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A new flexible model 
for maintenance and feeding 
expenses that improves description 
of individual growth in insects
Karl Mauritsson 1,2* & Tomas Jonsson 1,2

Metabolic theories in ecology interpret ecological patterns at different levels through the lens of 
metabolism, typically applying allometric scaling to describe energy use. This requires a sound theory 
for individual metabolism. Common mechanistic growth models, such as ‘von Bertalanffy’, ‘dynamic 
energy budgets’ and the ‘ontogenetic growth model’ lack some potentially important aspects, 
especially regarding regulation of somatic maintenance. We develop a model for ontogenetic growth 
of animals, applicable to ad libitum and food limited conditions, based on an energy balance that 
expresses growth as the net result of assimilation and metabolic costs for maintenance, feeding 
and food processing. The most important contribution is the division of maintenance into a ‘non-
negotiable’ and a ‘negotiable’ part, potentially resulting in hyperallometric scaling of maintenance 
and downregulated maintenance under food restriction. The model can also account for effects of 
body composition and type of growth at the cellular level. Common mechanistic growth models often 
fail to fully capture growth of insects. However, our model was able to capture empirical growth 
patterns observed in house crickets.

Animals can be considered as regulation processes that acquire energy from the environment and convert it into 
more ordered forms of biomass in order to grow, produce offspring and maintain homeostasis. Energy conversion 
occurs through the processes of metabolism under a high level of coordination, feedback and  integration1. 
Variation in the rate of metabolism among animals has important ecological implications through its effects on, 
for example, abundance, distribution, colonizing success and global variation in species  richness2. Metabolic 
theories in ecology interpret processes at different ecological levels through the lens of metabolism. Much work 
has been published within the framework known as the metabolic theory of ecology (MTE)3, which is based on 
allometric scaling and temperature dependence of metabolic rate, R, for individual organisms:

Here W is body mass, T absolute temperature, α a normalization constant, β an allometric exponent, ε 
activation energy and κ is Boltzmann’s  constant4,5. Traditionally, metabolic rate has often focused on the resting 
metabolic rate (the metabolic rate of a non-feeding inactive organism) and this is normally what is measured 
empirically. Of interest in metabolic ecology is usually the field (or active) metabolic rate instead (the total 
metabolic rate of a free-living organism, spending energy on foraging and other activities). This is usually 
considerably higher, but often considered proportional to the resting metabolic rate (and thus allometrically 
related to body size as  well3).

Comparisons of species from various taxa has been used to argue that the interspecific allometric exponent 
(across species of varying adult body size) is often close to 3/46,7. Thus, MTE in its original form applies β = 3/4 
and assumes that individual metabolic rate sets the rates for many other biological activities, which generates 
patterns for various ecological processes at higher levels, such as population growth rates, trophic interactions 
and biomass  production3. This view has been criticized for missing that metabolism often responds to biological 
processes rather than drives them, ignoring the importance of regulation  processes1. Furthermore, studies 
indicate that there is no universal value of the allometric exponent; interspecific relationships of  adults8–12 has 
yielded values that vary from slightly less than 0.5 to slightly more than 1 for different  taxa13. Within species, the 

(1)R = αWβe−ε/(κT)
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exponent may also change during the lifetime of an  individual14. In addition, non-linear scaling of metabolic 
rates has been  reported13,15–17.

Many models have been proposed to explain observed apparent allometric scaling of metabolic rate, including 
views where metabolic rates are limited by internal resource distribution  networks18,19, fluxes across exchange 
 surfaces20,21, composition of body components with different metabolic  activity22,23 and resource demand of 
different whole-body  processes24,25. For example,  Shestopaloff19 argued that metabolic rate is limited by costs 
of transportation across cells, implying that variation in cell size explains differences in allometric exponents 
between organisms that grow by cell enlargement, cell division or a combination of both. As a consequence of 
all this, metabolism is now often seen as a result of several interactive and overlapping processes with different 
rates in different tissues at different phases during  ontogeny26. A sound metabolic theory requires a growth model 
that can capture such aspects.

In order to give a mechanistic description of individual growth, we here build on some of the previously 
discussed metabolic approaches by describing total metabolic rate as the sum of several components, accounting 
for differences in maintenance and growth costs due to life stage, tissue composition and cell growth type.

To be really useful as a foundation for metabolic theory, a growth model must be able to deal with resource 
limitation and its effect(s) on metabolism and growth. Under food restriction, resting metabolic rates are 
generally  lowered27. A trade-off between fast growth and maintenance affect this  pattern28 and may include 
downregulation of ‘non-necessary’ maintenance  processes29–33, such as maintenance of the immune  system34. 
However, many mechanistic growth models that consider food  limitation35–37 fail to consider effects of metabolic 
regulation on maintenance (see Note SI1.2).

Furthermore, common mechanistic growth models applied to ad libitum  conditions38–40 often fail to describe 
growth of insects, overpredicting growth rate at early ontogeny, underpredicting it at later stages and failing to 
accurately predict terminated  growth41. A growth model that considers relevant aspects of metabolic regulation 
and growth may however do this. Such a model should be able to capture the following potentially relevant 
aspects: (1) non-linear allometric scaling of metabolic components; (2) maintenance regulation under food 
restriction; (3) costs of finding and processing food; (4) effects of body composition on costs for growth and 
maintenance; (5) differences in costs for growth and maintenance between somatic and reproductive tissue; 
(6) effects of proportions of cell growth and cell division on costs for growth and maintenance. In order to 
improve the foundation for analysis of ecological patterns at higher levels in terms of metabolism, we propose 
a flexible model for ontogenetic and post-mature growth, able to account for these aspects. Total metabolism is 
decomposed into several components, including costs for maintenance, growth, activity and food processing. 
Growth is expressed as the net result of assimilation and metabolic expenses. We call this model the Maintenance-
Growth Model (MGM) to highlight the trade-off between maintenance and growth. MGM is a general framework 
that includes many aspects, but can be simplified for specific situations depending on the biology of a particular 
organism. The new model is here presented, derived and demonstrated via numerical simulations and some 
comparisons with previous data, but detailed empirical model validation is saved for forthcoming work.

