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Scaling logical density of DNA 
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DNA is a promising candidate for long-term data storage due to its high density and endurance. The 
key challenge in DNA storage today is the cost of synthesis. In this work, we propose composite motifs, 
a framework that uses a mixture of prefabricated motifs as building blocks to reduce synthesis cost 
by scaling logical density. To write data, we introduce Bridge Oligonucleotide Assembly, an enzymatic 
ligation technique for synthesizing oligos based on composite motifs. To sequence data, we introduce 
Direct Oligonucleotide Sequencing, a nanopore-based technique to sequence short oligos, eliminating 
common preparatory steps like DNA assembly, amplification and end-prep. To decode data, we 
introduce Motif-Search, a novel consensus caller that provides accurate reconstruction despite 
synthesis and sequencing errors. Using the proposed methods, we present an end-to-end experiment 
where we store the text “HelloWorld” at a logical density of 84 bits/cycle (14–42× improvement over 
state-of-the-art).

The growing adoption of Big Data Analytics and Artificial Intelligence has led to an explosion in the rate of 
data generation. A recent survey by the International Data Corporation reports that the digital datasphere is 
forecast to grow to 125 zettabytes by 20251 and is anticipated to exceed silicon supply in 20402. As traditional 
storage media is unable to keep pace with the rate of data growth3, synthetic DNA has become an attractive 
archival storage medium due to its high density, longevity, and absence of technical obsolescence compared 
with electronic media4–8.

In most prior work on DNA-based digital storage5,7,9,10, DNA synthesis is based on phosphoramidite 
chemistry11, a technology that has been optimized over several decades to perform highly-accurate, base-by-
base synthesis of short DNA strands by making phosphodiester bonds between nucleotides. There are three 
Key Performance Indicators (KPIs) that can be used to evaluate the efficiency of DNA synthesis: (i) bits written 
per cycle (also called logical density)12,13, (ii) bits written per oligo, and (iii) coupling reactions per oligo. The 
efficiency of writing data to DNA depends on the number of synthesis cycles (x) to grow the strand and available 
repeating units (m) for addition at each cycle. The information capacity of the oligo (N bits) can be derived as

While base-by-base synthesis methods can perform 200 or more coupling cycles(x), the number of available 
subunits to add at each cycle is four (nucleotides), thereby limiting bits per synthesis cycle to two, and the infor-
mation capacity of an oligo to a few hundred bits. While the quality, quantity, cost, and rate of DNA synthesis 
provided by base-by-base chemistry is suitable for biological research, it is far from ideal for the DNA storage 
use case. This has resulted in synthesis emerging as a major bottleneck in DNA storage.

In this work, we introduce the composite motifs framework to scale logical density well beyond the limit of 
2 bits per synthesis cycle. Our inspiration stems from recent work on DNA storage involving the introduction 
of composite letters, also known as degenerate bases12,13. These approaches leverage each position of a sequence 
containing a combination of all four DNA nucleotides in predefined ratios to increase logical density to 6.38 bits 
per cycle. However, these methods increase read cost, as they require a substantially higher sequencing coverage 
of 100–250× to ensure complete data recovery, due to the utilization of composite ratios.

Our composite motif approach extends the work on degenerate bases by using short oligonucleotide 
sequences, also referred to as motifs14,15, as building blocks. These motifs are drawn from a fixed library for 
assembling longer oligos. The use of a fixed library of motifs similar to a typesetting press can also simplify 
miniaturization and automation. The composite motif framework builds on the benefits of motif-based DNA 

(1)N(bits) = x × log2m
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storage14,15, and further improves logical density by exploiting sequencing multiplicity inherent in DNA synthesis 
by encoding data using a combination of motifs rather than individual motifs.

In this work, we present a DNA storage system that leverages composite motifs to achieve an order of magni-
tude enhancement in logical density compared to existing state-of-the-art solutions. Our end-to-end prototype 
system introduces enzymatic motif ligation techniques for composite encodings, enhancing the efficiency and 
throughput of the DNA synthesis process within the write pipeline. Furthermore, we employ a Nanopore-based 
approach for motif readout, which allows for the direct sequencing of short oligos without the need for com-
mon preparatory steps like DNA assembly, amplification, and end-prep. This, coupled with our alignment-based 
motif decoding techniques, streamlines the DNA read pipeline, offering a scalable and efficient solution for 
DNA sequencing.

