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Modeling the potential global 
distribution of the Egyptian cotton 
leafworm, Spodoptera littoralis 
under climate change
Sara M. ElShahed *, Zahia K. Mostafa , Marwa H. Radwan  & Eslam M. Hosni *

The Egyptian cotton leafworm, Spodoptera littoralis is a highly invasive insect pest that causes 
extensive damage to many of the primary food crops. Considering the recent challenges facing global 
food production including climate change, knowledge about the invasive potential of this pest is 
essential. In this study, the maximum entropy model (MaxEnt) was used to predict the current global 
spatial distribution of the pest and the future distribution using two representative concentration 
pathways (RCPs) 2.6 and 8.5 in 2050 and 2070. High AUC and TSS values indicated model accuracy 
and high performance. Response curves showed that the optimal temperature for the S. littoralis is 
between 10 and 28 °C. The pest is currently found in Africa and is widely distributed across the Middle 
East and throughout Southern Europe. MaxEnt results revealed that the insect will shift towards 
Northern Europe and the Americas. Further, China was seen to have a suitable climate. We also 
extrapolated the impact of these results on major producing countries and how this affects trade flow, 
which help decision makers to take the invasiveness of such destructive pest into their account.

Global food production is severely threatened. It is estimated that the world’s population will climb to 9.8 billion 
by 2050 and in order to meet the increased food demand, production must increase by 70%1. Along with popula-
tion growth, the Russia-Ukraine conflict is yet another problem facing food  security2. Ukraine and Russia are 
considered the world’s breadbasket, supplying 30% and 20% of global wheat and maize exports as well as 80% 
of global exports of sunflower seed  products2,3. This will have a drastic impact on nations highly dependent on 
imports from these two  countries4,5.

Furthermore, agriculture is extremely reliant on climate and weather conditions to produce food crops and 
thus, global warming heavily impacts agricultural  production6–8. Agriculture is predicted to decline in the trop-
ics more than temperate regions; however, warming past crop thresholds will cause a decline in the temperate 
zone as  well8. Climate change will also affect the physiology, distribution, phenology, and adaptation of animals 
and insects including insect  pests9–11. New ecological niches are formed with optimal environmental factors for 
insects which allows them to expand their geographical range and shift to new  regions7,9,10.

The Egyptian cotton leafworm, Spodoptera littoralis, is a major agricultural  pest12,13. Its polyphagous larva 
can consume a wide range of economically important crops belonging to more than 40  families12. It has a wide 
range of host plants including wheat, maize, rice, sugarcane, soybeans, cotton, fruits, vegetables, ornamentals, 
orchards, castor oil trees, and many  more12–14. Larvae mainly feed on the leaves stripping them completely 
except for the larger  veins14. For that reason, the Egyptian cotton leafworm is considered to be one of the most 
significant cotton  pests13. Cotton defoliation of 20 to 70% of the leaf area can cause a 50% reduction in  yield12. 
This heavily affects major cotton producing countries and leads to significant economic  losses15,16. In addition 
to destroying leaves, larvae were found to bore into the fruits of tomatoes, peppers, apples, and grapes making 
them unfit for  consumption12–14. EPPO (European and Mediterranean Plant Protection Organization) has listed 
S.littoralis as an A2 quarantine  pest12.

At present, the Egyptian Cotton Leafworm is found in tropical and subtropical  areas12,13. It is native to Africa 
and is widely distributed across the Middle East and throughout Southern Europe. Transient populations may 
manifest in Northern Europe but are limited because S.littoralis is a non-diapausing insect that is unable to 
survive in low  temperatures12. Hence, monitoring the distribution of pests is very important as invasive species 
are expected to proliferate more in temperate regions than in the tropics after the global temperature  rise7,17.
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Different Ecological Niche Models (ENMs) are used to determine the association between environmental 
conditions and species’ distribution using Geographic Information System (GIS)  techniques18. They are becoming 
valuable tools for monitoring and forecasting the distribution of insect pests and their potential establishment in 
new  regions19. The Maximum Entropy Model (MaxEnt) is a popular correlative model that has been successfully 
used to predict the effects of climate change on the distribution of numerous insect  species20. The species distribu-
tion model has demonstrated high-performance accuracy in forecasting the future possibility of the establish-
ment of invasive species and economically significant pests in specific  locations21–23 and on a global  scale20,24,25.