The maintenance-growth model
The basic features of MGM for ontogenetic and post-mature growth of a non-reproducing animal is here derived, 
based on the energy balance between ingestion (S), metabolic expenses (Rtot), growth (G) and losses (L) (Fig. 1a). 
Derivation and specification of individual model components can be found in “Methods” (“Derivation and 
specification of model components”).

The basic energy balance is expressed as:

The ingestion rate S is ingested energy per unit of time t and is assumed to be a function of food availability 
(φ) and body mass (W) (see “Ingestion rate”):

Total growth (G = GS + GR) includes both somatic and reproductive growth, whereas total loss (L = Leg + Lex) 
includes losses through egestion and excretion. A fraction (1 − e) of the ingested energy is lost through egestion 
and excretion, where 0 < e < 1 is the assimilation efficiency, mainly related to food type and quality. The energy 
balance can thus be expressed as a balance between assimilation rate (eS), total metabolic rate (Rtot) and growth 
(G):

The rate of increase of energy bounded in synthesized biomass (G) is proportional to the growth rate (dW/dt):

Here EM(W) is the average mass-specific energy content in synthesized body tissue at body mass W (which 
depends on the relative proportions of carbohydrates, proteins and lipids and, as such, may be affected by the 
proportion of somatic to reproductive tissue, see “Energy content of synthesized body tissue”).

The total metabolic rate is divided into maintenance cost (RM), feeding cost (RF) and growth overhead cost 
(RG):

(2)S = Rtot + G + L

(3)S = S(ϕ,W)

(4)eS = Rtot + G

(5)G = EM(W) ·
dW

dt

(6)Rtot = RM + RF + RG
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Growth overhead cost (RG) includes all metabolic costs of growth, such as overhead costs for assembling 
macromolecules from monomers, and is proportional to the growth rate:

Here ES(W) is the specific growth overhead cost at body mass W (which may be different for somatic and 
reproductive tissue as well as for somatic cell division and somatic cell growth, see “Growth overhead costs”).

Feeding cost (RF) includes all metabolic costs for searching and processing food and is assumed to be a 
monotonically increasing function of S (see “Feeding costs”):

Maintenance RM is energy spent on processes that keep the animal alive and in good shape, including 
maintenance of ion potentials across membranes, cell repair, immune activities and thermoregulation (in 
endotherms). It is assumed that maintenance costs are affected by food availability (φ), body mass (W) and 
body composition (a function of W) in a way that is dependent on the life history strategy of the animal (see 
“Maintenance costs”):

Altogether, the relations above define how energy is acquired and utilized (Fig. 1b) and they can be combined 
and rearranged into a general growth equation for ontogenetic and post-mature growth under ad libitum as well 
as food limited conditions, describing how the growth rate dW/dt depends on assimilation rate (eS), maintenance 
costs (RM) and feeding costs (RF), including a life history determined trade-off between maintenance costs and 
growth-related costs (RG + G):

Potential formulations for functions EM(W), ES(W), S(φ,W), RF(S) and RM(φ,W) are described in the 
“Methods” (“Derivation and specification of model components”) by Eqs. (13), (14), (12), (18) and (29). Including 
all of this unavoidably leads to a complex model with many parameters. However, the model can be significantly 
simplified under certain assumptions (see “Possible model simplifications”).

MGM is similar in some respects to other previously presented growth models (see Supplementary 
Information, Note SI1) but differ in some important aspects, mainly the flexible level of details and the division of 
maintenance costs into a ‘non-negotiable’ part (processes necessary to keep the organism alive) and a ‘negotiable’ 
part (processes that keep the organism in good shape, but that may be downregulated in order to save energy).

(7)RG = ES(W) ·
dW

dt

(8)RF = RF(S),
dRF

dS
> 0

(9)RM = RM(ϕ,W)

(10)
eS = Rtot + G = RM(ϕ,W)+ RF(S)+ ES(W) ·

dW

dt
+ EM(W) ·

dW

dt
⇔

dW

dt
=

1

EM(W)+ ES(W)
[eS(ϕ,W)− RF(S)− RM(ϕ,W)]

Figure 1.  (a) Energy balance of a growing animal. Arrows represent fluxes of energy. Ingestion S is all energy 
that enters the animal through consumed resources. Respiration Rtot represents energy that drives all metabolic 
processes (Eq. 6), energy that is eventually released as heat to the environment. Somatic growth GS is energy 
becoming bounded in synthesized somatic biomass. Reproductive growth GR is energy becoming bounded in 
biomass of gonads and produced sperms/eggs/offspring. The transformation of energy from ingested food into 
usable forms include some energetic losses. Egestion Leg is losses through faeces, whereas excretion Lex is losses 
through urine and other excretes. (b) Energy flow and allocation according to MGM. Boxes represent available 
energies or energetic costs. Solid arrows represent prioritized metabolic processes at each ‘energetic level’ whose 
costs are paid first, while dashed arrows represent processes that can be down-regulated in response to what is 
available at each level after prioritized costs have been paid.
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Results
The growth model (MGM) developed here (Eq. 10) includes five basic components (EM, ES, S, RF and RM), 
each of which can be described in varying degrees of mathematical complexity, depending on the biology of 
the organism, the process believed to be important and level of details wanted. To demonstrate the behaviour 
of MGM under every possible scenario is impossible and we choose to focus here on (1) comparing some 
predictions of MGM under ad libitum conditions and a number of other simplifying assumptions (Eq. 33) to 
those of a general formulation of ontogenetic growth (Eq. 34), hereafter termed the Generalized Standard Growth 
Model (GSGM) representing many previous mechanistic growth models (Note SI1.1), and (2) illustrating some 
behaviour of MGM under food restriction. In this we make use of experimental data from a previous study on 
house crickets  (Jonsson42, see “Empirical data from previous study”). In addition, (3) the general behaviour of 
MGM under five specific scenarios (effects of (i) feeding costs, (ii) body composition, (iii) growth strategy, (iv) 
allocation to negotiable maintenance and (v) allocation to reproduction) are demonstrated in Note SI2.3–7.