Results
Composite motifs as building blocks for DNA storage
A composite motif is a representation of a position in an oligo sequence that uses a combination of motifs drawn 
from a fixed motif library to encode data. For example, assuming a library of 32 motifs, and a combination factor 
of four, there are C(32, 4) = 35960 possible unique combinations with which we can encode 15 ( log235960 ) bits 
of data per composite motif. Composite motifs increase logical density by expanding the motif library using 
combinations of motifs without increasing the volume of motifs. As current synthesis platforms already use a high 
degree of sequence multiplicity (multiple copies of DNA molecules are synthesized per oligo), composite motifs 
can also be integrated into current platforms without any extra cost as they can exploit sequence multiplicity to 
scale logical density. Higher logical density also leads to a reduction in the length of DNA required to store the 
same amount of data, alleviating issues related to long oligo synthesis.

In order to demonstrate the feasibility of using composite motifs, we developed a DNA storage system that 
uses composite motifs as building blocks. Figure 1 presents the read/write pipeline of our system. On the writ-
ing side, digital data is encoded into oligos containing composite motifs using a motif encoder. Writing a com-
posite motif at any given position of an oligo sequence is done by mixing multiple motifs during the synthesis 
procedure to synthesize multiple DNA molecules that contain the corresponding combinations of motifs using 
Bridged Oligonucleotide Assembly (BOA) (“Bridged Assembly of Composite Motifs” Section). On the reading 
side (Fig. 1), we read composite motifs by amplification-free sequencing of multiple DNA molecules using Direct 
Oligonucleotide Sequencing (DOS) (”Direct Nanopore Sequencing and Error Characterization” Section), and 
then decode the data using our new motif-based consensus caller called Motif-Search (“Inference and Consensus 
with Motif Search” Section).

Bridged assembly of composite motifs
Encoding
Data was encoded using a library of 96 payload motif sequences and 8 address motif sequences. The sequence 
design rules for base motifs that are used to derive composite motifs are similar to those of DNA barcode design. 
Thus, we started with DNA sequences designed in prior work16 to select to select 8 motifs for addressing and 96 
motifs for composite payloads. Using a combination factor of 32, we developed a composite motif set of 3× 1025 
composite motifs (C(96, 32)). Thus, each composite motif, and hence, each synthesis cycle, can store 84-bits of 
data ( log2C(96, 32) ). In order to demonstrate the feasibility of composite motifs, we stored the text “HelloWorld” 

Figure 1.   Composite-motif-based data write and read pipeline.
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using our composite-motif-based DNA storage system. As our input text is 10 bytes, a single synthesis reaction 
with composite motifs was sufficient to store the data. In order to test precision and recall of methods in the read 
pipeline, we stored the same data on all eight address motifs.

The size of payload, address motif and combination factor were chosen to provide a balance between complex-
ity and manageability of initial experiment with manual liquid-handling in the lab. With a library size of 96, the 
maximum combination factor is 48 because C(96, 48) is the biggest value among all C(96, i) where i ≤ 96, i ∈ N+ . 
However, choosing 32 allows us to achieve a high level of complexity (sufficient for our 10-byte “HelloWorld” 
message) while reducing the challenges associated with manual liquid-handling in the lab. Each oligo synthesis 
reaction in this method requires 32 dispenses for the composite motif, one dispense for the address motif and 
bridge oligo, and one dispense for the ligation enzyme buffer. While we designed our encoding to match our 
experimental needs, it naturally extends to a general purpose encoder(Fig. 2).