To our best knowledge, no ENM has been made for S.littoralis on a global scale. The aim of this study is to 
predict the global current and future distribution of the Egyptian Cotton Leafworm using MaxEnt. The results 
serve as a warning for countries susceptible to the invasion of S.littoralis as a result of the climatic shifts. We also 
highlight the main agricultural producing and exporting countries and how they are affected.

Results
Modeling performance
The MaxEnt model for the Egyptian Cotton Leafworm has a high AUC value of 0.93 (Fig. S1) indicating its sig-
nificance as the AUC value tends to be higher with good modeling  outputs25. A TSS value of 0.9 further confirmed 
the efficiency of the model. Values greater than 0.5 are valid.

Contribution of bioclimatic variables
The jackknife test illustrated the contribution percentages of the five most significant bioclimatic variables (Fig. 1, 
Table 1). The top two variables are temperature-related with Bio7 being the Temperature annual range (41.8%) 
and Bio1 accounting for the Annual mean temperature (32.4%). Annual precipitation (Bio12) came in third 
with a percentage of 10.9%. According to the response curves of the important variables, the favorable mean 
temperature for S.littoralis ranges between 10 and 28 °C (Fig. S2).

Predicted current potential distribution of the Egyptian cotton leafworm
The current model produced by MaxEnt predicts habitat suitability of the Egyptian Cotton Leafworm beyond its 
natural distribution in Africa, Europe and Asia (Fig. 2). In Africa, S. littoralis is concentrated in the south, includ-
ing south Africa, Namibia, Zimbabwe, Mozambique and Tanzania. The pest is also found in Congo, Cameroon, 
Nigeria, Ghana, Gambia, Ethiopia, Kenya, Northern Egypt, Tunisia, Morocco and Madagascar. The MaxEnt 
model shows very high risk of the pest being established in Angola, Northern Libya, Algeria, Western Sahara 
along with medium to low risk of establishment in most of the continent (Fig. 2). Further, in different continents, 
S. littoralis could occupy many ecozones around the world. It is prominent that the pest is concentrated in the 
south which lies within the subtropical and warm temperate regions. Notably, the MaxEnt model predictions of 
very high suitability is found in countries in the subtropical zones, while medium to low predictions are found 
in the tropical regions.

Figure 1.  Jackknife test showing the most important variables.

Table 1.  Relative percentages of bioclimatic variables used in Maxent to model the current and future habitat 
suitability of the Egyptian cotton leafworm, Spodoptera littoralis. 

Bioclimatic variables Description Contribution percentage (%)

Bio 7 Temperature annual range 41.8

Bio 1 Annual mean temperature 32.4

Bio 12 Annual precipitation 10.9

Bio 2 Mean diurnal range (mean of monthly max temp − min temp) 10.2

Bio 14 Precipitation of driest month 4.6
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In Europe, we find the pest naturally present in the warm temperate zones in the southern parts including 
Spain, France, Italy, Austria, Albania, Greece, and Serbia. It is also found in the UK and in Finland (Fig. 3). The 
current prediction estimates very high to high habitat suitability throughout northwestern Europe and medium 
to low suitability in eastern European countries which lie in the cool temperate domain. Further, the model 
forecasts high risk in Germany, Ireland and south of Sweden (Fig. 2).

In Asia, occurrence points are seen in warm temperate to subtropical zones found in Lebanon, Syria, Iraq, 
Turkey, Jordan, Bahrain, Oman, Pakistan. Further, it is found in the south of India where it is in part subtropi-
cal and Thailand which lies within the tropical region (Fig. 3). Our model predicts very high risk in the warm 
temperate zone in China in addition to a high risk in southern Iran and in the subtropical region of southern 
Yemen. On the other hand, it shows high to medium suitability in Indonesia and medium to low risk in Saudi 
Arabia (Fig. 2).

