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Differential gene expression 
analysis based on linear mixed 
model corrects false positive 
inflation for studying quantitative 
traits
Shizhen Tang 1,2, Aron S. Buchman 3, Yanling Wang 3, Denis Avey 3, Jishu Xu 3, Shinya Tasaki 3, 
David A. Bennett 3, Qi Zheng 4* & Jingjing Yang 1*

Differential gene expression (DGE) analysis has been widely employed to identify genes expressed 
differentially with respect to a trait of interest using RNA sequencing (RNA-Seq) data. Recent RNA-
Seq data with large samples pose challenges to existing DGE methods, which were mainly developed 
for dichotomous traits and small sample sizes. Especially, existing DGE methods are likely to result in 
inflated false positive rates. To address this gap, we employed a linear mixed model (LMM) that has 
been widely used in genetic association studies for DGE analysis of quantitative traits. We first applied 
the LMM method to the discovery RNA-Seq data of dorsolateral prefrontal cortex (DLPFC) tissue 
(n = 632) with four continuous measures of Alzheimer’s Disease (AD) cognitive and neuropathologic 
traits. The quantile–quantile plots of p-values showed that false positive rates were well calibrated by 
LMM, whereas other methods not accounting for sample-specific mixed effects led to serious inflation. 
LMM identified 37 potentially significant genes with differential expression in DLPFC for at least one 
of the AD traits, 17 of which were replicated in the additional RNA-Seq data of DLPFC, supplemental 
motor area, spinal cord, and muscle tissues. This application study showed not only well calibrated 
DGE results by LMM, but also possibly shared gene regulatory mechanisms of AD traits across 
different relevant tissues.

Next-generation sequencing technology has been widely used in genetics and genomics studies to elucidate 
the biology underlying complex human diseases and  traits1. RNA sequencing (RNA-Seq) technology has 
been widely used to profile transcriptome-wide gene expression levels and has revolutionized transcriptome 
 analyses2,3. Differential gene expression (DGE) analysis is one approach for studying RNA-Seq data to identify 
genes expressed differentially with respect to a trait of  interest3–5. Due to the cost of RNA-Seq studies and the 
difficulty in obtaining large numbers of relevant tissue samples from individuals, most existing DGE methods 
have been developed to handle small sample sizes and dichotomous traits, e.g.,  DESeq26,  edgeR7,8,  Limma9, 
 Voom10, and MACAU 11. However, with the recently reduced cost of RNA-Seq technology, RNA-Seq data from 
hundreds of samples have been generated for studying both dichotomous and continuous quantitative traits.

Existing DGE methods generally need to dichotomize continuous phenotypes, thus failing to account for 
the continuous distribution of quantitative  traits6–9,11. As a result, information could be lost, and power could 
be reduced by not characterizing the continuous characteristics of phenotypes. This loss of information by 
dichotomizing a continuous biologic process (i.e., a continuous trait) may homogenize individuals together who 
often, in fact, lie on a continuum of disease, especially for chronic conditions of aging. For example, the cognitive 
manifestation of AD related dementia unfolds over years to  decades12. Further, in older persons, AD dementia is 
often due to a combination of mixed pathologies and  resilience13,14, which is better characterized by continuous 
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cognitive traits and neuropathologic traits. During the prolonged course of this chronic disease, individuals who 
initially show no cognitive impairment (NCI) may manifest mild cognitive impairment (MCI) for years before 
they finally develop Alzheimer’s dementia as a late final manifestation (Supplemental Table 1)15. Moreover, these 
categories themselves are not distinct but represent stages along a progressive continuum.

The decreasing cost of RNA-Seq technology and the recognition of the importance of RNA-seq data have 
led to the recent availability of much larger RNA-Seq sample sizes from individuals with both dichotomous and 
quantitative  phenotypes16–18. For example, the Genotype-Tissues Expression (GTEx) project V8 profiled hundreds 
of samples per tissue for 53 human tissues (up to n = 803 for muscle tissue)19; the CommonMind Consortium 
sequenced RNA from dorsolateral prefrontal cortex (DLPFC) of people with schizophrenia (n = 258) and control 
subjects (n = 279) for studying schizophrenia and other psychological  diseases20; the prospective cohort studies 
of Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP) sequenced RNA from DLPFC 
of ~ 1200 participants for study AD traits including the continuous cognitive decline and continuous markers of 
AD neuropathologic changes (AD-NC), i.e., neurofibrillary tangles (NFTs) and beta amyloid (Aβ))17. Enabling 
DGE of continuous quantitative traits (such as cognitive decline and AD-NC traits) with hundreds of sample 
sizes is crucial to advance our understanding and the development of targeted treatments for complex diseases.

Recently, methods based on the standard linear  regression21 and robust  regression19,21 were proposed for DGE 
analysis of quantitative traits, which takes the quantitative trait as the response variable and the log2 transformed 
RNA-Seq read counts per gene as the test  covariate21 (see Methods). However, the methods based on standard 
linear regression and robust regression models often lead to inflated false positive rates by failing to account for 
unknown  confounders11,22,23. To improve on existing DGE methods, we apply the linear mixed model (LMM) 
based method as implemented by the Genome-wide Efficient Mixed Model Association (GEMMA)  tool22 to 
conduct DGE of quantitative traits. The LMM based method can account for shared confounding factors among 
test samples through the sample-specific mixed effect term, which has been widely used in large-scale genetic 
association testing to achieve calibrated false positive  rates22–24. The Linear Mixed Model (LMM) implemented by 
GEMMA employs the full-rank sample-sample correlation matrix (based on all gene expressions) to model the 
sample-specific random effects (see Methods), which models unknown confounding factors and thus corrects the 
inflated false positives that occur in linear regression models without mixed effect  terms22. To demonstrate the 
feasibility of this approach, we developed an analytic LMM pipeline to conduct DGE, and applied the pipeline to 
study four cognitive and pathologic AD traits—the rate of cognitive decline and three AD-NC traits (β-amyloid, 
tangle density, global AD pathology burden).

