
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1495  | https://doi.org/10.1038/s41598-023-44284-3

www.nature.com/scientificreports

Artificial intelligence predicts 
normal summer monsoon rainfall 
for India in 2023
Udit Narang 1, Kushal Juneja 1, Pankaj Upadhyaya 2, Popat Salunke 3, Tanmoy Chakraborty 4*, 
Swadhin Kumar Behera 5, Saroj Kanta Mishra 2* & Akhil Dev Suresh 2,6

Inaccuracy in the All Indian Summer Monsoon Rainfall (AISMR) forecast has major repercussions 
for India’s economy and people’s daily lives. Improving the accuracy of AISMR forecasts remains a 
challenge. An attempt is made here to address this problem by taking advantage of recent advances in 
machine learning techniques. The data-driven models trained with historical AISMR data, the Niño3.4 
index, and categorical Indian Ocean Dipole values outperform the traditional physical models, and 
the best-performing model predicts that the 2023 AISMR will be roughly 790 mm, which is typical of a 
normal monsoon year.

An accurate forecast of All Indian Summer Monsoon Rainfall (AISMR) is crucial for policy and decision-making, 
with applications in a broad range of socioeconomic sectors, including agriculture, energy, water resources, 
health, and disaster management. Given that a significant portion of the population relies on agriculture, an 
accurate forecast of AISMR is necessary to ensure sufficient water availability for crops, a fair allocation of water 
resources, and prevent price inflation due to a scarcity of essential goods. Recent history provides several exam-
ples of unanticipated severe droughts that unfolded during the years 2002 and 2004 against the predicted normal 
monsoon  rains1. These events resulted in severe socio-economic repercussions, highlighting the importance of 
reliable seasonal AISMR forecasts for policy decisions.

Conventionally, physical models have been utilized to create seasonal forecasts, which offer a probabilistic 
prediction along with an ensemble spread that indicates the level of uncertainty associated with the  event2–4. 
However, these models have several limitations such as, being computationally expensive, having a high sensitiv-
ity to parameter initialization, and having limited flexibility in input  parameters4,5. Additionally, the forecast skill 
of these models relies on their ability to simulate the relationship between predictors and predictands, which is 
influenced by factors like model fidelity, boundary conditions, and the ability to simulate ocean-atmospheric 
coupling and feedback  processes6,7. Typically, agencies engaged in monsoon forecasting normally use the multi-
model ensemble mean from these physical-based climate models but recent decades have seen a drop in forecast 
skill across many  models8,9. Analyzing the seasonal forecasts made by these physical models for 2002–2022, we 
found that only six out of 21 years were within the specified range (https:// mausam. imd. gov. in/ imd_ latest/ conte 
nts/ seaso nal_ forec ast. php). The challenges associated with improving seasonal forecasting with the physical 
models include realistic initialization of initial conditions, accurate representation of climate dynamics, includ-
ing seasonal variability, and sufficiently sampling the forecast spread arising from uncertainties in the initial 
conditions. Addressing these challenges is difficult given the considerable cost of initializing the initial state, the 
increasing complexity of the models, and the finite number of observations for forecast  verification10.

Recently artificial intelligence (AI) and machine learning (ML)11 have emerged as powerful and promising 
techniques for predicting ocean and atmospheric variations. These techniques carry enormous potential because 
of their capability to dig through the large volume of observational and model data and find emerging patterns 
much more efficiently than conventional physical models. Many forecasting agencies like the National Oceanic 
and Atmospheric Administration (NOAA)12, the Indian Meteorological Department (IMD) (https:// moes. gov. in/ 
schem es/ atmos pheric- clima te- scien ce- and- servi ces? langu age_ conte nt_ entity= en), and the UK Met  Office13 are 
now trying to develop forecast systems by using these AI and ML techniques together with the physical models 
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for forecasting important climate parameters such as rainfall and temperature. With the advancements in the 
field of AI, different techniques in machine learning, deep learning, computer vision, and big data analytics have 
been employed in solving problems related to climate sciences like multi-year ENSO  forecast14, multi-seasonal 
IOD  forecast15, hurricane detection, wildfire detection, forecasting  rainfall16,17. Data-driven methods, including 
machine learning models such as Linear Regression, Support Vector Regression (SVR), XGBoost, and Random 
Forests, as well as neural models such as Convolutional Network Networks (CNNs), Recurrent Neural Networks 
(RNNs), and Transformers, have been employed in many studies for rainfall forecasting. These models are par-
ticularly preferred due to their better forecast ability when compared to physical models, their flexibility in input 
parameters, and their ability to capture non-linear and complex  relationships3,5,16–20.

