump and discharge and suction pressures, 
respectively.

(1)Rf =
1

Ufouling
−

1

Uclean

Ufouling = U(t) and Uclean = U(t = 0)

(2)
Ufouling =

v̇ac,cir × ρac × Cpac ×
(

Tout,ac − Tin,ac

)

A× F ×
(Tst−Tin,ac)−(Tst−Tout,ac)

ln
(

Tst−Tin,ac
Tst−Tout,ac

)

(3)
Uclean =

v̇ac,cir × ρac × Cpac ×
(

Tout,ac − Tin,ac

)

A× F ×
(Tst−Tin,ac)−(Tst−Tout,ac)

ln

(

Tst−Tin,ac
Tst−Tout,ac

)

(4)v̇ac,cir = f (HMT)

(5)HMT =
Pdisch arg e − Psuction

ρac × g

Table 1.   Ranges of collected data.

Group Variable Unit Min Max Uncertainties

Thermal

Acid inlet temperature °C 68 78 ± 0.3 °C

Acid outlet temperature °C 77 86.8 ± 0.3 °C

Steam temperature °C 116 125 ± 0.3 °C

Hydraulic

Acid density Kg/m3 1620 1656 ± 0.05%

Suction pressure bar 0.85 1.25 ± 1.6%

Discharge pressure bar 3.1 3.9 ± 1.6%

Time h 0 122
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The second power transfer method is used to determining the uncertainty analysis on the measured data15. 
The relation between the dependent variable (Y) and independent variables (X1, X2, … Xn) is given below :

The uncertainty of variable Y is calculated by using the following equation:

where dXi represents the uncertainties of each variable Xi.
The fouling resistance (Rf), overall heat exchange coefficient (U) and total manometric head (HMT) are 

calculated using Eqs. (1–5). The relative uncertainty of such parameters are determined using the following 
equations13:

where dύac,cir , dρac, dTst, dTin,ac, dTout,ac, dPsuction and dPdischarge represent respectively the uncertainties related to 
the volume flow rate, density, steam temperature, acid inlet and outlet temperatures and suction and discharge 
pressures.

The uncertainties of collected parameters are listed in Table 1. The relative uncertainties of temperatures, 
density and pressure measurements are 0.3 °C, 0.05% rdg and 1.6% rdg, respectively. The relative uncertainties 
of Rf, U and HMT are within 8% in the entire experimental range.

Principal component analysis (PCA) and step wise regression (SWR)
Principal Component Analysis (PCA) and Step Wise Regression (SWR) are one of the most powerful and more 
well-known approaches used to separate the variables influencing the dependent variable for modeling to reduce 
the data volume17. These two methods (PCA and SWR) were used in this study.

In the PCA approach, a linear combination of independent variables with the highest relationship with the 
dependent variable is determined, and usually this linear combination justifies a high percentage of changes in 
the dependent variable18.

In the SWR approach, the variables with the highest correlation with dependent variable are entered into 
the model. In the final step, a model containing a combination of the most influential variables is developed17.

The measurement ranges of input and output parameters used by PCA and SWR methods are presented in 
Table 2. The collected data consists of six operating parameters. The ranges of acid inlet temperature is between 
68 and 78 °C, the acid outlet temperature is between 77 and 86.8 °C, the steam temperature is from 116 to 
125 °C, acid density is between 1620 and 1656 kg/m3, acid volume flow rate is up to 3407 m3/h, and period time 
is between 0 and 122 h. The fouling resistance is from 0 to 0.00017 m2 °C /W. XLSTAT which is an additional 
component of Microsoft Excel was used to process the data matrix.

Partial least squares (PLS) regression
Partial Least Squares (PLS) is a statistical regression method which is used to relate one response variable (Y) 
to a set of predictive variables (X1 … Xn) by linear multivariate model7,19. The regression model was calculated 
according to the following equation:

(6)Y = f (X1,X2, . . . ,Xn)

(7)dY =

√

√

√

√

n
∑
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δY
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)2

(8)
dRf
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=
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(
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)2

+

(

dUclean

Uclean

)2

(9)

dU

U
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√
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)2
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)2
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+
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=

√
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)2

+
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Pdisch arg e

)2

+

(
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ρac

)2

Table 2.   Measurement ranges of parameters.