Bridge oligonucleotide assembly
Each of the eight address motifs along with the composite motif mix of 32 oligos produced a total of 256 oligos. 
The address motif is repeated in each molecule, while the composite motif is expanded to generate a variant com-
bination using 32 payload motifs. Oligos are synthesized using template-directed ligation. This method utilises 
single-strand sequences, referred to as bridge oligos, to facilitate the ligation of payload motifs to address motifs. 
In the general case, an oligo would contain one or more address and payload motifs as shown in Fig. 2. As any 
motif can be ligated with any other, designing bridge oligos for each possibility is suboptimal and not scalable. 
We solve this problem by using a spacer motif. When the motif library is designed, each 25nt motif is extended 
on both 5′ and 3′ ends with 12nt and 13nt nucleotides from the 3′ and 5′ ends of the spacer motif (Fig. 3a). While 
this increases the length of each synthesized motif from 25 to 50 nt, it does not affect the number of motifs, and 
more importantly, it makes it possible to design the bridge oligo to be complementary to a single spacer. By doing 
so, the bridge oligos can hybridise to the spacer portions at the 3’ and 5’ ends of two payload motifs while the 
enzyme ligates them. In general, the spacer motif sequence must be carefully chosen to avoid interference with 
other address/payload motifs, and to ensure proper alignment and enzymatic ligation. The identification of the 
optimal spacer sequence and any forbidden strings is context-specific to the motif library used and requires both 
computational modeling and experimental validation. However, the development of a thoughtfully designed 
motif library is a one-time investment that can be repeatedly reused to encode data in oligos.

Figure 2.   Composite motifs scales the logical density in DNA-based storage. (a) In each synthesis cycle, a 
combination of different payload motifs is introduced into the pool, rather than a uniform type of motifs. For 
instance, the initial composite motif comprises a blend of P00 and P10 , followed by P01 and P11 in the second 
cycle, and P02 and P12 in the third. Consequently, four different oligos, P00 − P01 − P12 , P00 − P11 − P02 , 
P10 − P11 − P12 and P10 − P01 − P02 are synthesized. These four oligos are called a logical sequence, sharing the 
same address motifs and representing the logical binary data together. (b) An example of the encoding process. 
Given seven payload motifs and a combination factor of two, each composite motifs can represent 21 (C(7, 2)) 
distinct values, effectively encoding four bits. For instance, the initial four bits binary input 0000 is represented 
as P0 and P1 . Assuming each oligo has three payload motifs, the 36 bits input data need to be splited into 3 
blocks and then each block is transformed to a logical sequence. A: address motif for indexing logical sequences, 
P: payload motif for encoding actual data.
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For the purpose of our experiment, as we have only 2 motifs per oligo, we modified this by (i) prepending the 
entire spacer sequence to the 5′ end of each payload motif, and (ii) designing eight (instead of one) bridge oligos, 
each of which is complementary to both the spacer sequence and one of the eight address sequences (Fig. 3b). 
By doing so, the eight bridge motifs also double in role as adapters during sequencing. The spacer-extended 32 
payload motifs, eight address motifs, and eight bridge oligos were all synthesized base-by-base by Integrated DNA 
Technologies (IDT). The oligos were synthesized by selecting, annealing and ligating together the corresponding 
address–payload motif pairs. The inputs to the reaction comprise all motif oligos, bridge oligos, enzymes and 
ligation buffer. These reactions proceeded to produce ligated oligos through programmed temperature incuba-
tion and cycling, where each bridge oligo facilitates the ligation of a specific address motif with a payload motif 
via complementary annealing. We use the resulting oligo pool to test the feasibility of decoding the identity of 
motifs from an enzymatically-ligated, Nanopore-basecalled readout.

Direct nanopore sequencing and error characterization
In the context of DNA data storage, both the cost of DNA sequencing and the time required to read data from 
DNA molecules are critical factors. Nanopore sequencing, with its single-molecule sensing capabilities, offers 
a promising avenue for a low-cost, high-speed DNA storage read head. The efficiency of a Nanopore (ONT) 
flowcell is contingent on the size of the DNA to be sequenced. Sequencing small oligonucleotides leads to a 
higher number of unoccupied pores over time. ONT’s R9.4 flowcell, for instance, requires a minimum DNA size 
of 200 bases. Previous DNA storage approaches using Nanopore sequencing have necessitated labor-intensive 
and time-consuming sample preparation steps for short oligonucleotides. This often involved DNA assembly 
methods to concatenate five or more DNA storage oligos into a longer fragment, followed by PCR amplification 
to enhance sequencing throughput and coverage for decoding17.