There are no occurrence records for the Egyptian Cotton Leafworm in the Americas (Fig. 3). In North 
America, the model shows very high habitat suitability in the east of Mexico which is considered subtropical, 
western U.S. which lies in the warm temperate region, the Bahamas and south western Canada. Moreover, it 
reveals high to medium risk in Cuba, Jamaica and the Dominican Republic and medium risk in Alaska which 

Figure 2.  Current potential distribution of Spodoptera littoralis (MaxEnt v. 3.4.1 and ArcGIS v. 10.3).

Figure 3.  Occurrence records of Spodoptera littoralis used in modeling the species distribution (ArcGIS v. 10.3).
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lies within the cool temperate domain (Fig. 2). As for South America, the model forecasts very high suitability 
in eastern Brazil, which is subtropical in nature, Ecuador, Colombia, north eastern Venezuela, Peru and Chile 
that are subtropical to warm temperate in nature. Additionally, high to medium risk is shown in Bolivia (tropical 
to subtropical) and eastern Argentina in the warm temperate region (Fig. 2). Finally, in regards to Australia, the 
current prediction model shows very high risk of establishment in the southern coasts that lie within the warm 
temperate zone and also in New Zealand in the cool temperate zone (Fig. 2).

Predicted future distribution of the Egyptian cotton leafworm
Three GCMs were used to assess the future distribution of the Egyptian Cotton Leafworm during 2050 and 2070 
using RCPs 2.6 and 8.5 (Fig. 4). The mean risk maps of the three GCMs for both RCPs in the two time periods 
summarize the changes in the habitat suitability of S. littoralis (Fig. 5). Throughout the two RCPs (2.6 and 8.5), 
noticeable loss in habitat suitability is shown in Africa due to the extreme temperature elevation specifically in 
the tropical regions (Fig. 6).

Further, In Europe, a clear shift in the natural distribution of the pest from the south to northern European 
countries is depicted towards the cool temperate zone (Fig. 6). In Asia, a loss in habitat suitability is seen in 
countries where the pest is currently distributed in the tropics and subtropics. Moreover, a significant gain is 

Figure 4.  Predicted future distribution of Spodoptera littoralis under the RCPs 2.6 and 8.5 for three GCMs 
(MaxEnt v. 3.4.1 and ArcGIS v. 10.3).

Figure 5.  Maps showing the mean of the three GCMs using the RCPs 2.6 and 8.5 for the two time periods 2050 
and 2070. MG: Meteorological Research Institute (MRI-CGCM3), BCC: Beijing Climate Center (BCC-CSM 
1_1) and CC: National Center for Atmospheric Research (CCSM4) (MaxEnt v. 3.4.1 and ArcGIS v. 10.3).
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found in China within the warm temperate region that is most visible in the RCP 8.5 2070 scenario (Fig. 6). 
Most countries in the Americas become less suitable for S.littoralis excluding Alaska (cool temperate), western 
U.S. (warm temperate), southeastern Argentina (warm temperate) and southwestern Chile (cool temperate), 
where a considerable gain is apparent (Fig. 6). As for Australia, some gain is found in the southeast and in New 
Zealand (Fig. 6).

Discussion
The second sustainable development goal (SDG2) is to end global hunger, food insecurity and malnutrition 
by  20302. According to the Food and Agriculture Organization (FAO), in 2021, between 702 and 828 million 
people in the world were  undernourished34. Governments must intervene to resolve this situation and one way 
is to enhance agricultural production to meet the increased  demand34. Fiscal support can target agricultural 
research and development in addition to inspection and control of agricultural products, diseases and pests 
to establish product safety according to  regulations34. Moreover, international agricultural trade is crucial for 
improving food system efficiency and ensuring food security in some  regions16. Implementation of an open 
trade policy increases agricultural productivity and affects food availability  worldwide35. We cannot attain food 
security solely through trade policy; however, it was shown that opening trade in some regions in India led to a 
significant decline in  famines36.