Input variables Output variable

Parameter Min Max Parameter Min Max

t Time 0 122 h Rf Fouling resistance 0 0.00017 m2°C/W

Tin,ac Acid inlet temperature 68 °C 78 °C

Tout,ac Acid outlet temperature 77 °C 86.8 °C

Tst Steam temperature 116 °C 125 °C

ρac Acid density 1620 kg/m3 1656 kg/m3

ύac,cir Acid volume flow rate 2102 m3/h 3407 m3/h
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where Y is the response variable, α0 … αn are the regression coefficients and X1. Xn are the input variables.
In our study, this technique is used to determine the relationship between operating variables collected from 

phosphoric acid concentration unit in order to predict the fouling resistance. The choice of using this technique 
is based on its predictive abilities and stability.

XLSTAT is used in this study to develop the PLS model. Time (t), acid inlet (Tin, ac) and outlet (Tout, ac) tem-
peratures, steam temperature (Tst), acid density (ρac) and acid volume flow 

(

v̇ac,cir
)

 are the operating parameters 
used for modeling the fouling resistance (Rf). The ranges of these parameters is tabulated in Table 2.

Artificial neural network (ANN) method
An Artificial Neural Network (ANN) approach was used in this study to estimate the fouling resistance in cross-
flow heat exchanger by means of the operating data of the phosphoric acid concentration loop.

Figure 2 described the procedure used by ANN which is consists of three step which are20–23:

•	 Collection of data and preprocessing.
•	 Building an artificial neural network It includes the choice of training algorithm, activation function and the 

optimal number of neurons in hidden layer.
•	 Train and evaluate the model obtained by using the full dataset This step done after determining the best-

performing structure of ANN.

Table 2 depicts the measurement ranges of input and output parameters used by ANN method. In the follow-
ing section, feature variables and their impacts on the fouling resistance are investigated in more detail.

As mentioned previously, 361 experimental data was used to build the ANN model by using STATISTICA 
Software. The entire dataset in this study was randomly divided into three subsets: training set (70% of all 
data = 253 data), testing set (15% of all data = 54 data) and validation set (15% of all data = 54 data).

A Multi-Layer Perceptron (MLP) ANN model was built to predict the fouling resistance in cross-flow heat 
exchanger. In our case, back-propagation method is used to train the network. This method allowed to alter biases 
and weights in order to reduce the error between actual and predicted fouling resistance values.

The adequate ANN structure for fouling resistance prediction was determined by changing the number 
of neurons in the hidden layer (from 1 to 12 neurons), training algorithms (BFGS, gradient descent and con-
jugate gradient), transfer functions for hidden layer (tansig, purelin and sig), and the most effective network 
configuration was constructed (Fig. 3)23,24. The number of neurons, training algorithm and transfer function 

(11)Y = α0 + α1X1 + α2X2 + · · · + αnXn

Figure 2.   Flowchart of artificial neural network.
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are determined based on the values of two statistical accuracy measurements which are the mean square error 
(MSE) and the correlation coefficient (r2)23.

Due to the STATISTICA software generates various random data for each run, the best ANN for each topol-
ogy was chosen after a maximum of 30 runs.

After finding the best configuration of ANN method, a sensitivity analysis was investigated to reveal the 
usefulness of each operating variable, and also to identify the components that are most important for forecast-
ing fouling resistance. For this, Eq. 12 was applied based on partitioning of connection weights anticipated by 
Garson25,26:

where RI is the relative importance of the input variable (x) on the output variable, ki and kh are the number of 
input and hidden neurons respectively, Wab are the connection weights between the input layer and the hidden 
layer, Vb is the connection weight between the hidden layer and the output layer.

It should be noted that the numerator in the Eq. (12) describes the sum of the products of the absolute weights 
for each input. However, the denominator represents the total of all the weights feeding the hidden unit, taking 
the absolute values.

Efficacy of models
Two statistical quality parameters which are mean squared error (MSE) and correlation coefficient (r2) were used 
in this study to objectively examine the efficiency of PLS and ANN models to predict the fouling resistance in 
cross flow heat exchanger. The following equations gives the mathematical expressions of MSE and r26,9:

where M is the number of data, Rf, Rf pred and 
〈

Rf
〉

 denote the observed values, the anticipated values and the 
average values of the fouling resistance, respectively.
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(13)MSE =
1

M
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(Rfj − Rf
pred
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Figure 3.   Architecture of MLP network model to predict fouling resistance.
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Results and discussions
Principal component analysis (PCA) and stepwise regression (SWR)
As mentioned previously, two powerful methods which are Principal Component Analysis (PCA) and Step Wise 
Regression (SWR) were used with the aim of creating an adequate model to predict fouling resistance based on 
operating variables collected from phosphoric acid concentration unit.