The predictability in seasonal forecasts is largely derived from the slowly varying coupled dynamics of the 
land, atmosphere, and ocean, which include predictable variations in soil moisture, sea ice, snow cover, and sea 
surface temperature (SST)7,21,22. Particularly, the slowly varying ocean-atmosphere conditions associated with 
tropical climate phenomena El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) play a 
crucial role in interannual variability of Indian summer monsoon  rainfall8,23. As a result, they are widely consid-
ered as the major sources of predictability for the seasonal  forecast8. Therefore, by leveraging advanced AI and 
ML techniques to account for these sources of predictability, it may be possible to develop a more reliable and 
actionable seasonal forecast for  AISMR21,22.

Here we present such a data-driven approach by taking into account the primary drivers of interannual vari-
ability, ENSO and IOD, and by employing several empirical models to predict the AISMR of 2023. The results 
obtained using Long Short-Term Memory (LSTM), an RNN model that outperforms all other empirical models 
in the training period, indicate that in 2023, India will receive ~ 790 mm of rainfall, which falls in the normal 
range of the tercile category (see Methods).

Results
ENSO and IOD as predictability sources
The interannual variabilities of AISMR are mainly contributed by ENSO and IOD either individually or as a 
combined effect of the  two24,25. Due to the slow evolution of these drivers as coupled ocean-atmospheric phe-
nomena in the tropics, early appearance of their signals in tropical SST anomalies far in advance of the mon-
soon season offers AISMR a reliable window of predictability with a significant lead time. Figure 1a shows the 
interannual variation of AISMR with anomalies indicating both above and below the long-term mean (858.02 
mm) from 1901 to 2022, along with the IOD events represented by overlaid markers. The IOD is characterized 
by the difference in the sea surface temperatures between the western and eastern tropical Indian  Oceans26, with 
positive and negative IODs associated with a respective increase and decrease in rainfall in India. However, the 
relationship between the two is not so straight forward as evident from Fig. 1a and that uncertainty in a source of 
AISMR predictability poses a challenge in its forecast. Besides IOD, the ENSO mode characterized by anomalous 
changes in SST and associated circulations in the equatorial Pacific is traditionally linked to monsoon variability. 
Indeed, it is clear from the time evolution of the Niño3.4 index shown in Fig. 1, which includes both El Niño and 
La Niña (positive/negative ENSO) events, that there is a strong relationship between ENSO and AISMR. The 
occurrence of El Niño events tends to reduce the rainfall over the Indian subcontinent resulting in a deficit of 
rainfall (for instance, in 1904, 1972, and 1987) and vice versa (for instance, in 1910, 1933, and 1988). While the 
individual effects of these drivers (such as IOD and ENSO) on AISMR can be anticipated to some extent, their 
combined non-linear  effect15,27 and the significant sensitivity of AISMR to the magnitude and specific types of 
these  modes28 of variability can lead to uncertainties in forecasting AISMR. This, in turn, can result in inaccurate 
predictions. For example, in 1997, the positive phase of IOD coincided with a strong El Niño event, yet India 
recorded near-normal rainfall, highlighting the difficulty in accurately forecasting AISMR in the presence of 
complex interactions between ENSO and  IOD28.