In this work, we demonstrated a method that facilitates the direct sequencing of composite-motif encoded 
oligonucleotides, bypassing the need for amplification or second-strand synthesis. Our oligonucleotides consist 
of two motifs, linked by a spacer. We engineered eight bridge oligonucleotides to incorporate the necessary 
modifications, making the strand ends available for ligation with the ONT sequencing adaptor. Specifically, the 
(first) bridge oligo is designed to include in its sequence complementary bases to the address oligo, along with an 
Adenosine (A) overhang. The complementary address motif oligo has a 5′ phosphorylated end. This configura-
tion of the composite-motif encoded oligo, combining the ‘A’ overhang of the bridge with the 5′ phosphorylation 
of the address region, emulates a double-stranded DNA (dsDNA) end, enabling ready ligation with the AMX 
sequencing adapters from ONT’s ligation sequencing kit (LSK-109). The AMX adapters were affixed to the oli-
gonucleotides in a 10-min reaction, and sequencing was conducted on an R9.4.1 flow cell for a duration of 4 h. 
Both Guppy and Bonito basecallers were utilized for basecalling. The sequencing run yielded 27,198 reads, with 
an N50 of 192 bp. The presence of reads confirms that the oligo modifications introduced during the synthesis 
step are suitable for ONT sequencing. We assume that only oligonucleotides ligated with the sequencing adap-
tor would have been able to pass through the pores, and subsequently be basecalled. This approach to direct 
sequencing of short oligos improved cost and time efficiency. By eliminating the need for traditional prepara-
tory steps and enabling the direct sequencing of composite-motif encoded oligonucleotides, we streamlined the 
sequencing process of data storage oligos.

Despite having several reads, we found that the reads were low quality. From the read length distribution in 
Fig. 4a,b, we see that the median read length with Guppy and Bonito is 166 nt and 110 nt. Thus, more than half 
reads are 48% longer than original oligos as several reads were observed to contain multiple oligos in a single 
read. On further analysis, we identified wrong event detection by MinKNOW to be the root cause of the problem. 
When sequencing oligonucleotides on an ONT R9.4 flowcell, the movement of bases through the pore leads to a 
continual change in current, known as the “squiggle”, that is recorded by MinKNOW. MinKNOW processes the 
squiggle into reads in real-time, and each read is supposed to correspond to a single strand of DNA. However, 

Figure 3.   Bridged oligonucleotide assembly. (a) The general oligo structure design. (b) The experimental 
oligo structure design. A: address motif, A′: reverse complement of A, P: payload motif, S: spacer, B: bridge, O: 
overhang.
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as our oligos were below 200 bases, we observed that sequencing our oligos generated low quality reads due to 
incorrect segmentation by MinKNOW which would earmark empty signals as valid reads, and created reads 
with merged squiggles for more than one strand of DNA.

Due to the presence of multiple oligos per read, we cannot directly align the reads to the reference oligos. 
So we did reverse alignment to study error characteristics and coverage distributions. We regard each read as 
a “reference” and build an index per read. Then, we treat each oligo like a “read”, and align it to each reference. 
Thus, for each read, we get an alignment file that contains one record per oligo. To identify and retain only good 
alignments, we filter the alignments using the following criteria: (i) MAPQ > 10 (90% alignment confidence), 
(ii) all alignments in a read should correspond to one orientation (no mixed forward and reverse alignments), 
and (iii) there should not be any overlap when multiple oligos are mapped in a single read; only the alignment 
with the highest alignment score is kept if several alignments overlap each other. With this approach, we get the 
set of oligos that we can identify assuming we have full knowledge of the original oligos.

Using Minimap218 for reverse alignment (Supplementary Note 2), we computed the substitution, insertion, 
deletion and soft-clipping rate per position (Fig. 4d). As can be seen, the rate of soft clipping is very high at the 
extremities (especially 3’ end) due to the very high error rate caused by BOA and DOS. In the middle portion 
of the read, the rates of error types vary, with no one error type being dominant over others. These results are 
in sharp contrast to error statistics published in prior work on DNA storage5,7,10,19,20, where substitution errors 
have been shown to be more likely than indel errors, and overall error rates are at least 10× lower (Fig. 4e and 
Supplementary Table 1). The only exception is work on photolithographic synthesis21, where the error rates 
reported were also high.