PCA results for eigen-values and cumulative variables, score plot and corresponding loading plot are displayed 
in Figs. 4, 5 and 6, respectively.

As can be seen from Fig. 4, the first three components (F1 (time), F2 (acid inlet temperature) and F3 (acid 
outlet temperature)) account 38.13%, 28.35% and 18% respectively of the original matrix information. The 
two components (F1 and F2) explain 66.47% and the three components contributed for more than 84% of the 
variation. The remaining components (F4 (steam temperature), F5 (acid density) and F6 (volume flow rate)) 
account all 15.5%.

PCA of score plot of the two first principal component shown in Fig. 5 confirms the normal functioning of 
the phosphoric acid concentration unit during the studied period due to the clusters of observations are located 
in the center of the score plot.

PCA of corresponding loading plot of the first two components (F1 and F2) is displayed in Fig. 6. As can be 
seen from this figure, the inlet and outlet temperatures of phosphoric acid have a positive influence on both Fs. 
Volume flow rate has a positive and a slight negative influence, following F1 and F2, respectively. It should be 
noted that there is no variable that don’t contribute to the whole process (has zero weight).
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Figure 4.   Eigen and cumulative variability of principal components.
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Based on SWR, the six attributes (t, Tin,ac, Tout,ac, Tst, ρac and ύac,cir ) were incorporated in the model (Table 3). 
The results presented in this table confirmed that time and acid inlet and outlet temperatures are the most con-
tributed parameters of the variation.

Based on the results achieved from both PCA and SWR techniques, the attributes (t, Tin,ac, Tout,ac, Tst, ρac and 
ύac,cir ) were selected to be the most proper input parameters for both the PLS and ANN models.

Partial least squares (PLS) regression
In our PLS model, the X matrix is composed by the 6 variables collected during the phosphoric acid concentration 
process, which are listed in Table 2. However, the Y response is the fouling resistance of the heat exchanger (Rf).

The quality of PLS model for the six components is displayed in Fig. 7. As can be seen from this figure, the 
values of Q2

cum, R2Ycum and R2Xcum for the two principal components (F1 and F2) are equal to 0.871, 0.915 and 
0.578, respectively. These results confirms that the optimal balance between fit and predictive ability of the 
computed model is guaranteed by the two first components.

The contribution of each input variable in the prediction of fouling resistance in a descending order is depicted 
in Fig. 8. As can be seen from this figure, the variables time (t) and steam temperature (Tst) have the highest 
impact on the fouling resistance (Rf). The values of variable importance in the projection (VIP) for the two input 
variables are respectively equal to 1.9241 and 1.1640.

The statistical parameters values (MSE and r2) are shown in Table 4 for the PLS model. The high (r2) value 
(0.992) near to unity and the lowest value of (MSE) indicated satisfactory adjustment of the PLS model to the 
experimental results.

A comparison between the actual fouling resistance and the predicted fouling resistance is displayed in Fig. 9. 
As can be seen from this figure, the concentration of the set observations in the line y = x affirms the good agree-
ment of the PLS model with the experimental data.

Artificial neural network (ANN)
Correlation matrix analysis
It will begin with determining the strength of the relation between the response and feature variables. For this 
purpose, the degrees of relevancy between fouling resistance and the considered feature variables are calculated 
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Figure 6.   Loading plot of the two principal components F1 and F2.

Table 3.   Stepwise regression analysis for fouling resistance as the dependent variable.

Step Entered variable Variables in model Model R-square Model adjusted R-square

1 ύac,cir ύac,cir 0.047 0.044

2 ρac ύac,cir , ρac 0.136 0.131

3 Tst ύac,cir , ρac, Tst 0.398 0.393

4 Tout,ac ύac,cir , ρac, Tst, Tout,ac 0.461 0.454

5 Tin,ac ύac,cir , ρac, Tst, Tout,ac, Tin,ac 0.975 0.975

6 t ύac,cir , ρac, Tst, Tout,ac, Tin,ac, t 0.985 0.985
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by Pearson’s correlation and presented in Table 527. The results reveals that time, steam temperature and acid 
density indirectly affect the response variable. Moreover, time and steam temperature have the most direct influ-
ence, and acid outlet temperature has the most indirect effect on the fouling resistance.