Development of a skillful data driven model
Incorporating the two major drivers of AISMR, namely IOD and ENSO, we present a data-driven approach in 
an attempt to provide a reliable seasonal forecast of AISMR, an alternative to forecasts using conventional physi-
cal models. Here, a suite of successive experiments of AISMR forecast has been carried out employing multiple 
statistical machine learning, and deep learning models using three different datasets – (a) only historical AISMR 
(AISMR, hereafter), (b) historical AISMR and Niño3.4 index (AISMRNiño, hereafter), and (c) historical AISMR, 
Niño3.4 index, and categorical IOD data (AISMRNiñoIOD, hereafter) for a range of lookback windows. The 
lookback window denotes the period of the historical AISMR data considered for predicting the oncoming 
AISMR (see Methods for details). Figure 2 shows the model performance in each set of experiments validated 
using RMSE percentage and Spearman correlation for the test period, i.e., 2002 to 2022, by comparing model 
predictions and observed AISMR values from IMD.

We apply statistical machine learning models, namely linear regression, SVR, XGBoost, ARIMA, SARIMA, 
and deep learning models, namely LSTM and CNN. Our findings indicate that the models trained only on the 
AISMR dataset (see methods) underperform with a higher RMSE percentage (0.8 to 1.1) and lower spearman 
correlation (0.2 to 0.4) in comparison to those trained on the AISMRNiño dataset (with a lower RMSE percentage 
and an improvement in the spearman correlation up to 0.67). A further improvement was observed using the 
AISMRNiñoIOD dataset which produced the best results with 0.64 RMSE percentage and spearman correlation 
of 0.71. Moreover, the statistical significance of the correlations is evaluated using the mean of the p-values and 
its standard deviation for each dataset, and the successive improvement in the p-values from AISMR dataset 
(p-value = 0.2) to AISMRNiñoIOD (p-value = 0.0247) is noteworthy (Supplementary Table. 1). The results sug-
gest that a 5-year lookback period yields superior outcomes for most of the models when compared to other 
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lookback periods. This may be attributed to the dataset’s small size, as increasing the number of features with a 
small dataset often leads to a decline in model performance. Furthermore, of the various models trained, LSTM 
produces the best results, with the highest Spearman correlation and the lowest RMSE percentage. This can be 
attributed to LSTM’s ability to capture the most pertinent characteristics of a series and selectively disregard 
unimportant parts. Incorporating information related to the drivers like ENSO and IOD to the AISMR dataset 
has helped in improving the performance of the models, indicating that data-driven models are able to capture 
the non-linear interaction of different drivers and their combined teleconnections. Based on this skill assessment, 
LSTM model trained on the AISMRNiñoIOD dataset with a lookback period of five years size has been used to 
predict the AISMR for the year 2023 (Fig. 2).

Forecast for the year 2023
Figure 3 shows the observed AISMR values as provided by IMD (https:// mausam. imd. gov. in/ imd_ latest/ conte 
nts/ seaso nal_ forec ast. php#), along with the predicted values using our best-performing model, i.e., LSTM dur-
ing the test period (2002–2022). Our analysis reveals that the LSTM model demonstrates a successful forecast 
rate of approximately 61.9% during the evaluated period, which is significantly higher than the success rate of 
the physical models utilized by IMD, which is approximately 28.57%. Specifically, the actual  ± 5% range of sea-
sonal cumulative rainfall variations is predicted 13 times by LSTM model, as opposed to 6 times predicted by 
IMD in their pre-monsoon forecast. This significant improvement in success rate, achieved through the use of 
a data-driven model, is a promising development that could support the transition of rainfall forecast systems 
from physical models to more innovative models. Additionally, we have found that the LSTM model exhibits 
even greater skill in predicting the sign of annual precipitation variation with reference to the long-term mean. 
Specifically, the predicted values align with the actual value for 19 of 21 years. This highlights the model’s ability 
to replicate the long-term patterns of precipitation, which is a crucial component of accurate forecasting of dif-
ferent categories of AISMR. The only two years that LSTM fails to categorize the seasonal rainfall are 2011 and 
2015. Further, using the same model and approach, the seasonal rainfall forecast for the year 2023 is generated. 