We first used the LMM pipeline to conduct DGE analysis using discovery RNA-Seq data of DLPFC brain 
tissue (n = 632) with respect to cognitive decline and each of the AD-NC traits. Several previous studies have 
shown that Alzheimer Disease affects not only cognition but also non-cognitive traits such as motor functions 
that may be affected by the accumulation of AD-NC in tissues outside the  brain25. Thus, to validate our findings 
with the discovery RNA-Seq data of DLPFC, we then conducted DGE analysis on the same continuous cognitive 
decline and AD-NC traits using additional RNA-Seq datasets from DLPFC brain tissue (n = 588) and three 
tissues relevant to motor functions a) supplementary motor area (SMA) within the brain (n = 234), (b) lumbar 
spinal cord (n = 232) neural tissues within the central nervous system (CNS) but outside the brain, and (c) 
muscle (n = 268), the final effector of all volitional movement, composted of non-neural tissue and located in 
the periphery outside the CNS. We showed that false positive rates were well calibrated by the LMM based 
method, compared to serious inflation of the DGE results by using the standard linear  regression21, robust 
 regression21, and  Voom10. As a result, our DGE analyses by LMM identified 37 genes differentially expressed for 
either cognitive decline or at least one of the AD-NC traits, with 17 of those genes replicated in the additional 
RNA-Seq data from DLPFC, SMA, spinal cord, and muscle tissues.

Results
DGE in the discovery data of DLPFC tissue
We compared the results obtained from the DGE analyses of continuous cognitive decline and three AD-NC 
traits, by using four methods: LMM, standard linear regression model, robust regression, and Voom with 
quantitative traits dichotomized by their medians (see Methods). Our DGE analyses adjusted for various 
covariates, including sex, age, postmortem interval (PMI, time span between donor’s death and tissue harvest) 
and study group (ROS or MAP) in both models (Table 1). We constructed Quantile–Quantile plots (QQ-plots) 
to visualize the DGE p-values of all test genes per trait, and calculated the genomic control factor �.26 As depicted 
in Fig. 1, LMM-based test method well calibrated false positive rates (with � ∼ 1 ) for all traits (First Row in 
Fig. 1) with the discovery RNA-seq data of DLPFC tissue, while the standard linear regression method resulted 
in seriously inflated false positive rates associated (with � > 5 ) for all four traits (Second Row in Fig. 1). High 
inflated false positive rates were also observed in the results of all four traits with the discovery data by using the 
robust regression method (First Row in Supplemental Fig. 1) with � > 3 , and by using the Voom method (First 
Row in Supplemental Fig. 2) with � > 2.

We identified a total of 37 potential statistically significant genes with differential expression (p-values < 0.0001 
for at least one trait) by the LMM-based test method, including 2 for cognitive decline, 4 for β-amyloid associated 
genes, 2 for tangle density, and 4 for global AD pathology burden, with p-values less than the Bonferroni 
corrected significance threshold of 3.49 ×  10–6 (Table 2; Figs. 2, 3, 4).

Importantly, many of the potential significant genes associated with cognitive decline and AD-NC traits 
identified by the LMM method have been reported in prior studies. This confluence of findings bolsters the 
credibility of our outcomes. Notably, for example, gene MEIS3 (P-value = 1.16 ×  10–8 for cognitive decline) and 
gene NPNT (p-value = 1.49 ×  10–6 for tangle density) have previously identified as differentially expressed genes 
in the context of AD in earlier  studies27,28. Likewise, Gene DDAH2 (p-value = 4.18 ×  10–7 for global AD pathology 
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burden) has been linked to increased levels of oxidative stress in AD  brains29. Furthermore, mutations in the 
ALDH family genes such as ALDH6A1 (p-value = 8.36 ×  10–7 for global AD pathology burden) were identified as 
significant risk variants for  AD30. Additionally, PLCD3 (p-value = 7.64 ×  10–7 for β-amyloid) is a notable protein 
that is cross-correlated with β-amyloid and Tau proteins in AD  brains31. These results indicated the effectiveness 
of LMM based test for conducting DGE analyses of quantitative traits with well calibrated false positive rates. 
These intriguing results further underscore the efficacy of the LMM-based approach in facilitating DGE analyses 
involving quantitative traits, while concurrently maintaining well-calibrated false positive rates.

In summary, 8 of these 37 genes had significant LMM P-values with Bonferroni correction, and 5 of these 
(NPNT, ALDH6A1, DDAH2, PLCD3, MEIS3) were also reported in previous  studies27,28,30. Interestingly, both 
NPNT and MEIS3 showed significant differential expression in cognitive decline and tangle density. We also 
found that 3 of these 37 genes had significant differential expression in cognitive decline and at least one of the 
AD pathology traits, suggesting a shared gene regulatory mechanism between cognition and AD pathology.