Correcting event misdetection with SaberSplit
In the real DNA storage scenario, the original reference oligos must be inferred from erroneous reads automati-
cally. Current read clustering and consensus callers used for this purpose assume that a read covers only a single 
oligo. To be able to use them, we initially analysed the fast5 reads generated from the nanopore sequencing runs 
by using a tool called SquiggleKit (https://github.com/Psy-Fer/SquiggleKit) to extract the event data. We devel-
oped a tool “SaberSplit” (Supplementary Note 1) to split such fast5 reads into multiple shorter reads for basecall-
ing. Using SaberSplit and bonito basecaller, the original reads are chopped to 102,221 shorter reads of median 
length 25nt as shown in Fig. 4c. Then, we tried to use state-of-the-art clustering programs and position-wise 
consensus callers22,23 to infer the original oligos from both raw Bonito/Guppy reads, and SaberSplit processed 
reads. However, due to the high error rate, no oligos could be inferred in all cases.

Figure 4.   Analysis about the sequenced reads. (a) Read length distribution with Guppy basecaller. (b) Read 
length distribution with Bonito basecaller. (c) Read length distribution with Bonito basecaller post-processed 
with SaberSplit . (d) The substitution, insertion, deletion and soft-clipping rate per position of Guppy reads. (e) 
Comparison of errors rate with previous work.
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To study SaberSplit processed reads further, we aligned the chopped reads to reference oligos with Minimap2. 
We compared the alignment statistics for raw Guppy, Bonito and Sabersplit processed reads (Supplementary 
Table 2). Guppy reads produced the highest number of alignments, with 102% more reads being aligned than 
Bonito. This could be explained by the fact Bonito is optimized to work better with longer reads, making it less 
suitable for short ones. Surprisingly, SaberSplit performed the worst with 9.5% fewer reads than even Bonito. 
This showed us that splitting reads amplifies the error rate and makes the case for a consensus caller that can 
directly work with raw reads covering multiple oligos.

Inference and consensus with motif search
To reconstruct the original data from noisy reads, we developed a new reconstruction algorithm called Motif-
Search that meets two requirements: (i) guarantee successful recovery despite high error rate, and (ii) directly 
work with raw, basecalled, Nanopore reads that might contain multiple oligos per read. Motif-Search differs from 
prior consensus callers that it is structure aware—while other callers view an oligo as a random collection of 
nucleotides, Motif-Search exploits the fact that our oligos are a collection of payload motifs separated by spacer 
motifs, with all motifs being drawn from a predefined, finite library. A detailed description of the Motif-Search 
algorithm is presented in  “Motif-Search Algorithm” Section. Here, we present our analysis results that demon-
strate the ability of Motif-Search to accurately infer original oligos.

Figure 5 shows the true positive (TP) count (number of inferred oligos that are in the original set) of Motif-
Search and Minimap2-based reverse alignment method at various coverage levels (lower sequencing coverage 
simulated via subsampling reads). It is important to note that Minimap2 needs the original oligos which would 
not be available in the real DNA storage use case. Thus, Minimap2 results are used as a baseline for comparison 
rather than a real decoding solution. First, Motif-Search is able to fully recover all oligos at 20× coverage. Reverse 
alignment misses one oligo even with 34× coverage. Second, Motif-Search reconstructs more oligos than reverse 
alignment at all coverage levels. The under-performance of reverse alignment relative to Motif-Search is because 
all the reads covering the missing oligo had a very poor alignment and were filtered out.

Supplementary Table 3 shows the execution time of Motif-Search and reverse alignment. Both support multi-
threaded operation. On a 12-core Intel(R) Core(TM) i9-10920X CPU clocked at 3.50 GHz, 128 GB RAM with a 
1TB SATA SSD, Motif-Search is 190–250× faster than Minimap2 due to the fact that Minimap2 needs to build 
an index for each read and align each oligo to each read while Motif-Search is custom-designed for the motif-
based oligo reconstruction use case.

In order to investigate false positive (FP) behavior of Motif-Search and reverse alignment, we increase the 
motif library size. For a given set of address and payload motifs, we create oligos containing all possible combi-
nations of motifs. For instance, if the motif set size is 64(address)× 256(payload) , we generate 16,384 possible 
oligos. We then use Minimap2 to align each oligo to each read. We use the same reads as before which were 
sequenced from 256 original oligos. As the motif set is expanded, Motif-Search can now report an inferred oligo 
which is not in the original set but from the expanded set, which would be labelled a FP.