Figure 1.  Time evolution of AISMR, IOD events, and Niño3.4 SST anomaly. (a) The anomaly of AISMR from 
the long-term mean for the Indian Summer Monsoon months (June to September) over the period 1901 to 
2022 and the IOD event for the corresponding year. (b) The evolution of monthly Niño3.4 Index over the same 
period.

https://mausam.imd.gov.in/imd_latest/contents/seasonal_forecast.php#
https://mausam.imd.gov.in/imd_latest/contents/seasonal_forecast.php#
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Figure 2.  Skill of different data-driven models in the test period. The RMSE percentage vs. temporal correlation 
(Spearman) for AISMR using multiple data-driven models depicted by the markers on the test period from 2002 
to 2022 for three different suites of experiments—AISMR, AISMR + Niño, and AISMR + Niño + IOD (for further 
details, refer to Methods). The RMSE percentage and Spearman correlation are calculated in reference to the 
observed AISMR values from IMD. The color shades represent different lookback periods, i.e., the number of 
years under consideration for the AISMR data to train the models, that range from 5 to 25 years for each suite of 
experiments.

Figure 3.  AISMR Forecast for the year 2023 using the best-performing model. The observed AISMR anomaly 
from IMD, along with the predicted AISMR anomaly using the best-performing model (LSTM-lookback 5) for 
the test period from 2002 to 2022. The same is extended to include the forecast for the year 2023.
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The forecast took into account the variations in Niño3.4 and DMI indices at different lead time, which suggested 
to be an El Niño and positive IOD year (see Methods).

The LSTM model predicts that India will experience normal rainfall of approximately 790 mm in 2023. It 
should be noted that this predicted rainfall is close to the threshold of the normal and below normal categories 
and hence, cautious measures should be adopted to prevent any adverse effects of a below normal monsoon sea-
son. The co-occurrence of El Niño and IOD seem to offset the individual effects and result in a normal rainfall 
over the oncoming season through atmospheric passage as was observed in the great El Niño year  199728. Our 
findings suggest that the inter-basin linkage between the Pacific and Indian Oceans plays a crucial role in pre-
dicting seasonal AISMR, thereby highlighting the significance of this connection as a reservoir of predictability. 
This is consistent with the ongoing discussions in the scientific community that emphasize the importance of 
the complex interactions between the two ocean basins and their impact on weather and climate  patterns27,29.

Conclusion
Our study demonstrates the significant forecast skill exhibited by data-driven models for predicting seasonal 
AISMR. If these data-driven techniques can tap the changing nature of teleconnections and the non-linear inter-
actions in a warming climate that the physical models are often unable to capture, it will considerably enhance 
the skill in the seasonal forecast of AISMR. We also believe that findings in our study could encourage further 
efforts towards building a new generation of seasonal forecast systems by integrating physical and data-driven 
models so as to as complement each other and provide more reliable and accurate seasonal forecasts. A "nor-
mal" monsoon rainfall season, as forecasted by our data-driven model, for the year 2023 is a good sign for the 
country’s overall economic condition and welfare since a significant portion of the population is dependent on 
agriculture. Upon comparing our predicted value with that of the actual observed accumulated AISMR value 
(up to September 18, 2023) obtained from the IMD (https:// mausam. imd. gov. in/ respo nsive/ rainf allin forma 
tion_ msd. php? msg=C, accessed on  19th September, 2023), we find that the difference between the predicted 
and the observed AISMR is less than 5%, which is reasonably acceptable. The values of the actual accumulated 
AISMR can be safely assumed to remain unchanged since the monsoon has already started to recede by the 
time of reporting. It is also noteworthy that the prediction was made in the month of January, providing a lead 
time of four months. Although the forecast may not be useful for farmers at a granular scale, however, it would 
be useful in seasonal scale planning of water resource and insurance. It would also facilitate other stakeholders 
with an adequate time window to anticipate and optimize the necessary resources.

Besides agriculture, a growing demand for seasonal forecasts in a multitude of applications in energy, water 
management, risk assessment, and disaster mitigation has instigated efforts in search of alternative prediction 
approaches in recent years. In the current age of data science, the potential for enhancing prediction skills using 
AI and ML is abundant. However, several challenges must be addressed. For instance, the data in climate science 
is limited for training data-driven models. Also, a lack of interpretability poses significant obstacles. Neverthe-
less, additional sources of predictability that have emerged in recent times, such as Atlantic influence on AISMR 
at sub-seasonal to seasonal  scale30,31, new modes of principal components of  AISMR9, and unexplored influ-
ence of stratosphere-troposphere coupling on monsoon surface  climate22 may provide an extended window for 
monsoon predictability.