DGE in the replication RNA-Seq datasets
We applied the LMM, standard linear regression, robust regression, and Voom methods to conduct DGE analyses 
of the same cognitive decline and AD-NC traits, using additional replication RNA-Seq data of DLPFC (n = 588), 
SMA (n = 234), spinal cord (n = 232), and muscle (n = 268) tissues (Supplemental Tables 1–4). Confounding 
covariates such as sex, age, and postmortem interval were adjusted for in all analyses. Study group (ROS or MAP) 
was only adjusted in DLPFC datasets as participants of SMA, spinal cord, and muscle tissues are all from MAP. 
QQ-plots (Supplemental Figs. 1–8) still showed that LMM-based test results with these validation datasets were 
better calibrated than those obtained by standard linear regression, robust regression, and Voom, especially for 
studying the validation data of DLPFC (Supplemental Figs. 1–3). Thus, we only present the validation results 
obtained by LMM method here.

With validation RNA-Seq data of DLPFC, we replicated 10 of these 37 potential significant genes identified 
in the discovery analyses with validation p-values<1.35× 10−3 for either cognitive decline or at least one of the 
AD-NC traits (Table 3). For example, PLCD3 differentially expressed for β-Amyloid and global AD pathology 
was replicated with P-value = 5.42 ×  10–5 for global AD pathology; TRIP6 differentially expressed for global AD 
pathology was replicated with p-value = 6.34 ×  10–4 for global AD pathology; PLCE1 differentially expressed 
for β-Amyloid, tangle density, and global AD pathology was replicated with p-value = 4.51 ×  10–4 for global AD 
pathology.

Since the validation RNA-Seq datasets of the motor function related tissues (SMA, spinal cord, muscle) 
have sample sizes of only ~ 100 (Supplemental Table 3), we used a more liberal p-value threshold (nominal 
p-value < 0.05 for either cognitive decline or at least one of the AD-NC traits) to identify replicated genes. As a 
result, for the replicated differentially expressed genes in the CNS tissues, we found 8 in SMA with 5 overlapped 
in DLPFC, 2 in spinal cord, 3 in muscle with one overlapped in spinal cord, and one overlapped in SMA (Table 4). 
For example, ALDH6A1 differentially expressed for global AD pathology in the discovery data was replicated 
with P-value = 0.008 for cognitive decline in SMA and muscle. Additionally, HRSP12, a differentially expressed 
gene related to cognitive decline in the discovery analyses was replicated with significant p-values < 0.0001 in 
SMA. Interestingly, several differentially expressed genes including ADAMTS2 for cognitive decline, NPNT for 
all four traits, RERG for β-Amyloid and global AD pathology, as well as MEIS3 for cognitive decline and tangle 
density that were identified in the discovery data were replicated in the validation datasets of DLPFC and CNS 
tissues. It is noteworthy that replicated gene ADAMTS2 in both DLPFC and SMA tissues was suggested to be a 
therapeutic target for  AD32, while replicated gene HRSP12 in SMA is also known by its alias RIDA, which was 
found as a GWAS risk loci for blood protein levels by previous  studies33.

To further illustrate the reason why differentially expressed genes in the DLPFC tissue could be replicated 
in the SMA, spinal cord, and muscle tissues, we created correlation heatmaps of the gene expression levels of 
these validated genes. For each trait, we sorted samples based on their trait values and divided sorted samples 

Table 1.  Clinical and postmortem characteristics of the discovery analytic cohort.

Traits
Variable
(range) Mean (SD) or N (%)

Demographics

Age at death (years)
(67.4, 108.3) 88.6 (6.65)

Male 215 (36.3%)

Postmortem Interval (PMI, hours)
(1, 40.8) 7.3 (4.88)

MAP participants 283 (47.8)

Clinical AD Trait Rate of cognitive decline
( − 0.42, 0.14)  − 0.02 (0.1)

AD Neuropathologic Changes
(AD-NC)

β-Amyloid
(0.00, 19.93) 3.96 (4.13)

Tangle density
(0.00, 78.52) 6.2 (7.6)

Global AD pathology burden
(0.00, 3.21) 0.68 (0.6)
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into ten equal parts (i.e., decile). For each replicated gene, we calculated the average gene expression level of 
the discovery DLPFC and replication tissues, for samples in each decile of the discovery and replicated traits. 
Then we calculated the correlations between these two vectors of average gene expression. Heatmaps of these 
correlations (Supplemental Figs. 9,10) show that most correlations are > 0.15, demonstrating that these replicated 
differentially expressed genes are not tissue specific, but likely to be shared across these motor function related 
tissues. For example, differentially expressed genes ADAMTS2 and HRSP12 that were replicated with all four 
traits in SMA all have gene expression correlations > 0.15.

In conclusion, our analysis revealed that all 5 differentially expressed genes (NPNT, ALDH6A1, RERG, PLCD3, 
MEIS3) with Bonferroni corrected significant p-values in the discovery data were replicated in the validation 
data of DLPFC tissue. Furthermore, we validated a total of 17 unique genes across the validation RNA-Seq data 
of DLPFC and three motor function related tissues, including 10 in DLPFC, 8 in SMA, 2 in spinal cord, and 3 in 
muscle. The identification of shared differentially expressed genes in two different tissue types, such as DLPFC 
and SMA, DLPFC and non-neural muscle, as well as spinal cord and non-neural muscle outside the brain, sug-
gests a possible shared molecular mechanism between motor and cognition functions.