Finding the best configuration
Table 6 demonstrates that the training algorithm and transfer function contributed significantly to the total 
variance in ANN efficiency.
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Table 4.   Summary of statistical parameters values for PLS model.

Parameter PLS

MSE 2.607 × 10–11

r2 0.992
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According to the obtaining results, it should be noticed that the BFGS back-propagation and the hyperbolic 
tangent sigmoid transfer function are respectively the most appropriate training algorithm and activation func-
tion. For validation data, the MLP developed model have the smallest MSE value (2.585 × 10–11) and the highest 
r2 value (0.993). Table 7 illustrates the performance results of developed neural network for training data, testing 
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Figure 9.   Comparison between actual and predicted heat exchanger fouling resistance by PLS model.

Table 5.   Degrees of relevancy between the fouling resistance and feature variables.

Feature variables Person’s coefficient

Time 0.964

Acid inlet temperature − 0.044

Acid outlet temperature − 0.244

Steam temperature 0.583

Acid density 0.358

Acid volume flow rate − 0.216

Table 6.   Comparison of errors of various algorithm and transfer function for estimation of Rf.

Algorithm Transfer function MSE training MSE validation MSE test r2 training r2 validation r2 test

BFGS

Hyperbolic tangent sigmoid 1.668 × 10−11 2.585 × 10−11 1.707 × 10−11 0.995 0.993 0.995

Linear 4.221 × 10−10 3.374 × 10−10 4.595 × 10−10 0.864 0.911 0.865

Sigmoid 4.246 × 10−10 4.646 × 10−10 4.513 × 10−10 0.866 0.874 0.866

Gradient descent

Hyperbolic tangent sigmoid 6.833 × 10−11 5.966 × 10−11 5.209 × 10−11 0.982 0.986 0.986

Linear 1.036 × 10−09 7.187 × 10−10 1.186 × 10−09 0.786 0.911 0.735

Sigmoid 4.400 × 10−10 4.563 × 10−10 4.798 × 10−10 0.863 0.879 0.862

Conjugate gradient

Hyperbolic tangent sigmoid 4.052 × 10−11 5.628 × 10−11 4.422 × 10−11 0.988 0.986 0.990

Linear 4.478 × 10−10 3.271 × 10−10 4.681 × 10−10 0.859 0.914 0.862

Sigmoid 4.349 × 10−10 4.625 × 10−10 4.545 × 10−10 0.864 0.876 0.865

Table 7.   Performance of developed neural network.

Neural network 
structure r2

training r2
validation r2

test r2
all MSE training MSE validation MSE test MSE all Algorithm

Hidden activation 
function

Output activation 
function

6-6-1 0.995 0.993 0.995 0.995 1.668 × 10−11 2.585 × 10−11 1.707 × 10−11 1.811 × 10−11 BFGS Tanh Tanh



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17889  | https://doi.org/10.1038/s41598-023-44516-6

www.nature.com/scientificreports/

data, validation data and all data. The optimal ANN structure is composed by 6 neurons in the hidden layer and 
the hidden and output layers have a tangent sigmoid transfer function.

The comparison between the experimental datasets of the fouling resistance and the corresponding estimated 
values of the network for training, testing, and validation data set in Fig. 10 indicates the high rate of precision 
of ANN method.

For better visualization, Figs. 11 and 12 show a comparison between the experimental data sets and ANN 
predicted data of fouling resistance in heat exchanger and the residual on the validation dataset. These figures 
confirm an excellent prediction performance of ANN method.

Sensitivity analysis of artificial neural network (ANN)
Table 8 gives the obtained values of the weights and the biases (Wab, Vb, bb, and bout) for the optimal ANN 
structure given in Table 7. The values of neural network weights are used to know the relative importance of the 
different input variables (time, acid inlet and outlet temperatures, steam temperature, density and volume flow 
rate) on the output variable (fouling resistance).