Half of the global production of primary crops in 2020 was attributed to four particular crops: sugar cane 
(20%), maize (12%), wheat and rice (8% each)37. Primary food crops are susceptible to infestations by S. littoralis, 
one of the most damaging agricultural insect  pests12,38. Due to its polyphagous nature, it is extremely difficult to 
control and subsequently, impossible to eradicate once  established14. Hence, monitoring its distribution regularly 
is a necessity to prevent it from invading and shifting to new regions under climate change. Insects are very sensi-
tive to temperature switches and their metabolism can double with a 10 °C  increase7. According to our MaxEnt 
model, temperature serves as the most significant variable affecting S. littoralis. Temperature annual range (bio7) 
and annual mean temperature (bio1) had the highest contribution percentages of 41.8% and 32.4%, respectively. 
Also, the response curve indicated that the optimal temperature for the Egyptian Cotton Leafworm is between 
10  and 28 °C. This is significant because any rise in temperature above that range renders the environment 
unsuitable for the insect pest and this is apparent in the resultant models. Furthermore, regions that were once 
unfit for its survival become more favorable as temperature elevates.

Africa is heavily impacted by global warming despite its minimum contribution of greenhouse gas (GHG) 
emissions to the  atmosphere40,41. The intergovernmental panel on climate change (IPCC) projects an increase of 
3 to 6 °C across Africa by the end of the  decade40. The effect of climate change on Africa is evident in our mod-
els. Currently, S. littoralis is concentrated in southern Africa and in some areas of the middle west. The current 
prediction estimates a very high risk of habitat suitability throughout the northern coasts and medium to low 
risk in most of the continent. Contrastingly, the future prediction shows a clear loss of habitat suitability in 2050 
and 2070 in the two RCPs (2.6 and 8.5). The loss is seen in all regions predicted by the current model to be of 
high risk except for a part in South Africa that shows a gain in the high emissions scenario (RCP 8.5). Further, in 
the low mitigation scenarios (RCP 2.6), a yellow color is visible in South Africa and Tanzania indicating habitat 
unsuitability. Overall, S. littoralis is not considered to be a threat to Africa in the future, however, the temperature 
elevation across the continent is alarming. Kotir 2011 concluded that increasing temperatures in Sub-Saharan 
Africa will negatively impact crop production and increase hunger  risk42. In 2020, Africa was a main importer 
of all food groups except for fish, fruit and  vegetables37. In that same year, Egypt was a main importer of  wheat39 
(Fig. 7). Additionally, the Russia-Ukraine conflict heavily affects North Africa as several countries import more 
than 50% of their cereals from Ukraine and  Russia3,5.

As for Europe, the current prediction indicates habitat suitability ranging from very high to high across west-
ern Europe and medium to low in eastern European countries. Almost all of Europe is suitable for the Egyptian 

Figure 6.  Maps showing the loss and gain in habitat suitability of Spodoptera littoralis using the RCPs 2.6 and 
8.5 for the two time periods 2050 and 2070 (MaxEnt v. 3.4.1 and ArcGIS v. 10.3).
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Cotton Leafworm excluding European Russia. The future models show habitat unsuitability in northern France, 
Netherlands, most of Germany, most of Italy, southern coasts of Greece, France, most of the UK and eastern 
and western coasts of Spain, which was one of the largest net exporting countries in  202037. Loss can be seen in 
Spain and Germany. Gain is found in Denmark, a part of Germany, some regions in the UK, South of Sweden, 
South of Finland, Norway, Poland, southwestern Ukraine, west and southwest of European Russia, Ireland and 
Iceland which reaches its maximum in 2070 at RCP 8.5.