Table 2.  LMM P-values of 37 potential DGEs (p-values < 0.0001) identified by LMM using the discovery 
ROS/MAP RNA-Seq data of DLPFC, for at least one trait of the cognitive decline and three AD pathologies. 
a Significant DGEs with Bonferroni correction (p-value < 3.49 ×  10–6). *Indicating the corresponding trait 
(columns 3–6) for which the potential DGE was identified (P-values < 0.0001).

Gene name CHR Cognitive decline β-Amyloid Tangle density Global AD pathology

PDPN 1 1.59 ×  10–2 1.88 ×  10–5* 2.18 ×  10–2 1.87 ×  10–5*

PTPRF 1 1.74 ×  10–3 1.12 ×  10–1 1.29 ×  10–5* 2.33 ×  10–2

TNFRSF18 1 1.01 ×  10–5* 6.60 ×  10–3 1.17 ×  10–1 4.23 ×  10–2

CCDC75 2 3.33 ×  10–2 9.37 ×  10–1 7.15 ×  10–5* 1.42 ×  10–1

ANTXR1 2 5.08 ×  10–1 2.49 ×  10–5* 1.19 ×  10–1 5.33 ×  10–4

SLC11A1 2 2.19 ×  10–1 3.17 ×  10–4 6.47 ×  10–2 4.85 ×  10–5*

MYRIP 3 8.30 ×  10–5* 3.22 ×  10–1 2.31 ×  10–1 1.41 ×  10–1

CCDC80 3 5.85 ×  10–1 1.93 ×  10–5* 1.06 ×  10–1 4.13 ×  10–5*

C3orf58 3 3.36 ×  10–1 6.13 ×  10–5* 1.48 ×  10–1 1.43 ×  10–3

RP11-792D21.2a 4 5.45 ×  10–2 2.65 ×  10–6* 5.35 ×  10–7* 1.66 ×  10–8*

NPNTa 4 1.38 ×  10–7* 5.62 ×  10–6* 5.07 ×  10–7* 2.13 ×  10–5*

ADAMTS2 5 3.62 ×  10–5* 6.51 ×  10–4 6.87 ×  10–3 3.06 ×  10–3

DDAH2a 6 7.10 ×  10–1 4.09 ×  10–4 8.11 ×  10–4 3.21 ×  10–7*

PGM3 6 4.65 ×  10–2 7.32 ×  10–2 1.15 ×  10–5* 8.34 ×  10–3

TRIP6 7 6.79 ×  10–2 5.76 ×  10–4 3.05 ×  10–3 1.17 ×  10–5*

HRSP12 8 7.81 ×  10–2 1.37 ×  10–5* 8.12 ×  10–2 5.15 ×  10–4

TNCa 9 3.82 ×  10–1 3.43 ×  10–6* 4.42 ×  10–1 1.38 ×  10–2

PLCE1 10 5.76 ×  10–3 9.20 ×  10–5* 2.03 ×  10–5* 3.28 ×  10–5*

CD44 11 2.75 ×  10–1 1.85 ×  10–5* 3.47 ×  10–2 9.56 ×  10–5*

APLNR 11 7.49 ×  10–1 4.14 ×  10–5* 3.35 ×  10–2 2.29 ×  10–4

RERGa 12 1.44 ×  10–3 7.77 ×  10–7* 7.10 ×  10–4 8.03 ×  10–7*

SLCO1A2 12 6.78 ×  10–5* 2.81 ×  10–1 9.23 ×  10–2 1.12 ×  10–1

CPM 12 6.34 ×  10–2 3.65 ×  10–5* 1.21 ×  10–2 2.93 ×  10–4

KITLG 12 1.27 ×  10–3 4.09 ×  10–2 8.29 ×  10–4 7.47 ×  10–5*

ALDH6A1a 14 4.93 ×  10–1 7.95 ×  10–5* 7.63 ×  10–4 2.63 ×  10–6*

KREMEN2 16 2.97 ×  10–2 1.80 ×  10–1 3.44 ×  10–5* 8.52 ×  10–2

APOBR 16 5.73 ×  10–2 7.26 ×  10–6* 1.44 ×  10–2 4.73 ×  10–5*

CMTM3 16 2.45 ×  10–5* 1.53 ×  10–2 6.60 ×  10–5* 2.48 ×  10–2

HIGD1B 17 1.60 ×  10–1 1.05 ×  10–3 1.09 ×  10–2 5.29 ×  10–5*

GFAP 17 4.13 ×  10–2 9.11 ×  10–6* 1.70 ×  10–3 2.18 ×  10–5*

PLCD3a 17 5.40 ×  10–1 4.14 ×  10–7* 1.14 ×  10–1 2.15 ×  10–5*

RNF43 17 1.48 ×  10–3 1.04 ×  10–3 1.99 ×  10–3 8.44 ×  10–5*

ACAA2 18 1.80 ×  10–1 3.83 ×  10–4 2.61 ×  10–2 7.10 ×  10–5*

PODNL1 19 8.34 ×  10–1 5.67 ×  10–5* 9.29 ×  10–1 3.86 ×  10–3

MEIS3a 19 8.21 ×  10–9* 2.53 ×  10–2 7.67 ×  10–6* 8.24 ×  10–4

YWHAB 20 2.57 ×  10–1 1.87 ×  10–5* 7.53 ×  10–1 7.75 ×  10–3

NHS 23 1.34 ×  10–1 8.74 ×  10–5* 8.47 ×  10–2 2.53 ×  10–4
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Pathway enrichment analysis
To illustrate the underlying pathways and biological functions of our identified differentially expressed genes of 
all 4 AD traits. We selected top 100 significantly differentially expressed genes identified by using the discovery 
RNA-Seq data of DLPFC tissue for each of the 4 traits to conduct pathway enrichment analyses by  pathDIP34. 
Databases of  NetPath35, Panther  Pathway36, and  Spike37 were used in the enrichment analyses. Significant 
enrichment in several biological pathways were identified with the top 100 significantly differentially expressed 
genes of cognitive decline and tangle density (Fig. 5). These significant pathways were reported by previous 
studies to be relevant with AD.

For example, for the pathways significantly enriched with top 100 differentially expressed genes of cognitive 
decline (Fig. 5A), the Thyrotropin releasing hormone (TRH) receptor signaling pathway (FDR = 3.54 ×  10–2) 
has been associated with aging and neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s 
 disease38. Similarly, the 5HT2 type receptor mediated signaling pathway (FDR = 4.37 ×  10–2) could influence the 

Figure 2.  Volcano plots of DGE results by LMM results by LMM with the discovery RNA-Seq data of DLPFC 
tissue of cognitive decline (A), tangle density (B), β-amyloid (C), and global AD pathology burden (D). Genes 