Figure 6 shows the TP and FP counts for various expanded motif sets. First, note that Motif-Search is able to 
reconstruct all original oligos when sequence coverage reaches 27× for all motif set sizes. When the sequence 
coverage is low, Motif-Search is able to reconstruct more true positive oligos than reverse alignment even though 
it is unaware of the reference oligos. Second, as the motif set size increases, the number of FP for both approaches 
rise. Since the sequences are error-prone, both approaches make errors identifying the correct references from 
reads. However, the FP rate of Motif-Search is still lower than reverse alignment. While missing TP is an issue 

Figure 5.   Number of oligos correctly reconstructed. Motif-Search fully recovers all oligos at 20× or higher 
coverage. Minimap2 misses one oligo even with 34× coverage.
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as it can lead to data loss, extra FP is not a problem as it can easily be discarded by using auxiliary metadata and/
or error-control coding.

These results clearly demonstrate that (i) our motif-based, BOA method can successfully encode informa-
tion in DNA, and (ii) with sufficient coverage, Motif-Search is capable of reconstructing all original oligos, and 
thereby ensuring successful decoding, despite errors introduced by enzymatic BOA and DOS.

Read–write cost comparison
The cost of storing data on DNA comes from two aspects, namely, the cost of sequencing for reading data and 
the cost of synthesis for writing data. Composite motifs has the potential to reduce the synthesis cost, thanks to 
the increase in logical density. For example, each synthesis cycle encodes 84 bits ( log2C(96, 32) ) in our composite 
motif experiment. A native motif-by-motif approach can solely achieve an encoding of 6 bits per cycle using 
the same 96 motifs. The conventional phosphoramidite approach has the potential to scale up encoding from 
2 bits to as high as 6.38 bits per cycle, as illustrated in the simulation where composite letters are employed for 
encoding12. This 14–42× increase in logical density will lead to a proportionate reduction in synthesis cost over 
conventional synthesis approaches, as fewer synthesis cycles and fewer oligos are required to encode the same 
digital data. Since current motif-based synthesis techniques already use a high degree of sequence multiplicity, 
composite motifs can be easily integrated by generating a variant motif mixture pool without much added costs. 
The physical density of our approach is 3.36 bits/nt, which is also higher than the physical density of conven-
tional base-by-base DNA storage solutions (2 bits/nt) and sligntly worse than the composite letters approachs 
(3.37–5 bits/nt12,13).

Composite motifs offer a distinct advantage in terms of sequencing cost when compared to the composite 
letters approach12,13. Composite motifs necessitate a sequencing coverage of only 20× for complete data recov-
ery, in contrast to the 100–250× required by the composite letters approach. However, in comparison to other 
non-composite DNA storage systems which require 5× to 10× coverage14, our approach trades off read costs 
for substantial reduction in synthesis costs by increasing logical density. Figure 7 presents a comparison of the 
cost to read 1MB of data stored in DNA of our approach and other related work5,7,10,19,21,24 based on the cost of 
DNA sequencing (0.006$ per megabase) reported by National Human Genome Research Institute (NHGRI) 
in August 202125. The detailed calculation is included in Supplementary Table 4. Clearly, our work increases 
read cost compared to prior work except Antowiak et al. This is expected, as these prior approaches to DNA 
storage are able to fully recover the data at much lower sequencing coverages of 5× and 10× due to (i) the use 
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of low-error rate array synthesis and high-throughput sequencing with extensive library preparation, and (ii) 
the use of error-control coding. Our current work, in contrast, focuses on (i) tolerance to errors introduced by 
enzymatic ligation and direct sequencing without any library preparation , and (ii) complete recovery without 
additional error correction. As synthesis is approximately 80,000 times more expensive than sequencing7 and the 
read cost continues to drop due to rapid advances in sequencing, we believe that it is more important to focus 
on reducing the write cost, which is a bottleneck today in DNA data storage.