There’s a significant variation in trade flows between regions and food  groups37. In 2020, Europe had one of the 
largest individual flows for fruit and vegetables, with USD 138 billion import value and USD 101 billion export 
 value37. Furthermore, Europe was a net exporter of most commodity groups with cereals having an export value 
of USD 98.04  billion37. According to the Maxent model output maps, the situation in Europe is critical. Almost 
the entire continent is at risk for infestation by S. littoralis in the current prediction and while the future maps 
show loss in suitability in some countries, the gain is widespread in northern Europe including Ukraine, which 
is one of the world’s main  breadbaskets3.

In Asia, the current model shows very high to high suitability in China and Thailand, high to medium risk in 
Indonesia. Additionally, it predicts a high risk in south to southwestern Iran and this agrees with the findings of 
Falsafi et al.43. The model also forecasts a high risk in Yemen. Notably, the current map shows a medium to low 
risk of establishment in Saudi Arabia. Future prediction illustrates a loss of suitability in both Iran and Yemen 
which reaches a maximum in the RCP 8.5 2070 scenario. Additionally, the future model predicts a significant 
gain in China. Further, temperature rise leads to a loss in suitability in India and some parts of China that were 
rendered of very high to high risk of establishment in the current model.

Over the next decade, the world’s crop production is predicted to increase by 18% mostly in China (30%), 
India (17%) and Asia and the Pacific region (14%)16. Asia was the leading continent in the production of rice 
(89%), potatoes (50%) and wheat (46%) in  202037. In that same year, China was solely responsible for 25% of 
the world’s rice production and potatoes and 18% of the world’s wheat  output37. It was also one of the main 
sugarcane  producers37,39. It is evident that China is a major producing country, however its main focus is on 
domestic demand and not  exportation37. Due to the increased demand, China is dependent on imports from 
other countries in addition to its own  production39 (Fig. 7). Further, considering China’s reliance on agriculture 
and importation for food, the Maxent model predictions serve as an early warning. China’s current prediction 
shows a very high to high risk of establishment of S.littoralis and also, a significant gain in habitat suitability is 
clearly depicted in the future forecasts. According to the FAO, China was a main importer of rice, wheat and 
maize in  202039 (Fig. 7). This places the country at a higher risk of potential pest introduction from regions where 
the insect is already established in the current period.

Concerning North America, there are no records of the Egyptian Cotton Leafworm in the U.S however, it has 
been intercepted at U.S ports of entry 65 times since 2004. It is listed as being of high invasive risk to the U.S44. 
The United States of America accounted for 31% of the world production of Maize in 2020 and it was also the 
largest food exporter (9%) succeeded by the Netherlands (6%) and China (5%)37. Our current MaxEnt model 
indicates very high to medium risk in western U.S. Moreover, the future model shows a gain in suitability in that 
same area which is California. Our findings agree with the DDRP and CLIMEX models made by Barker and 

Figure 7.  Illustration of the overlap between the current potential distribution of S.littoralis and the main 
production areas of the four major crops (rice, wheat, maize and sugarcane) while describing their status in the 
international trade pathways in 2020 according to the Food and Agriculture Organization (FAO).
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Coup in 2021 for predicting the potential establishment of S.littoralis in the U.S44. A gain in suitability is found 
as well in Alaska and west of Mexico.

As mentioned, temperature is a significant factor influencing the distribution of S.littoralis and its establish-
ment into new environments currently and in the future. Another element to take into consideration is interna-
tional trade. Regions that have no current natural distribution of S.littoralis must abide by quarantine protocols 
when importing from areas where the pest is known to exist. Furthermore, countries like California that show 
high habitat suitability have to be stricter when handling imports from overseas (Fig. 7). In 2022, Mexico’s import 
value of maize and wheat from the U.S reached a total of $4.92 and $1.58 billion,  respectively45. Consequently, 
if an infestation were to happen in the U.S, it could easily spread to Mexico where the current model predicts 
high to medium suitability of establishment. It is also important to note that the future model shows a loss in 
east Mexico, the Bahamas, Jamaica, Cuba, and the Dominican Republic all which had very high to medium risk 
in the current model.