with effect size beta > 0.05 or <  − 0.05 (vertical red lines) and p-values < 0.05 (horizontal red line) were colored. 
Blue points were down regulated genes and red points were up regulated genes. Top five significant up and down 
regulated genes were labeled.
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behavioral and psychological symptoms of dementia (BPSD) in Alzheimer’s disease (AD)39. The Oxytocin recep-
tor medicated signaling pathway (FDR = 4.37 ×  10–2) was suggested to be a novel protective target for vascular 
dementia and mixed  dementias40. The toll-like receptor (TLR) signaling pathway (FDR = 1.42 ×  10–2) may be 
involved in clearance of amyloid β-protein (Aβ) in the brain making it a potential therapeutic target for  AD41. 
The Renin-Anigotensin System (RAS) and tumorigenesis pathway (FDR = 1.52 ×  10–2) is known to play a key 
role in interacting with pathophysiological mechanisms of  AD42. Several evidences suggest that enhancing Wnt 
pathway (FDR = 1.88 ×  10–2) can boost synaptic function during aging, and ameliorate synaptic pathology in AD 
which could be novel therapeutic for restoration in the  brain43. The Epidermal growth factor receptor (EGFR1) 
pathway (FDR = 2.01 ×  10–2), a preferred target for treating memory loss induced by amyloid-beta (Aβ)44, is also 
enriched in β-amyloid.

Also, for the pathways significantly enriched with top 100 differentially expressed genes of tangle density 
(Fig. 5B), Death-Associated Protein Kinase 1 in DAPk family (FDR = 5.98 ×  10–3) that plays a critical role in 
deregulation in AD thus manipulating DAPK1 activity and/or expression could be a promising drug target in 
 AD45. The additional protective mechanism of AndrogenReceptor (FDR = 3.92 ×  10–2) might enhance neural 
health and deter the progression of  AD46.

Figure 3.  Manhattan plots of DGE p-values by LMM with the discovery RNA-Seq data of DLPFC tissue of 
cognitive decline (A) and tangle density (B). Top five significant DGEs were labeled. Red line indicates the 
significant threshold 3.49 ×  10–6 with Bonferroni correction and blue line indicates p-value = 0.0001.
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Discussion
Most existing DGE analysis  methods6–9,11 are developed for dichotomous traits with small sample sizes. However, 
with increased sample sizes in RNA-Seq datasets, there is a huge demand for methods for studying quantita-
tive traits in population-based RNA-Seq studies. As shown by the MACAU 11 method paper, incorporating a 
mixed term into DGE analysis can help to control for false positive rates in RNA-Seq studies. In this study, we 
develop an analytic pipeline for implementing the GEMMA  tool22, enabling the DGE analysis of quantitative 
traits by LMM, and apply to real ROS/MAP RNA-Seq datasets of DLPFC, SMA, spinal cord, and muscle tissues 
for studying continuous cognitive decline and AD-NC traits. The pipeline is freely available from https:// github. 
com/ tangj iji19 9645/ LMM_ DGE_ Pipel ine.

Our application studies found that DGE analyses results obtained by LMM-based tests were all well calibrated 
for false positive rate, especially in our discovery RNA-Seq data of DLPFC, while the DGE results obtained by 
the alternative standard linear regression, robust regression, and Voom methods all have inflated false positive 
rates. A list of 37 potential differentially expressed genes were identified by LMM in the discovery data, and 17 
of these were replicated in the additional RNA-seq data of DLPFC, SMA, spinal cord, and muscle tissues. AD 

Figure 4.  Manhattan plots of DGE p-values by LMM with the discovery RNA-Seq data of DLPFC tissue of β
-amyloid (A) and global AD pathology burden (B). Top five significant DGEs were labeled. Red line indicates 
the significant threshold 3.49 ×  10–6 with Bonferroni correction and blue line indicates p-value = 0.0001.

https://github.com/tangjiji199645/LMM_DGE_Pipeline
https://github.com/tangjiji199645/LMM_DGE_Pipeline
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Table 3.  LMM P-values of 10 replicated DGEs (p-value < 0.5/37 = 0.00135) using the validation ROS/MAP 
RNA-Seq data of DLPFC. a Significant DGEs with Bonferroni correction (p-value < 2.89 ×  10–6). *Indicating the 
corresponding trait (columns 3–6) for which the potential DGE was replicated (p-value < 1.35× 10−3).