Ad libitum conditions
The observed average growth of house crickets reared under near ad libitum  conditions42 was sigmoid (Fig. 2a) 
and produced a near-symmetrical hump-shaped growth rate curve (Fig. 2b). These trajectories were well captured 
by MGM, but good agreement was not possible to obtain with GSGM (Fig. 2), using optimized parameters for 
both models (“Numerical model comparisons”, Table SI3). The inability of GSGM to capture the growth of 
an insect seen here, is further demonstrated in Note SI2.1. Using two dimensionless key properties of growth 
trajectories we compared empirical values of these to MGM and GSGM predicted values (Table SI5), and showed 
that empirical values are impossible to obtain by GSGM. More specifically, the observed ratio between body mass 
at maximum growth rate and ultimate body mass was found to be considerably larger than the largest value that 
GSGM is able to predict (Fig. SI2a). Furthermore, it is required that the supply term of the GSGM equation has 
an unrealistically low value of the allometric exponent to predict the observed ratio between maximum growth 
rate and average life-time growth rate (Fig. SI2b). Two other growth models from the  literature37,43, were able to 
yield quite good agreements with empirical curves, but these models have other deficiencies (see Note SI2.1).

Food restriction
Growth rates of food restricted cohorts of house crickets were considerably reduced relative to ad libitum (low 
density cohorts), and more so in cohorts with greater density of individuals where competition for limited 
resources was larger (Fig. 3a). The end results were reduced size and increased age at (i) maturation and (ii) 
when reaching 95% of maximum experimentally observed size (Fig. 3b). The ages when specified fractions of the 
ultimate body mass were reached increased with decreased food availability (Fig. 3c). Many of the experimentally 
observed patterns can be qualitatively reproduced by MGM. More specifically, simulations of Eq. (10) (as 
specified by Eq. (SI8) with parameter values from Table SI2) show how increasing food restriction affects MGM 
growth trajectories in a qualitatively similar way as observed experimentally. That is, growth rates are decreased 
with reduced food availability (Fig. 3d), measured as relative food acquirement φ (ratio of realised ingestion 
rate to ad libitum ingestion rate at current body size). Furthermore, size (W95) and age (t95) when reaching 95% 
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Figure 2.  Empirical growth curves for house crickets reared under near ad libitum  conditions42 and growth 
curves predicted by the simplest relevant version of MGM (Eq. 33) and GSGM (Eq. 34) with application of 
optimized parameter values (Table SI3). (a) Body mass vs. age. Corresponding goodness of fit measure (Eq. 35) 
were 0.995 (MGM) and 0.845 (GSGM). (b) Growth rate vs. body mass.
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Figure 3.  Experimentally observed and MGM-predicted growth behaviour under food restriction. (a) Observed 
growth rate vs. body mass for low (d1) to high density cohorts (d5) of house  crickets42. All cohorts were exposed to the 
same total feeding rate, but starting densities varied (d1 = 5, d2 = 10, d3 = 20, d4 = 40, d5 = 80 individuals) and observed 
mortality increased with starting density. Low-density cohorts (d1) were at or very near ad libitum conditions. (b) 
Observed t95 vs. W95 and sex-specific age and body mass at maturation (imago emergence) in food-limited cohorts of 
house crickets with increased starting density in the direction of the arrow. For the estimation of W95 and t95 (age and 
size when reaching 95% of ultimate body mass) from empirical  data42, see “Empirical data from previous study”. (c) 
Observed age when specified fractions ωU of the ultimate body mass is reached for varying levels of food availability. 
The normalised food availability =  min[log10(di)]/log10(di) yields a measure between zero and one, based on the initial 
cohort size di. (d) MGM predictions of growth rate vs. body mass for different fixed levels of relative food acquirement 
φ. (e) MGM predictions of t95 vs. W95 for varying relative food acquirement φ and different values of model parameter 
δ. Each line represents a series of connected data points showing how t95 and W95 change with decreasing food 
availability in the direction of the arrows, for a specified value of δ. (f) MGM predictions of age when specified 
fractions ωU of the ultimate body mass is reached for varying relative food acquirement φ.
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of ultimate size predicted by MGM (Fig. 3e) follow patterns of decreased size and increased age with increased 
food restriction, as qualitatively observed in experiments (Fig. 3b). However, the exact effect is highly dependent 
on how fast negotiable maintenance costs are downregulated with decreased relative food acquirement φ, as 
measured by the parameter δ (Eqs. (24)–(25)). For δ ≲ 1, MGM predicts monotonically decreasing W95 and 
increasing t95 with increasing food restriction. MGM predicted ages when specified fractions of the ultimate body 
mass are reached increase with decreased food availability (Fig. 3f), the same qualitative pattern as experimentally 
observed (Fig. 3c). However, qualitatively different predictions of MGM can be obtained by changing model 
parameters (see Fig. SI4).

Additional effects
More detailed effects of food restriction in MGM are demonstrated in Note SI2.2, showing reductions in 
maintenance, growth rate, ultimate body size and metabolic rates at rest and activity (Figs. SI3-4) for some 
“realistic” parameter values (Table SI2). Effects of increased feeding costs (costs for foraging and food processing) 
are illustrated in Note SI2.3, showing reduced growth rate and ultimate size (Fig. SI5). MGM-predicted effects 
of chemical body composition and growth strategy at the cellular level are described in Note SI2.4–5, showing 
altered growth rates (Figs. SI6-8). Effects of allocation to negotiable maintenance are demonstrated in Note 
SI2.6, showing altered growth and allometric scaling of metabolic rates (Fig. SI9), and effects on W95 and t95 
(Fig. SI10). Effects of increased relative allocation to growth of reproductive tissue are described in Note SI2.7, 
showing altered allometric scaling of total reproductive costs and changed growth patterns (Fig. SI11). Currently 
we have no experimental data to compare this model behaviour and predictions to.