On another note, the point forecast of AISMR averaged for spatially diverse country like India may not be 
sufficient for guiding effective action plans. Therefore, similar data-driven approaches can be extended to cover 
a wide range of homogenous regions of the Indian subcontinent at a spatial resolution of district-to-sub-district 
scales. This study is an attempt to predict the AISMR for the oncoming summer season by exploiting the emerging 
cutting-edge tools, but it can only be validated as and when the monsoon ends, and we obtain a definite AISMR 
value. Even if the forecast misses to capture the actual observation this time, which is very unlikely based on 
the results from the testing period, the exercise remains valuable as an exploratory endeavor. Through the use 
of data-driven models, the exercise highlights the potential for enhanced extended range forecasts in the future, 
even in cases where categorical identification of AISMR rainfall is not possible.

Methods
Model training data
The experiments conducted in this study use AISMR, Niño3.4 index, and Indian Ocean Dipole (IOD) data for 
training the data-driven models (statistical machine learning and deep learning models). The all-India seasonal 
mean of the cumulative daily rainfall gridded data from IMD for June to September for the period 1901–2022 is 
used to obtain the yearly AISMR values. The AISMR data was pre-processed by discarding the erroneous values 
of rainfall (less than 0 mm). The ENSO events are characterized using the monthly Niño3.4 index, provided 
by  NOAA32, which measures the sea surface temperature anomaly in the equatorial Pacific Ocean (5S-5N and 
170W–120W). In addition, the categorical IOD data representing positive IOD, negative IOD, or neutral IOD 
years provided by Japan Meteorological Agency (https:// ds. data. jma. go. jp/ tcc/ tcc/ produ cts/ elnino/ iodev ents. 
html) were used to feed the models. Owing to the categorical nature of the data, one-hot encoding of the IOD 
data is done before training the models. Figure 1a shows the interannual variation of AISMR anomaly about the 
long-term mean value from 1901 to 2022, along with the IOD events represented by overlaid markers, Fig. 1b 
shows the monthly variation of Niño3.4 index anomaly from 1901 to 2022.

Categorizing IOD events
Dipole Mode Index (DMI) is used as a quantitative measure for characterizing IOD which is defined as the dif-
ference between the SST anomalies between tropical western (50°E to 70°E and 10°S to 10°N) and eastern (90°E 
to 110°E and 10°S to 0°S) India Ocean. IOD events are categorized into three categories: Positive, Negative, and 

https://mausam.imd.gov.in/responsive/rainfallinformation_msd.php?msg=C
https://mausam.imd.gov.in/responsive/rainfallinformation_msd.php?msg=C
https://ds.data.jma.go.jp/tcc/tcc/products/elnino/iodevents.html
https://ds.data.jma.go.jp/tcc/tcc/products/elnino/iodevents.html
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Neutral. Positive IOD events are identified when the three-month running mean dipole mode index (DMI) 
is  + 0.4 °C or above for at least three consecutive months between June and November. Negative IOD events 
are identified when the three-month running DMI is  − 0.4 °C or below for at least three consecutive months 
between June and November.

Tercile category
The seasonal forecast is classified into three categories: below normal (< 90% of the Long Period Average (LPA)), 
normal (90–110% of the LPA), and above normal (> 110% of the LPA). The LPA of observed rainfall data from 
IMD for the period 1901 to 2001 is found to be 858.02 mm.