Gene name CHR Cognitive decline β-Amyloid Tangle density Global AD pathology

PTPRF 1 2.74 ×  10–1 1.62 ×  10–2 1.68 ×  10–2 1.25 ×  10–3*

NPNTa 4 3.82 ×  10–6* 1.22 ×  10–4* 1.05 ×  10–10* 3.84 ×  10–10*

ADAMTS2a 5 7.20 ×  10–5* 4.33 ×  10–1 3.14 ×  10–2 2.14 ×  10–1

PGM3 6 3.89 ×  10–2 9.08 ×  10–4* 3.50 ×  10–3 3.70 ×  10–3

TRIP6 7 6.28 ×  10–2 6.79 ×  10–2 6.92 ×  10–6* 6.34 ×  10–4*

PLCE1 10 4.02 ×  10–1 2.55 ×  10–3 2.66 ×  10–3 4.51 ×  10–4*

CD44 11 1.22 ×  10–2 9.63 ×  10–1 4.47 ×  10–4* 7.39 ×  10–2

RERGa 12 7.21 ×  10–3 9.08 ×  10–5* 1.08 ×  10–7* 5.45 ×  10–7*

PLCD3 17 3.70 ×  10–1 1.13 ×  10–3* 4.05 ×  10–3 5.42 ×  10–5*

MEIS3 19 2.31 ×  10–5* 5.58 ×  10–2 5.18 ×  10–4* 5.92 ×  10–4*

Table 4.  LMM P-values of 11 replicated DGEs (p-value < 0.05) using the validation ROS/MAP RNA-Seq data 
of SMA, spinal cord and muscle tissues. a Significantly replicated DGEs with p-value < 0.001. *Indicating the 
corresponding trait (columns 4–7) for which the potential DGE was replicated (p-value < 0.05).

Tissue Gene name CHR Cognitive decline β-Amyloid Tangle density Global AD pathology

SMA

PTPRF 1 0.201 0.015* 0.589 0.122

NPNT 4 0.121 0.463 0.011* 0.147

ADAMTS2a 5 0.001* 0.014* 3.0 ×  10–5* 0.001*

HRSP12a 8 4.4 ×  10–5* 0.010* 0.028* 0.007*

PLCE1 10 0.056 0.935 0.016* 0.106

RERG 12 0.05 0.141 0.048* 0.122

CPM 12 0.3 0.165 0.003* 0.011*

ALDH6A1 14 0.008* 0.196 0.05 0.049*

Spinal cord
APOBR 6 0.7 0.153 0.135 0.039*

APLNR 11 0.17 0.035* 0.114 0.06

Muscle

C3orf58 3 0.033* 0.389 0.222 0.478

APLNR 11 0.22 0.015* 0.505 0.127

ALDH6A1 14 0.043* 0.352 0.204 0.121

Figure 5.  Significant pathways with FDR < 0.05 that are enriched with top 100 differentially expressed genes of 
cognitive decline (A) and tangle density (B) with the discovery RNA-Seq data of DLPFC tissue.
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relevant biological pathways were also found to be enriched with top differentially expressed genes of cognitive 
decline and tangle density.

However, the LMM-based test still has several limitations for studying RNA-Seq data. First, the LMM assumes 
normal distributions for both the response variable and covariates, while the raw RNA-Seq data are read counts 
per gene. Even after log2 transformation for the raw RNA-Seq read counts, the transformed quantitative gene 
expression level per gene may not be normally  distributed47, which could lead to a biased estimation of effect 
sizes. One might apply both the MACAU (mixed Poisson model-based test that is suitable for modeling RNA-Seq 
read counts) and our LMM analytic pipeline for DGE analysis and examine the results by QQ-plots. Second, the 
effect of the gene expression on the quantitative trait of interest may be heterogeneous, with effect sizes varying 
across the quantiles of the quantitative trait. The LMM-based method only tests the association between gene 
expression and quantitative trait of interest in expectation, ignoring the possible heterogeneous effects on differ-
ent quantiles of the quantitative  trait48. Therefore, further studies are needed to develop a DGE method based on 
quantile regression with a mixed effect term to account for the possible heterogeneous effect of gene expression 
across all the quantiles of the quantitative trait of interest, while controlling for false positive rates.

Overall, we provide a useful LMM pipeline for conducting DGE analysis with quantitative traits and large 
sample sizes, which is shown well calibrating for false positive rates in real studies. Our real application stud-
ies not only demonstrated the effectiveness of the LMM approach for DGE analysis, but also identified a list of 
differentially expressed genes for cognitive decline and AD-NC traits in DLPFC that were validated in DLPFC, 
SMA, spinal cord, and muscle tissues. Our findings have important implications for understanding the underly-
ing biological mechanisms of the continuous AD traits of cognitive decline and neuropathologic changes, and 
may provide insights into the development of new therapeutic approaches for AD.