Discussion
We developed a model for ontogenetic and post-mature growth, using an energy balance to express growth as 
the net result of assimilation and metabolic costs for maintenance, foraging and food processing. The model 
(MGM) is similar in some respects to other previously presented growth models (see Note SI1) but differ in some 
important aspects, mainly the flexible level of details and description of maintenance. More specifically, MGM 
is able to capture a number of aspects that are not covered by previous common mechanistic growth models: (1) 
the division of maintenance costs into non-negotiable and negotiable parts, enabling hyperallometric scaling of 
maintenance and downregulated maintenance under food restriction; (2) costs of finding and processing food, 
(3) effects of body composition on costs for growth and maintenance, including differences between somatic 
and reproductive tissue; and (4) differentiated effects of cell growth and cell division on costs for somatic growth 
and maintenance.

Above, MGM has been evaluated by comparing its fit to experimental data for house crickets growing under 
ad libitum conditions with that of other growth models and showing how MGM behaves under food restriction. 
Here, we first discuss how and why the simplest relevant version of MGM manages to replicate observed growth 
trajectories better than the Generalized Standard Growth Model (GSGM), before discussing how MGM captures 
different aspects, typically not considered in other growth models.

Model comparisons
Many growth models have been suggested over the years, some mechanistic, others more phenomenological. 
The Generalized Standard Growth Model (GSGM, Eq. (34), d ≤ 1), representing most common mechanistic 
growth models (AnaCat, OGM and DEB, see Note SI1.1), was not able to capture the empirical growth pattern 
for house crickets under ad libitum conditions, characterized by a near-symmetrical hump-shaped growth rate 
curve (Fig. 2). By comparing key ratios of observed growth trajectories with theoretical limits set by GSGM (Table 
SI4, Note SI2.1) it was demonstrated that GSGM is unable to capture the observed growth pattern, no matter how 
model parameters are tweaked. MGM however, can generate accurate predictions (using optimized parameters, 
“Numerical model comparisons”). This relies on increased relative allocation to defence (negotiable maintenance 
processes) during growth, resulting in maintenance costs that increase faster than linearly with body mass and 
consequently a rapid decline in available energy for growth. Further comparisons between MGM and different 
versions of GSGM (OGM and DEB) are provided in Note SI1–2.

Effects of food restriction
The MGM parameter δ (the defence reduction exponent, Eqs. (25) and (29)) describes how fast negotiable 
maintenance costs are reduced with decreased food availability (as measured by φ, the relative food acquirement, 
Eq. (12)). With δ ≲ 1, MGM predictions under food restriction are (i) reduced ultimate body mass (WU) and 
(ii) reach of W95 = 0.95WU at a later age t95, resulting in a negative correlation between t95 and W95 for different 
levels of food restriction (Fig. 3e). Such a pattern is indicated by experimental data for food-restricted cohorts 
of house crickets, which also display a negative correlation between age and size at maturation (Fig. 3b). There 
is strong empirical support for this to be a common pattern among insects and other  organisms44,45, contrary to 
simple life-history theory predictions for the relationship between age and size at  maturity46,47.

An explanation for reaction norms with earlier maturation at larger size under more favourable conditions and 
exceptions thereof has been suggested by Day and  Rowe48, based on an evolutionary response to developmental 
thresholds (minimum sizes that organisms must reach before transition to mature state). This theoretical 
framework has received some empirical  support49,50, but remains to be incorporated into dynamical growth 
models. A possible application of MGM is modelling of reaction norms under various environmental conditions, 
but this requires additional assumptions such as a response to the occurrence of developmental thresholds.

With larger δ, W95 under food restriction is less reduced compared to ad libitum conditions (Fig. 3e), a 
consequence of larger downregulation of negotiable maintenance. Increased relative allocation to growth under 
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food restriction and reduced metabolic rate has previously been observed in  moths30 and was interpreted as 
adaptive phenotypic plasticity where growth is prioritized at the expense of maintenance in order to quickly reach 
maturity when food conditions are poor and mortality costs for long development time are large.

The OGM for food restriction has previously been used to predict that the age when animals reach a specified 
fraction of the ultimate body mass is unaffected by the food availability and this was supported by data for 
 mammals35. This is not generally predicted by MGM (Fig. 3f) and is not the pattern observed in house crickets 
(Fig. 3c). MGM predicts that animals reach a specified fraction of the ultimate body mass later at increased 
food restriction if relative allocation to negotiable maintenance costs increases considerably during growth 
(bN ≳ 0.5). However, with constant relative defence allocation (bN = 0), corresponding to common mechanistic 
growth models, the age when reaching a specified mass fraction is roughly independent on food availability, 
in agreement  with35 (see Fig. SI4). Thus, MGM seems able to model a wider range of organisms under food 
limitation, compared to other growth models.

Effects of feeding costs
Contrary to most previous growth models, MGM specifies feeding costs RF explicitly by assuming that they 
increase with ingestion rate S. The simplest way to implement this is a proportional relationship (RF = kF ·S), but 
various complicating effects may be included, such as increased costs due to interference competition or increased 
foraging effort at low food availability. In MGM the extent of feeding costs in relation to other metabolic costs 
has considerable effects on growth rate, ultimate body size and allometric scaling of metabolic rates (Fig. SI5).