The relative importance of input variables on fouling resistance is determined by using the results obtained 
in Table 8 and by applying Garson equation (Eq. 12). Figure 13 illustrates a summary of the obtained results. It 
can be seen that the acid inlet and outlet temperatures have the highest impacts on the fouling resistance value 
with importance equal to 56% and 15.4%, respectively, but density, volume flow rate, time and steam temperature 
have approximately same impact on the fouling value with an importance equal to 7.7%, 7.8%, 6.6% and 5.6%, 
respectively.
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Figure 10.   Comparison of actual and predicted Rf on the validation, training and test dataset.
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Models performance
In this work, 361 experimental data were used to modeling the fouling resistance by using two different tech-
niques which are partial least squares regression and artificial neural network. As can be seen from Table 7, the 
optimum structure of the ANN model reaches MSE = 2.585 × 10−11 and r2 = 0.993. For the PLS model, the values 
of MSE and r2 are equal to 2.607 × 10−11 and 0.992, respectively, as shown in Table 4. These statistical parameters 
indicated that the values of r2 and MSE predicted by ANN are comparatively closer respectively to 1 and 0 than 
PLS method which implies that model developed by ANN estimated the fouling resistance more precisely than 
PLS method.

The developed ANN and PLS models are specific to a type of fluid which is the phosphoric acid. This fluid 
contained impurity and suspended solids. The two models are applicable to a system of variables within the per-
mitted ranges as shown in Table 2. For operating periods ranging up to 122 h, the inlet and outlet temperatures 
of fluid and the steam temperature should not exceed 78 °C, 86.8 °C and 125 °C, respectively, the phosphoric 
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Figure 12.   Residual Rf, estimation on the validation dataset.

Table 8.   Optimal values of weights and biases obtained during training of ANN.

b 1 2 3 4 5 6

Weights between the input and the hidden layers

W1b 1.602 − 1.38 − 1.139 − 0.35 − 2.104 1.252

W2b 0.172 − 0.342 − 1.362 0.68 0.464 0.2

W3b − 0.393 − 0.181 1.873 − 0.644 0.56 − 0.374

W4b 0.023 − 0.73 − 0.426 0.082 − 0.527 0.761

W5b 0.359 − 0.447 0.118 0.082 − 0.113 0.263

W6b − 0.055 0.023 0.252 − 0.475 − 0.587 0.234

Bias values of hidden layer bb − 0.501 − 0.352 0.919 0.551 − 0.758 0.026

Weights between the hidden and the output layers Vb − 0.397 − 0.396 − 2.198 2.51 − 0.956 − 0.6

Bias values of output layer bout 0.405
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Figure 13.   Relative importance of input variables on output.
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acid density should not be above 1656 kg/m3, and the volume flow rate should not be below 2102 m3/h to obtain 
values of (Rf) close to reality by the developed models.

A second comparison between the accuracy measurements of the developed ANN model in this work and 
other studies which used ANN method to modeling the fouling resistance in the petroleum and chemical indus-
tries and in water treatment are shown in Table 928.

The specific characterization of this work is the fouling element used (phosphoric acid) as well as the main 
function of heat exchanger in phosphoric acid concentration plant.

According to Table 9, it can be concluded that the obtained ANN model is significantly better than other 
ANN fouling models. The accuracy measurements of the obtained model are less than 0 for MSE and closest to 
1 for r2 in comparison with the values of other models.

Conclusion
In the current study, the fouling resistance in cross flow heat exchanger was modeled using linear and non linear 
method based on the operating variables collected from phosphoric acid concentration unit. The data set was 
processed using PCA and SWR in order to determine the highest impacts of process parameters on the fouling 
resistance. Then, a PLS model was developed based on the input matrix to predict the fouling resistance. The 
precision measurements of the linear model obtained by PLS method with the current results reflect a good 
agreement. To enhance the accuracy performance of the linear model, an ANN model was used to estimate 
fouling resistance.

Several networks with different algorithm and transfer function were compared and assessed based on two 
statistical measurements. The optimal training data was attained with 6-6-1 structure considering the BFGS 
back-propagation training algorithm and the tangent sigmoid transfer function in the hidden and output layers. 
Mean squared error (MSE) of 1.811 × 10−11 and correlation coefficient (r2) of 0.995 were obtained by the ANN 
model for all data sets.

Based on ANN results, sensitivity analysis was determined. It was noticed that the acid inlet and outlet 
temperatures have the highest impacts on the fouling resistance. The implementation of the developed models 
onsite could achieve the stability of the operation plant and significant savings.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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