Methods
RNA-Seq data normalization
Preprocessing and normalization of raw read counts is a critical step in DGE analysis. Generally, samples with 
total mapped reads < 10 million are suggested to be excluded, and genes with expression levels < 0.1 transcript 
per million (TPM) in > 20% samples are also suggested to be excluded. We use  DESeq26 to normalize raw RNA-
Seq data.

Let Kij denote the read count for gene j and sample i, following a negative binomial distribution with mean 
µij and dispersion αj given by the following formulas:

The normalization factor sij is assumed to be shared per sample, sij = si , and si is estimated by the median 
(across all genes) of the ratios of raw read count per gene and its corresponding geometric mean KR

i  (across all 
samples) as in the following  formula49,50:

Normalized read counts xij are given by Kij

sij
 and then log2 transformed with an offset of 1 and taken as the test 

variable in the LMM, standard linear regression, robust regression, and Voom methods.

Standard linear regression model for DGE analysis of quantitative traits
As proposed by previous  study21, testing if gene j with expression levels Xj (normalized and log2 transformed) 
is differentially expressed with respect to a quantitative trait Yn×1  can be done based on the following standard 
linear regression :

where n is the number of test samples; W is a n× c covariate matrix; α is a c × 1 vector of covariate effects includ-
ing the intercept; β j is the effect size of gene j; and ǫ denotes the error term following a Multivariate Normal 
distribution (MVN). The DGE analysis is to test the null hypothesis of H0 : βj = 0vs.Ha : βj �= 0 , which can be 
conducted by using the Wald test statistic,

with the maximizing likelihood estimator β̂j and its standard error se(β̂j).

Robust regression for DGE analysis of quantitative traits
Robust  regression21 assumes the same model as the standard linear regression model (4), yet it furnishes robust 
coefficient estimates when the test samples contain influential outliers that could heavily impact standard linear 

(1)Kij ∼ NB
(
µij ,αj

)
,

(2)µij = sijxij.

(3)si = medianj:KR
j �=0

Kij

KR
j

with KR
i =

(
m∏

i=1

Kij

)1/m

.

(4)Y = Wα + Xjβj + ε,

(5)ε ∼ MVN
(
0, Inσ

2
)
,

β̂j

se(β̂j)
∼ N(0, 1) underH0,
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regression estimates. Different from the standard linear regression method where each sample contributes 
equally to the ordinary least squared estimation of regression coefficients, robust regression incorporates Huber’s 
M-estimation51 that is obtained by minimizing the following objection function through a numerical method 
called iteratively reweighted least squares (IRLS):

where k is the tuning constant (often taken as 1.345 σ ); ρ(e) is Huber’s objective function; and w(e) is Huber’s 
weighted function. The weighted least squares estimate with sample weights given by w(Yi −Wiα̂ − Xi,jβ̂j) will 
be iteratively calculated given coefficient estimates from last iteration, until a stopping criterion is met.

As described in the previous study that proposed using the robust regression for DGE  analysis21, the R 
packages of “rlm” and “sfsmisc” can be used to conduct the statistical test of H0 : βj = 0vs.Ha : βj �= 0 . The 
robust regression method is expected to provide more reliable estimates of βj when outliers are present in the 
test samples.

Voom for DGE analysis
Since the Voom  method10 is developed for detecting differentially expressed genes between two or more con-
ditions, the quantitative trait Yn×1  needs to be dichotomized for testing if gene j with expression levels Xj 
(normalized and log2 transformed read counts) is differentially expressed. Generally, the quantitative trait is 
dichotomized to Yd

n×1 by taking the median as a cut-off. That is, if Yd
i  is greater than the median, it is assigned a 

value of 1, otherwise Yd
i  is assigned a value of 0. The Voom method assumes the following model:

where W is a n× c matrix of confounding covariates; α is a c × 1 vector of covariate effects including an inter-
cept term; βj is coefficient of gene j representing log2-fold-changes between two conditions of the dichotomous 
trait. The same hypothesis with H0 : βj = 0 vs.Ha : βj �= 0 is tested by Voom. Different from the ordinary least 
squared estimates based on (10), the Voom method robustly estimates the mean–variance relationship of the 
log2 transformed read counts, generates a precision weight for each sample, and enters these into the limma 
empirical Bayes analysis  pipeline10.

LMM by GEMMA
To test if gene j with expression levels Xj (normalized and log2 transformed read counts) is differentially 
expressed with respect to a quantitative trait Yn×1 with n samples in DGE analysis, the following LMM is assumed:

where W is a n× c matrix of confounding covariates; α is a c × 1 vector of covariate effects including an intercept 
term; βj is the effect size of gene j; Z is a n× n loading matrix which is taken as an identify matrix for DGE analy-
sis; ε is a n× 1 vector of independent errors following a normal distribution with mean 0 and variance τ−1 ; u is a 
n× 1 vector denoting random effects of all samples following a Multivariate Normal distribution with mean 0 and 
variance–covariance matrix γ τ−1M ; γ is the ratio of variance components between random effects and errors; 
M is a n× n sample-sample correlation matrix with all gene expressions; and In is an n× n identity matrix.

GEMMA  tool22 is a C++ programed software that can be used to conduct tens of thousands of Wald test 
for H0 : βj = 0(j = 1, . . . , p) . Under the above LMM, GEMMA efficiently calculates the REstricted Maximum 
Likelihood (REML) estimates of γ ,βj , and the standard error of βj . Although GEMMA is originally developed 
for genome-wide association study to test the association between a genetic variant and a quantitative trait, it 
can be applied to DGE if both genetic variant and log2 transformed gene expression follow normal distributions.