For South America, the current model predicts very high suitability in Brazil and Colombia, where Brazil 
alone was responsible for 40% of the global production of sugar cane in  202037. Ecuador, northeastern Venezuela, 
Peru and Chile were also of very high risk. The future model forecasts a loss in those areas due to temperature 
rise. In relation to Argentina, one of the largest food exporting countries in  202037, a visible gain is seen in the 
southeast along with a gain in southwestern Chile. Lastly, in Australia there’s a general loss in habitat suitability 
with some gain in New Zealand and the southeast of the continent.

It is clear that S.littoralis occupies a range of ecological zones around the globe. According to the world 
temperature domains map by Sayre et al.  202046, the Egyptian Cotton Leafworm is mostly currently found in 
two zones: subtropical and warm temperate. Also, it is present in a few tropical regions such as Ghana, Oman 
and parts of India. Further, based on the current MaxEnt model, Very high to high suitability is mainly seen in 
subtropical and warm temperate regions, while medium to low suitability can be found in some tropic and cold 
temperate domains.

On another note, diapause has never been reported for S.littoralis and it is known to overwinter where winters 
are  warm14. The MaxEnt current and future models predict habitat suitability for the pest in temperate regions 
with cold temperatures below the 10◦C optimum. Concerning the future models, it could be argued that the 
global temperature will rise making the conditions more favorable for the insect. However, this does not explain 
current model results found in areas like Alaska and northern Europe. The current prediction estimates very high 
to high habitat suitability throughout northwestern Europe and medium to low suitability in eastern European 
countries which lie in the cool temperate domain. Adult moths are known to have a 1.5 km flight range for 4 h 
in order to oviposit and disperse on different  hosts12.The Egyptian Cotton Leafworm has been trapped outside 
its range in northern Europe due to migratory flights from the southern parts or even infested  importations14. 
Nevertheless, dispersal in cool areas would be limited by the moths’ short  life14. As for Alaska, the model shows 
medium habitat suitability, but the pest would not survive the winters.

The resultant MaxEnt maps have several limitations. The software determines regions that have most similar 
conditions to the species current known occurrence points and arranges them from 0 (unsuitable) to 1 (suit-
able)19. Our model does not include future data about human population or host plant distribution nor does 
it consider the physiology or behavior of the insect and is solely based on climatic variables. Temperature, one 
of the main factors affecting abundance and distribution of species, impacts pest physiology in addition to the 
physiology of the host plant  itself7. Moreover, CO2 elevation due to climate change increases the plant’s carbon 
to nitrogen ratio which leads to a decrease in the protein content and consequently, more damage by pests to 
compensate for the low food  quality47. Biotic interactions are complex with numerous variables to consider such 
as crop yields, natural enemies, pests, weed, plant diseases and many  others47,48. Although correlative models 
mainly depend on bioclimatic data, the occurrence records included implicitly capture processes such as biotic 
interactions and dispersal  limitations49,50. This is an indication that models like MaxEnt give predictions that are 
closer to the realized niche, which is the actual environment occupied by the  species50. The resultant maps are 
considered an important indicator of the invasive pattern of S.littoralis and encourage further research on this 
polyphagous agricultural pest and its socioeconomic effect.

Conclusion
The Egyptian Cotton Leafworm is a polyphagous and a highly invasive insect pest that causes damage to many 
economically important food crops. In this study, we have successfully made an ecological niche model to assess 
habitat suitability for the pest currently and in the future under different scenarios of climate change. The result-
ant maps showed current areas with habitat suitability and other regions at risk of invasion by S. littoralis in the 
future. Considering the threats facing food security and the  SDG22, it is important to encourage more research on 
pest monitoring and especially those that are highly invasive and cause extensive damage to primary food crops 
like S. littoralis. Species distribution models could help quarantine authorities hasten control programs for such 
pests. Moreover, implementing more data into the predictive models, such as future data on human populations 
and hosts, would lead to a better understanding of the socioeconomic effect of the pest.