Statistical machine learning, and deep learning models
In our experiments, a wide range of models was trained – statistical machine learning models, namely Lin-
ear Regression, Support Vector Regression (SVR), XGBoost, ARIMA and SARIMA; deep learning models, 
namely Long Short-Term Memory (LSTM), and CNNs. Here we briefly describe these models. Linear Regression 
assumes a linear relationship between the input variables and the target variable. It aims at finding a line that 
best describes the relationship between the input and target variables by gradient descent optimization. SVR is 
a type of Support Vector Machine (SVM) that is used for regression analysis. SVR uses different types of kernel 
functions such as linear, polynomial, radial basis function (RBF), and sigmoid to transform the data into higher 
dimensions, therefore making the data, which is linearly inseparable in the lower dimensions, separable in the 
higher dimensions. The experiments were conducted using all four types of kernel functions, and the best results 
were obtained using the RBF kernel. Extreme Gradient Boosting (XGBoost) is an efficient implementation of 
the gradient boosting algorithm, which is capable of finding a non-linear relationship between the input and 
the target  features33. Gradient boosting is an ensemble-based algorithm that capitalizes several weak models and 
combines them to form a strong  model34. XGBoost has a large number of parameters that need to be specified 
before training the models, like the maximum depth of the tree, the learning rate, and the number of decision 
stumps used for the ensemble. In the experiments, we used learning rate = 0.3, max_depth = 6, and 100 deci-
sion stumps for training the models. Autoregressive Integrated Moving Average (ARIMA) model is a statistical 
model that takes three hyperparameters (p, d, q) into account where p is the order of the autoregressive model, 
d is the degree of differencing required to make the time-series stationary, and q is the order of the moving-
average. ARIMA models require only the historical data of the time series to make the forecast and assume that 
the time series becomes stationary after the differencing operation. Seasonal-ARIMA (SARIMA) is an exten-
sion of ARIMA that takes into account the seasonal component of the time series, which the ARIMA model 
does not. Both ARIMA and SARIMA are primarily used for time series analysis. Fine-tuning for ARIMA and 
SARIMA was done using the grid search method, where different combinations of (p, d, q) triplets were tried 
for model training, and the triplets (15, 0, 3) and (20, 0, 3) were giving good results. Time series analysis using 
deep learning has also gained momentum in the past few years, with LSTM being the most commonly used 
among them. LSTM is a Recurrent Neural Network with the ability to selectively forget information that is not 
relevant and only persist in the important parts of the sequence. LSTMs are capable of learning patterns from 
any type of sequential data, and they do not rely on the stationarity assumption of the time series. Fine-tuning of 
the LSTM model gave the best results for batch size = 20 for 125 epochs, and to reduce the overfitting, dropouts 
were used. The Adam optimizer was used with a mean squared error loss for training the model. Convolutional 
Neural Network (CNN) is a feed-forward neural network that uses a convolutional layer to capture the spatial 
and temporal dependencies in the data using  convolution35. In the experiments, for each 1-D convolution layer 
and feed-forward layer, RELU activation is used. Similar to LSTM, the Adam optimizer and mean squared error 
loss are used for model training.

Experimental setup and testing
Of the total 122 years of historical data from 1901 to 2022, the latest 21 years, i.e., from 2002 to 2022, are used 
for testing the data-driven models, and the remaining 101 years, from 1901 to 2001, were used for model train-
ing. Based on the dataset used for training the models, the experiments can be classified into three categories. 
The primary goal for each category of experiments is to predict AISMR for 2023. The first set of experiments 
includes using a univariate time series of AISMR values, and this set of experiments can be considered our 
baseline experiments since only previous AISMR values are used to predict the future AISMR value. The experi-
ments were conducted by varying the value of lookback from the set {5, 10, 15, 20, 25}, and the mathematical 
formulation of these experiments can be done for any year t, given previous k years AISMR data, i.e.,  AISMRt, 
 AISMRt-1, …  AISMRt-k+1, predict the rainfall for the following year, i.e.,  AISMRt+1. The second set of experiments 
uses monthly Niño3.4 index values and the AISMR values. Multiple combinations of datasets were formed by 
varying the lookback for both AISMR and the Niño3.4 index. While AISMR was varied similarly to the category 
1 experiment, i.e., from the set {5, 10, 15, 20, 25}, the lookback for the monthly Niño3.4 index was varied from 1 
to 24 months. After evaluating the results using the two evaluation metrics RMSE percentage and Spearman cor-
relation, lookback = 13 months for Niño3.4 index gave comparatively better results than other lookbacks. Hence, 
in further experiments, the previous 13 months of the Niño3.4 index were used along with varying lookbacks 
for AISMR. Thirteen months of the Niño3.4 index can be broken down into the first five months (January-May) 
of the year t + 1 and the last eight months (May-December) of the year t where t + 1 is the year for which we 
want to predict the AISMR value. The mathematical formulation of this set of experiments can be written as, at 
a particular year t, given the previous k years of AISMR data along with m months Niño3.4 index data before 
the JJAS season of the year t + 1, predict the rainfall for the following year, i.e.,  AISMRt+1. The final category of 
experiments incorporates the categorical IOD data along with AISMR and the Niño3.4 index. IOD informs the 