We demonstrate the feasibility and effectiveness of conducting DGE analyses using the LMM method through 
application studies with the ROS/MAP  data17. Our analyses were conducted in two steps. First, we normalized 
raw RNA-Seq data using  DESeq26. Second, we tested DGE using the LMM method as implemented in the 
GEMMA  tool22.

ROS/MAP data
The Religious Order Study (ROS) and the Rush Memory and Aging Project (MAP) are two prospective com-
munity-based harmonized cohort studies of aging, which recruit senior individuals without known dementia 
at study  entry52. All ROSMAP participants agree to structured annual clinical testing and autopsy and brain 
donation upon their death. RNA-Seq data (DLPFC, SMA, spinal cord, and muscle tissues) and AD pathologies 
were profiled from decedents. Both studies were approved by the Institutional Review Board of Rush University 
Medical Center, and all participants signed informed and repository consents and an Anatomic Gift Act.

n∑

i=1

ρ
(
Yi −Wiα − Xi,jβj

)
, with ρ(e) =

{
1
2
e2 if |e| < k

k|e| − 1
2
k2 if |e| ≥ k

, w(e) =

{
1 if |e| ≤ k
k
|e| if |e| ≥ k

,

E
(
Xij

)
= Wiα + Yd

i β j

(6)Y = Wα + Xjβj + Zu+ ε, j = 1, ..., p

(7)u ∼ MVN
(
0, γ τ−1M

)
,

(8)ε ∼ MVN
(
0, τ−1In

)
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Alzheimer’s disease clinical and neuropathologic traits
Our study focused on cognitive decline and three AD-NC traits, including β-amyloid, tangle density, and global 
AD pathology burden. The cognitive decline (annual rate of cognitive decline) is the estimated person-specific 
rate of change in the global cognition variable over all follow-ups generated by a mixed effects  model53,54. The 
AD-NC trait of tangle density was quantified using molecularly specific immunohistochemistry. It was profiled 
as the average PHFtau tangle density within two or more 20 µm sections from eight brain regions—hippocam-
pus, entorhinal cortex, midfrontal cortex, inferior temporal, angular gyrus, calcarine cortex, anterior cingulate 
cortex, and superior frontal cortex. These two are identified by molecularly specific immunohistochemistry. 
Trait β-Amyloid quantifies the average percent area of cortex occupied by β-Amyloid protein in adjacent sec-
tions from the same eight brain regions. The global AD pathology burden is a quantitative summary of AD 
pathology derived from counts of three AD pathologies: neuritic plaques, diffuse plaques, and neurofibrillary 
tangles with 5 brain regions midfrontal cortex, midtemporal cortex, inferior parietal cortex, entorhinal cortex, 
and hippocampus (total 15 regional counts). To improve normality, these three quantitative AD pathology traits 
were transformed by taking the square root. Futher details have been previously  reported55,56.

RNA-Seq data of DLPFC, SMA, spinal cord, and muscle tissues
RNA-Seq data were profiled from deceased ROS/MAP participants for DLPFC tissue within the brain (n = 1220, 
n = 632 as discovery data Table 1, n = 588 as validation data; Supplemental Table 1) and three validation tissues 
(Supplemental Tables 2–4)––SMA in the brain (n = 234), contralateral ventral horn in the lumbar spinal cord 
(outside the brain, n = 232), and non-neural quadriceps muscle ipsilateral to the ventral horn (outside the brain, 
n = 268). The raw RNA-Seq fastq data were first aligned to the reference human genome and then quantified by 
the number of reads mapped to gene regions. Raw read counts were first normalized and log2 transformed by 
DESeq2, and then used as the test gene expression covariates in the LMM model. The ROS/MAP RNA-Seq data 
of DLPFC (n = 632) were analyzed as discovery data, while RNA-Seq datasets another 588 DLPFC samples, and 
samples of SMA, spinal cord, and muscle tissues were analyzed as validation data. Participants are not overlapped 
between the DLPFC samples and samples of SMA, spinal cord, and muscle tissues, while participants of RNA-Seq 
data of SMA, spinal cord, and muscle tissues are largely overlapped. Technical details of RNA-Seq data profiling 
can be found in the Supplemental Text.

Ethics declarations
The Religious Order Study (ROS) and the Rush Memory and Aging Project (MAP) were approved by the Insti-
tutional Review Board of Rush University Medical Center, and all participants signed informed and repository 
consents and an Anatomic Gift Act. All data analyzed in this study were de-identified which are not considered 
as human data according to NIH protocols. We confirm that all analytical methods were performed in accord-
ance with the relevant guidelines and regulations.

Data availability
All data analyzed in this study are de-identified and available to any qualified investigator with the application 
through the Rush Alzheimer’s Disease Center Research Resource Sharing Hub, https:// www. radc. rush. edu, which 
has descriptions of the studies and available data. Part of the RNA-Seq data of DLPFC samples are deposited into 
Synapse, https:// doi. org/ 10. 7303/ syn33 88564. The LMM pipeline for DGE analysis with quantitative traits and 
large sample sizes is provided at Github, https:// github. com/ tangj iji19 9645/ LMM_ DGE_ Pipel ine.
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