Effects of body composition
Since most biomass is composed of similar proportions of carbohydrates, proteins and lipids, it has been 
suggested that the energy density of dry biomass can be considered a biological  constant51. Nevertheless, body 
composition may differ between species and change during the life cycle of an individual. If required, MGM can 
describe effects of changes in body composition. Increased energy density of newly synthesized biomass EM (e.g. 
as a result of maturation that involves synthesis of reproductive tissue with higher energy density) would result 
in decreased growth rate (Fig. SI6). In addition, MGM enables consideration of differences in growth overhead 
costs and maintenance costs between somatic and reproductive tissue.

Effects of growth strategy
On a very general level, animals increase body mass mainly through cell division during early ontogeny and 
mainly through cell enlargement at later  stages52 and this could have implications for  metabolism19. Indeed, 
effects of cell size on metabolic rates have some empirical support for  insects53.

Changes in number of ommatidia in the insect compound eye during ontogeny has previously been used as a 
proxy for the proportion of growth that is attributed to increase in cell number vs. cell  size54. Preliminary data on 
house crickets (personal observations) indicate that the compound eye grows by a combination of cell division 
and cell enlargement, where the latter initially contributes most. This indicates a deviation from the general 
pattern or, alternatively, that compound eyes are not representative of other body tissues. This is well-worth 
to investigate closer and with more accurate and detailed data MGM is well-equipped to study consequences 
of growth strategies among animals. More specifically, MGM accounts for effects of growth strategy through 
differentiated growth overhead costs for cell division and cell enlargement combined with cell-size-dependent 
maintenance costs due to cost differences between surface-dependent and volume-dependent maintenance 
processes (Figs. SI7-8).

Effects of allocation to negotiable maintenance costs
By the assumption of increasing relative allocation to negotiable maintenance costs during growth, MGM 
provides an explanation of observed growth patterns in house crickets reared at near ad libitum (Fig. 2b). 
Under this assumption, total maintenance rate scales super-linearly with body mass, while rates of resting and 
total metabolism scale sub-linearly (Fig. SI9def), in agreement with previously reported allometries for resting 
metabolic rate in house  crickets55,56. Increased mass-specific costs for maintenance with increased body size 
makes biological sense from a number of perspectives: (1) increased priority of maintenance with increased 
amount of built-up capital; (2) priority of growth at early life stages; (3) increased maintenance demands due 
to increased complexity of tissue; and (4) increased maintenance demands due to ageing tissue. All may be 
contributing explanations. The available literature on regulation of maintenance generally considers immune 
function and these costs may be used as a proxy for negotiable maintenance costs. Energetic costs for maintenance 
of the immune system are known to be high, but difficult to  measure57,58, and disease-resistance is considered 
to be an important life-history trait subjected to trade-offs against growth and reproductive  effort59,60. Some 
empirical support for increased allocation to the immune system with age in house crickets is provided by Pinera 
et al.53. However, the variation in allocation to immune maintenance with body mass during growth needs more 
empirical investigation.

Depending on life history, strategies for allocation to negotiable maintenance may differ between animals. 
MGM can account for this by varying the relative defence allocation exponent bN (Eq. 30), which may result in 
linear (bN = 0) or hyperallometric (bN > 0) scaling of maintenance (Figs. SI9-10) and by differentiating allocation 
to negotiable maintenance between somatic and reproductive tissue. Different allocation strategies may reflect 
the large variation in metabolic exponents observed among animals. MGM may thus harmonize with the 
suggested paradigm shift in metabolic theory from explanations based on physical constraints towards adaptive 
 regulations13.
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Effects of allocation to reproduction
Larger females of fish are known to produce disproportionately larger amounts of  eggs61, a common pattern 
also in other  taxa62. Based on this, it has been proposed that hyperallometric allocation to reproduction, rather 
than increased maintenance costs relative to energy acquisition, explains slowed growth in  animals62. Marshall 
and  White62 obtained god fit to data for somatic growth in marine fish, applying a modified version of OGM 
where energy intake and expenditure scaled with the same hypoallometric exponent (< 1) and a term with 
hyperallometric exponent (> 1) was added to represent costs for reproductive allocation. The addition of such a 
term in MGM would enable good fit with data for house crickets at ad libitum, without requiring hyperallometric 
maintenance costs, but we consider this a non-mechanistic approach. It is not clear what the additional term 
represents and why it relates to body mass by a power expression. In the proposed version of MGM, growth 
involves both somatic and reproductive tissue (gonads, sperms, eggs, reproductive buffer). Increased allocation 
to reproduction is described mechanistically by increased relative growth of reproductive tissue, possibly 
combined with assumptions of higher energy density and/or higher specific growth overhead costs (Fig. SI11). 
Total reproductive growth costs are proportional to both total growth rate and an allometric factor that represents 
increased relative reproductive allocation, resulting in an initial hyperallometry and a final decline to zero at 
ultimate body size (Fig. SI11e). The corresponding growth equation is very different from the one proposed by 
Marshall and  White62. It is demonstrated that hyperallometric relative reproductive growth in MGM cannot 
replace hyperallometric maintenance as explanation for observed growth curves in house crickets reared at near 
ad libitum (Note SI2.7).

After reach of ultimate body size, where assimilated energy is balanced by expenditures of feeding and 
maintenance in MGM, energy for offspring production is released through downregulation of negotiable 
maintenance costs and/or by breakdown of energy reserves.

Conclusions
A new growth model (MGM) was developed based on an energy balance that includes several metabolic 
components that enable high generality and flexibility in the inclusion of various effects that may be significant, 
depending on organism and ecological context, many of them neglected by common mechanistic growth models. 
The most important contribution is the division of maintenance costs into non-negotiable and negotiable parts, 
enabling hyperallometric scaling of maintenance and downregulation of maintenance under food restriction. 
Currently, however, empirical understanding of how maintenance costs respond to variation in food availability 
in different organisms is poor and much more research paying attention to this important topic is needed to test 
our hypothesis. The model may describe various life-history dependent trade-offs between growth and negotiable 
maintenance, and may be used as a basis when modelling patterns at ecological levels above the individual. Here 
we described and derived the model, and provided some numerical simulations to demonstrate its behaviour 
under various circumstances. Unlike common mechanistic growth models, our model was able to capture the 
ad libitum growth observed in an insect. Though comparisons with data for only one species were made, MGM 
is believed to be a general model for individual growth and should be applicable also to other invertebrates and 
indefinite growers. Different developmental stages of holometabolous insects may be described using stage-
specific model parameters with the transition from larval to pupal stage determined by a threshold mass. In 
order to thoroughly test the model, additional data will be collected from experiments on insects growing at 
ad libitum and food restriction.