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1495  | https://doi.org/10.1038/s41598-023-44284-3

www.nature.com/scientificreports/

model whether the year for which we want to predict AISMR is a Positive, Neutral, or Negative IOD year. A 
one-hot encoding on the categorical IOD data gave three columns, each corresponding to a negative, neutral, 
and positive IOD year. For example, if the year is a positive IOD year, then the value of the three columns will be 
{0, 0, 1}, i.e., 0 for the negative and neutral columns, and 1 for the positive column. Mathematically formulating, 
for a year t, given the previous k years of AISMR data, 13 months of the Niño3.4 index, and categorical IOD 
data for the year t + 1, predict AISMR for the year t + 1. Similar to the last two categories of experiments, AISMR 
was varied for the lookback {5, 10, 15, 20, 25}. For each model trained, we find the p-value for a hypothesis test 
whose null hypothesis is that two sets of data are linearly uncorrelated. Using the p-values obtained from the 
models trained on each dataset, the average p-value and standard deviation were computed for every dataset type.

Lookback period
For a given time step t, a lookback period of size k can be understood as the k previous time steps (including the 
current time step t) whose corresponding data will be given to the model to make the forecast for the time t + 1.

RMSE percentage
RMSE percentage represents the root mean squared error between the actual and the predicted values in percent-
age terms with respect to the actual values. A lower RMSE percentage between the observations and forecasts 
implies better model performance.

Spearman correlation
Spearman correlation represents the statistical measure of the strength of the relation between a ranked pair of 
variables. The Spearman correlation varies between  − 1 and  + 1, where positive correlation implies that if one 
variable increases, the other also increases and vice-versa. Similarly, a negative correlation implies if one variable 
decreases, the other variable increases and vice-versa. A correlation between the actual and predicted values 
closer to 1 signifies better model performance.

di–the difference between two rankings. n–the number of observations.

Statistical significance test
In order to evaluate the statistical significance of the Spearman correlations, we find the p-value for a hypothesis 
test whose null hypothesis is that two sets of data are linearly uncorrelated. For each of the three datasets, the 
average and standard deviation of the p-values obtained for models trained for different lookback periods were 
computed.

Input data of ENSO and IOD for the year 2023
The multi-model mean of the forecasts of Niño3.4 index provided by Columbia Climate School (https:// iri. colum 
bia. edu/ our- exper tise/ clima te/ forec asts/ enso/ curre nt/) and monthly IOD forecasts provided by the Bureau of 
Meteorology Australia (http:// www. bom. gov. au/ clima te/ enso/# tabs= Indian- Ocean) which indicated a positive 
IOD year have been used for making the AISMR forecast for the year 2023.

Data availability
All data used in this study are publicly available. The historical AISMR data used is obtained from Indian Mete-
orological Department (https:// www. imdpu ne. gov. in/ lrfin dex. php). The Indian Ocean Dipole categorical data 
was obtained from Japan Meteorological Agency (https:// ds. data. jma. go. jp/ tcc/ tcc/ produ cts/ elnino/ iodev ents. 
html). The Nino3.4 index data used for training purpose is available at https:// psl. noaa. gov/ gcos_ wgsp/ Times 
eries/ Data/ nino34. long. anom. data

Code availability
All code used in this study is available from the corresponding author upon request.
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