Materials and methods
Occurrence records
Occurrence data was obtained from the Global Biodiversity Information Facility database https:// www. gbif. org. 
The Egyptian cotton leafworm is mainly found in Mediterranean and middle eastern countries along with south-
ern Europe. Records were subjected to three filtration steps: First, removal of records without geo-referencing; 
second, removal of duplicated records and third, spatial rarefaction based on distance using ArcGIS (SDM 

https://www.gbif.org
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toolbox: SDM tools; Universal tools—Spatially rarefy occurrence data)20. Then, the end total of 201 records were 
converted to .CSV format and used to predict the distribution of S.littoralis (Fig. 3).

Environmental variables
Nineteen bioclimatic variables were downloaded from the WorldClim database https:// www. world clim. org with 
a spatial resolution of 2.5 arc-min at the equator. Forecast stations collected monthly temperature and rainfall 
readings between 1950 and 2000 to create these variables.

Concerning the current prediction bioclimatic data, only fifteen variables were converted into ASCII format 
by ArcGIS v 10.3. The bioclimatic covariates 8–9 and 18–19 were eliminated because of spatial irregularities 
which affect the resolution of the resulting  layers26,27. We separated the correlated bioclimatic variables using 
Pearson’s correlation coefficient at a value equal to (|r|≥ 0.8) to remove correlation between  covariates20 (Table S1). 
Multicollinearity was reduced through the function of SDM tools in ArcGIS 10.3 (universal tool; explore cli-
mate data; remove highly correlated variable)28. The five most significant bioclimatic variables were chosen for 
additional analysis.

As for the future prediction data, a corresponding set of bioclimatic layers was obtained from https:// www. 
world clim. org for the representative concentration pathways (RCPs) 2.6 and 8.5 for the two periods 2050 and 
2070. RCPs explore possible future climate dynamics for CO2 emissions and the associated atmospheric concen-
tration, RCP 2.6 being the lowest mitigation scenario and RCP 8.5 being the high emission  scenario20,29. These 
layers were also converted to ASCII format using ArcGIS v 10.3 and applied to model the future prediction.

We used three General Circulation Models (GCMs) for each RCP (2.6 and 8.5) in both time periods of 2050 
and 2070. The GCMs used are the Meteorological Research Institute (MRI-CGCM3), the National Center for 
Atmospheric Research (CCSM4) and the Beijing Climate Center (BCC-CSM 1_1) which are part of the IPCC’s 
fifth assessment report for the GCM climate estimates. We then calculated the mean future distribution for each 
RCP for all three GCMs in 2050 and 2070 to compare it with the predicted current distribution.

Modeling approach
We chose MaxEnt software package v 3.4.1 to predict the current and future global distribution of S. littoralis30. 
In addition to its simplicity and ease of usage, MaxEnt is preferred over other software because it applies envi-
ronmental variables other than climate (such as land cover, distance, and geographical factors) and evaluates 
their significance based on species’ occurrence  points31. It has outperformed other softwares and thus, it is widely 
used to predict possible species distributions using presence-only  records20,27,32,33.

In our MaxEnt models, 25% of the occurrence records were used for testing while the remaining 75% were 
used for training. The number of background points was 10,000 and the iterations were set at 500. To enhance 
the model’s performance, tenfold cross-validation was implemented. Regions with habitat suitability in the 
resultant models were put into five classes (Rare, low, medium, high and very high) using ArcGIS v.10.3 function 
(Classified-Symbology- Natural breaks (jenks)) in layer properties.

Model evaluation
The resultant models were assessed using the Area Under the Curve (AUC) of the Receiver Operating Charac-
teristics (ROCs) and the True Skill Statistics (TSS). AUC values ranged from 0 (random discrimination) to 1 
(perfect discrimination). AUC values greater than 0.75 were seen as well-fitting, while those less than 0.5 were 
considered poor-fitting. TSS was used to further evaluate the models’ accuracy with values ranging from 0 to 
1. Values close to 1 implied a good relationship between the model and the distribution, while values close to 0 
implied a weak relationship.

Data availability
All the data are included in the manuscript.
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