Methods
The basic features of the Maintenance-Growth Model (MGM) were derived in “The maintenance-growth 
model”. Below, individual model components of MGM are first derived and mathematical expressions for these 
suggested (“Derivation and specification of model components”), before detailing possible simplifications of 
MGM (“Possible model simplifications”). Next, the empirical data used to analyse MGM and other model 
approaches are described (“Empirical data from previous study”), before summarizing how model parameters 
were numerically optimized to data and the fit evaluated (“Numerical model comparisons”). Suggestions for 
more detailed descriptions of effects discussed below are found in Note SI3.

Derivation and specification of model components
Ingestion rate
The ingestion rate S is measured as ingested energy per unit of time t. The maximum ingestion rate Smax is the 
ingestion rate that is realized under ad libitum conditions and is here (and often  elsewhere7) assumed to be 
allometrically related to body mass W, at least during ontogeny:

Here, β is an allometric exponent, α is a normalisation constant and W´ is the body mass where the allometry 
potentially breaks. The allometry may reflect size-dependent physical limitations of the gastrointestinal system as 
well as size-dependent changes in foraging behaviour with increased body mass. For indeterminate growers that 
grow throughout their whole lifespan (like many fishes), the allometry may very well hold generally. However, 
for determinate growers (like many insects), it may be the case that an animal under ad libitum conditions stops 
feeding at its maximum capacity at maturation or some time thereafter (W = W′). The animal may even reduce 
its ingestion rate below the achieved maximum level as it continues to grow.

(11)
{

Smax = αWβ , W ≤ W ′

Smax ≤ αWβ , W > W ′
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Under food limitation, the ingestion rate is dependent on both food availability and ingestion capacity. The 
realized ingestion rate (S) may then be expressed as a proportion (φ) of the maximum ingestion rate (Smax):

The ratio φ = S/Smax is called the relative food acquirement.
In some cases, the food supply is known and directly governs the food acquirement. In other cases, the food 

acquirement may be dependent on foraging behaviour.

Energy content of synthesized body tissue
Synthesized body tissue is composed of somatic tissue (with energy density EMS) and reproductive tissue (with 
energy density EMR). Somatic tissue may be further divided into carbohydrates/proteins (with energy density 
ECP), lipids (with energy density EL) and others (with zero energy density). Reproductive tissue includes gonads, 
sperms, eggs and possibly a reproductive buffer. The rate at which energy is bounded into synthesized biomass is:

Here, EM(W) is the mass-specific energy content in body tissue, fR and (1 − fR) are the proportions of body mass 
increase that are due to reproductive and somatic growth, respectively, whereas fCP and fL are fractions of somatic 
growth that is due to growth of carbohydrates/proteins and lipids (see Note SI3.1 for potential formulations of 
fR and Note SI3.2 for suggestions of expressions for fCP and fL). The energy densities of carbohydrates/proteins 
and lipids are roughly constants; ECP ≈ 17 J/mg and EL ≈ 34 J/mg7.

The average energy density of synthesized body tissue should not be confused with the average energy density 
of all biomass (tissue that has already been synthesized). However, with constant body composition, the two 
are equal and constant. EM is on average 7 J/mg for fresh animal  tissue7, but shows variation across taxa and 
ontogenetic  stages63.

Growth overhead costs
It is assumed that growth overhead costs (RG) are composed of two parts; mass-specific overhead costs for 
producing somatic tissue (ESS) and reproductive tissue (ESR) respectively, and that potentially, specific overhead 
costs are different for somatic cell division (ESSD) and somatic cell growth (ESSG):

Here, fG and (1 − fG) are the proportions of somatic growth that are due to cell growth and cell division, 
respectively. See Note SI3.3 for a potential formulation of fG, where it increases allometrically with body size. 
The simplest model alternative however assumes constant fR and fG, and thus constant specific growth overhead 
cost ES.

Costs of moulting are not explicitly treated by MGM, but can be considered a part of somatic growth overhead 
costs.

Feeding costs
Feeding costs (RF) include all metabolic costs for searching and processing food, more specifically costs for 
foraging activity (RA) and metabolic costs for digestion, assimilation, excretion and secretion (RD):

Activity costs (RA) are costs for activities necessary to acquire food and are assumed to generally increase with 
the amount of food ingested, i.e. they can be described as a monotonically increasing function of S:

Here, RA increases slowly with S if food is easily obtained and more steeply with S if food is demanding to 
acquire.

The digestive costs RD are also assumed to increase monotonously with the ingestion rate:

Here, RD increases slowly with S if food is easily metabolized and more steeply with S if not.
It may not be easy to separate foraging activity costs from digestive costs. Since they relate to ingestion rate 

in a similar way, it may be convenient to fuse them into a single metabolic component. The feeding costs (RF) 
thus include all metabolic costs for searching and processing food and are also described as a monotonously 
increasing function of S:

The simplest model version is one where feeding costs are proportional to ingestion rate:

(12)S = S(ϕ,W) = ϕSmax(W), 0 ≤ ϕ ≤ 1

(13)G = EM(W) ·
dW

dt
, EM(W) = EMS(1− fR)+ EMRfR = (ECPfCP + ELfL)(1− fR)+ EMRfR

(14)

RG = ES(W) ·
dW

dt
, ES(W) = ESS(1− fR)+ ESRfR =

[

ESSD(1− fG)+ ESSGfG
]

(1− fR)+ ESRfR

(15)RF = RA + RD

(16)RA = RA(S),
dRA

dS
> 0

(17)RD = RD(S),
dRD

dS
> 0

(18)RF(S) = RA(S)+ RD(S),
dRF

dS
> 0
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Maintenance costs
It is assumed that maintenance costs are composed of two main parts: ‘non-negotiable’ basal maintenance costs 
(RMB) that is a function of body size (and composition) and ‘negotiable’ costs (RMN) that depend on the food 
availability and life history strategy of the animal:

If somatic and reproductive tissue have different mass-specific basal maintenance costs (γBS and γBR), the 
basal maintenance costs are divided into two parts:

Here, WS and WR are somatic and reproductive body mass, whereas (1 − pR) and pR are the proportions of total 
body mass that are reproductive and somatic (see Note SI3.1 for description of pR). If γBS and γBR are constants 
and γBS = γBR (or the proportions of body mass that are somatic and reproductive tissue do not change during 
growth), γB is a constant (and RMB is proportional to body mass W), otherwise γB is a function of W. The basal 
maintenance costs for somatic tissue RMBS may be further divided into a part that is proportional to average cell 
size (volume) and a part that is proportional to the average cell surface area:

A differentiation like this may be motivated by the fact that a significant amount of resting metabolism is 
spent on maintaining ion potentials across  membranes64. These costs can be expected to increase with cell surface 
area, while other costs (oxidative processes, protein synthesis, glycogenesis etc.) can be expected to increase with 
cell volume. If the animal grows by a combination of cell division (increase of cell numbers) and cell growth 
(increase of cell size), the average cell size may change as the animal grows and thus also the mass-specific basal 
maintenance costs (γBS).

It is assumed that ‘negotiable’ maintenance costs (RMN) consist of all processes that can be ‘tuned down’ by 
an animal to save energy. This consist mainly of ‘allocation to defence’ (maintaining the immune system and 
buffering against poor conditions) and ‘negotiable’ activity costs (non-necessary activity that is not directly 
linked to foraging activities required for attaining the actual level of ingestion). As such, these ‘negotiable’ costs 
(RMN) depend on (i) the food availability and (ii) life history strategy of the animal; the higher the level of food 
availability, the more energy will be available for ‘negotiable’ costs (RMN) and growth-related costs (RG + G) 
after basal maintenance costs (RMB) and feeding costs (RF) have been paid (see Fig. 1b). How much of the 
total maintenance that is actually used for ‘defence’ and how much that is used for growth related costs will 
be determined by the life history strategy of the animal (how defence of somatic and reproductive tissue is 
prioritized in relation to growth at different levels of food availability). The negotiable maintenance costs (RMN) 
can be divided into somatic and reproductive parts:

The trade-off between energy allocated to defence and energy available for growth is here described by 
specifying negotiable maintenance of somatic tissue (RMNS) as a fraction (ρS) of total somatic maintenance (RMS) 
and negotiable maintenance of reproductive tissue (RMNR) as a fraction (ρR) of total reproductive maintenance 
(RMR). The fractions are functions of relative food acquirement (φ) and tissue mass (WS or WR):

The fractions (ρS and ρR) are assumed to decrease with decreasing relative food acquirement φ. This can be 
described by the functions:

Here, ρNS and ρNR are the proportions of somatic and reproductive maintenance costs that are allocated to 
‘defence’ under ad libitum conditions, and δ describes how fast ‘defence’ allocation is reduced with decreasing 
relative food acquirement. The simplest assumption is that constant proportions are allocated to negotiable 
maintenance costs under ad libitum conditions (ρNS and ρNR are constants). Alternatively, it can be assumed 
that relative defence allocation increases with the amount of produced tissue, representing a deceasing priority 
to growth as the animal increases in size. In line with this, we assumed that the proportions of the somatic and 
reproductive maintenance that are allocated to defence under ad libitum conditions are increasing with somatic 
and reproductive body mass according to power laws:

Insertion of Eq. (24) into RMS = RMBS + RMNS and RMR = RMBR + RMNR, yields negotiable maintenance costs 
expressed in terms of basal maintenance costs as:

(19)RF = kF · S

(20)RM = RMB + RMN

(21)RMB = RMBS + RMBR = γBSWS + γBRWR = γBS(1− pR)W + γBRpRW = γB(W) ·W

(22)RMBS = RMBSV + RMBSA = γBS(W) · (1− pR)W

(23)RMN = RMNS + RMNR

(24)
RMNS = ρS(ϕ,WS) · RMS , 0 ≤ ρS < 1

RMNR = ρR(ϕ,WR) · RMR, 0 ≤ ρR < 1

(25)
ρS(ϕ,WS) = ρNS(WS) · ϕ

δ , 0 ≤ ρNS < 1

ρR(ϕ,WR) = ρNR(WR) · ϕ
δ , 0 ≤ ρNR < 1

(26)ρNS(WS) = aNSW
bNS
S , ρNR(WR) = aNRW

bNR
R
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Insertion of Eq. (27) into Eq. (23), with RMBS = γBSWS and RMBR = γBRWR, yields total negotiable maintenance 
costs in terms of body mass components:

With Eqs. (25) and (26) inserted into Eq. (28), the total maintenance costs (RM = RMB + RMN) are obtained as:

Furthermore, due to differences in proportions of somatic and reproductive tissue, and in priority of their 
maintenance, the defence-growth trade-off may differ considerably between sexes of the same species (aNS, aNR, 
bNS and bNR may be sex specific parameters).

The simplest model alternative however, assumes that specific basal somatic maintenance costs are 
independent on cell size and type of tissue, and the same as reproductive maintenance costs (γBS = γBR = γB) and 
that somatic and reproductive defence costs follow the same allometry (aNS = aNR = aN and bNS = bNR = bN) so that:

Possible model simplifications
Since the mass-specific basal maintenance costs of somatic and reproductive tissue (γBS and γBR), the energy 
density of synthesized biomass (EM) and the specific growth overhead cost (ES) may change during growth due 
to changes in body composition and/or type of growth at the cellular level, we have here defined them generally 
as functions of body mass to allow as much biological detail as needed to be included. This unavoidably leads 
to a complex model with many parameters. However,  the parts of the model can be significantly simplified, as 
indicated in each section above, and are summarized here to collectively result in the simplest relevant version 
of MGM under the following assumptions:

First, if basal somatic maintenance costs are independent on cell size and type of tissue (somatic vs. 
reproductive), γBS = γBR = γB is constant. Second, if the compositions of somatic and reproductive tissue 
(carbohydrates, proteins, lipids) are similar and constant, EM is constant. Third, if growth overhead costs 
are independent on growth strategy (cell division vs. cell growth) and type of tissue, ES is constant. Fourth, 
if reproductive body mass is negligible in comparison to somatic body mass (WR ≈ 0, WS ≈ W), negotiable 
maintenance costs include only somatic tissue (RMN ≈ aNWbN·φδ ·RM). Finally, by also assuming that the maximum 
ingestion rate is fully described by an allometric relation (S = φαWβ) and that feeding costs are proportional to 
ingestion rate (RF = kF·S), the general growth model (Eq. 10) of MGM simplifies into:

Furthermore, with bN = 0 (relative allocation of total maintenance to negotiable costs is independent of body 
mass) and fixed relative food acquirement φ, the growth equation is a mechanistically based equivalence to that 
of von  Bertalanffy38:

This form of the MGM growth equation is compared term by term with the standard DEB growth equation 
in Note SI1.3.

Empirical data from previous study
In order to compare model predictions under ad libitum conditions and illustrate the behaviour of MGM under 
food restriction, we used experimental data from a previous study on house  crickets42, where cohorts of varying 
starting densities (newly hatched nymphs, W0 ≈ 0.67 mg) were provided a fixed amount of food at regular time 
intervals in order to investigate self-thinning (decreasing cohort size along with increasing average body mass 
due to individual growth). Individuals were regularly weighed during the experiment, which was terminated after 
they reached sexual maturation but well before the start of female egg production (see  Jonsson42 for details on the 
experimental setup). Using these data, for each of five different starting densities (5, 10, 20, 40 and 80 individuals), 
we calculated the average body mass W (for all individuals in all cohorts of current density) for different ages t. 
The average growth rate dW/dt at these ages was, for each starting density, linearly interpolated from difference 
ratios applied to the average W/t data. The calculated data, representing average trends across individuals of a 
starting density, were used to plot empirical growth curves. Average age and body mass at maturation (imago 
emergence) for cohorts of different starting densities were calculated for each sex separately. Smooth curves 
were generated from quadratic fits to non-averaged empirical data of growth rate vs. body mass (MATLAB 
routine polyfit), combined with estimated average data for high density cohorts (departing considerably from 

(27)RMNS =
ρS

1− ρS
· RMBS , RMNR =

ρR

1− ρR
· RMBR

(28)RMN =
ρS

1− ρS
· γBSWS +

ρR

1− ρR
· γBRWR

(29)RM(ϕ,W) =
γBSWS

1− aNSW
bNS
S · ϕδ

+
γBRWR

1− aNRW
bNR
R · ϕδ

,

{

WS = (1− pR)W
WR = pRW

(30)RM(ϕ,W) =
γBW

1− aNWbN · ϕδ

(31)
dW

dt
=

1

EM + ES

[

(e − kF)ϕαW
β −

γB ·W

1− aNWbN · ϕδ

]

(32)
dW

dt
= aWβ − bW ,

{

a = (e − kF)ϕα/(EM + ES)
b = γB

/[

(EM + ES)(1− aNϕ
δ)
]
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a quadratic fit at late ages). These were used to identify maximum growth rate Ẇmax and corresponding body 
mass W*, and to generate smooth growth curves (W vs. t with MATLAB ODE solver odes23). The latter were 
used to identify the ultimate body mass WU and ages at reach of different specified fractions of WU. In MGM 
and other analysed growth models, WU is an asymptote (approached when t → ∞), and thus t95 was used as a 
measure of age at final body size. The starting density of five individuals represents near ad libitum conditions 
and data from these cohorts were used to study predictions of MGM and other models under no food limitation. 
For near ad libitum cohorts, identified growth properties were used to calculate the dimensionless key properties 
ω* and Ω (see Note SI2.1 and Table SI4).

Numerical model comparisons
The simplified version of MGM in Eq. (31) is further simplified under ad libitum conditions (φ = 1) and linear 
relative defence allocation (bN = 1):

Four free model parameters then remain (a, β, c, aN). This version of MGM was compared with the 
Generalized Standard Growth Model (GSGM), representing common mechanistic growth models (AnaCat, 
OGM and DEB, see Note SI1.1) using three free model parameters (a, b, c) and d = 1 (required for best data fit):

A comparison with the logistic growth  model43 and a growth model by Makarieva, et al.37 are also included 
in Note SI2.1.

For each model type, parameters were optimized (Table SI3) using the ‘inverse method’65,66 that minimized 
least squares between model prediction and averaged data (house crickets growing under near ad libitum 
 conditions42). All analyses were performed with the software  MATLAB® (version R2021a, Mathworks Inc., Natick, 
MA, USA), including use of the numerical optimization function fmincon and ODE solver ode23s.

Goodness of fit (between predicted and empirical averaged growth curve) was quantitatively evaluated by 
the measure:

Here Oi and Ei are observed and predicted value of data point i and n is number of observations. Each data 
point represents the average mass of all individuals (in all near ad libitum cohorts) of a certain age. A perfect fit 
results in the maximum value GF = 1. The closer GF is to unity, the better is the fit.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on 
reasonable request.
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