Discussion
Today, oligonucleotide synthesis is the dominating bottleneck in making large-scale DNA storage feasible. With 
the current phosphoramidite synthesis approaches, DNA storage costs several thousands of dollars per MB of 
data stored. In this work, we demonstrated the feasibility of using composite motifs to scale the logical density 
of DNA storage by an order of magnitude. We developed synthesis (BOA) and sequencing (DOS) methods 
customized for writing and reading oligos that regard composite motifs as building blocks, and showed that the 
error characteristics of these methods are different compared to state-of-the-art techniques. We developed a new 
motif-based consensus calling and oligo inference method (Motif-Search) that is able to recover all data at cover-
age as low as 20× . Our future work aims to scale up the methods presented in this paper on several fronts. First, 
to simplify the task of motif design, we built on an existing library of 25nt primers leading to a physical density 
of 3.36 bits/nt. Future work will improve this further by optimizing the motif library. Second, we are working 
on reducing sequencing costs by adding error-control coding optimized to our DNA storage channel to enable 
data recovery at a lower sequencing coverage. Third, the short size of motif library, the library-preparation-free 
sequencing provided by DOS, and the error-tolerant nature of Motif-Search all simplify end-to-end automation. 
Thus, we are developing a fully automated DNA storage solution that can scale both oligo length and number 
of oligos beyond what was presented in this work to be able to achieve preliminary read and write throughput 
of Kilobits/second in the near future, and Megabits/second with large-scale parallelization later. With these 
techniques, we expect our motif-based, enzymatically-ligated DNA storage to become economically feasible for 
large scale, deep data archival in the near future.

Methods
DNA assembly
Oligo with a format of A0–P0 (Fig. 3b) was realised with (i) a set of 8 ssDNA oligo sequences of 24-bases in length, 
representing A0 ; and (ii) a set of 32 ssDNA oligo sequences of 50-bases in length, representing the common 
spacer motif and each P0 motif. The sequences of motifs in these oligos were selected from 25mer DNA barcodes. 
A set of 8 ssDNA oligo sequences of 50-bases in length were designed to function as (i) a bridge between A0 
and P0 for ligation; and (ii) an adenosine overhang on the 3′ end to facilitate AMX sequencing adaptor ligation.

Phosphorylation
A pool of 32 oligos, representing the common spacer motif and each P0 motif, were 5′ phosphorylated using T4 
PNK at a pool concentration of 300 pmol and reaction scale of 50 ul, as per the vendor guidelines at 37 °C for 40 
min. A denaturation step was performed to stop the phosphorylation at 65 °C for 20 min.

Figure 7.   The cost of DNA sequencing to read 1 megabyte data. Our work increases read cost compared to 
prior work except Antowiak et al.21.
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Annealing and ligation
The 8 A0 oligos and 8 bridge oligos are pooled at equimolar concentrations and diluted to 25 uM final pool con-
centration. DNA assembly mix was prepared out by taking (1) 2 ul of the P0 phosphorylation mix and (2) 0.5 ul 
of the A0 and bridge pool (12 pmol). The above reaction is incubated at 95 °C for 3 min and gradually cooled to 
room temperature. 2.5 ul of the assembly mix along with 5 ul AMX from ONT’s LSK-109 kit and 5 ul Blunt/TA 
mastermix from NEB and incubated for 10 min at room temperature.

Nanopore seqeuncing
The ligated sample was then loaded into a R9.4.1 MinIon flowcell prepared with FLow Cell Priming Kit EXP-
FLP001 and sequenced for 4 h. Basecalling was performed with Guppy (v4.0.15) and Bonito.

Motif‑search algorithm
Motif-Search works in two stages, inference and consensus calling. In the inference stage, it maps each read to 
an inferred oligo. During consensus calling, it uses all inferred oligos to produce a consensus set of inferred 
reference oligos.

Inference
The first task performed by Motif-Search is to extract one or more oligos from each read. Recall that an oligo is 
a set of motifs concatenated by spacers. Motif-Search infers oligos by first locating the spacer positions and then 
mapping the portions of the read between two spacers to the reference motifs to determine the payload and 
address motifs. Inference works in three steps: (i) segmentation to locate spacer positions, (ii) mapping to identify 
reference motifs between spacers, (iii) overlap check to extract only oligos that do not overlap with each other.

Segmentation.  Segmentation determines the spacer positions. Since all spacers are identical, their candidate 
positions can be located by k-mer seeding. We convert A, T, C and G into a two-bit equivalent representation 
and build the index of the spacer by extracting all k-mers of length four (found to be optimal experimentally). 
To process each read, we extract all 4-mers in the read, lookup the index, and collect positions with an index hit. 
The positions are adjusted by the offset of the k-mer to get normalized positions.

To eliminate candidate positions with low confidence, we filter out the positions having less than 
spacer_length/k k-mer votes. As reads are error prone, indels can cause candidate positions that should be 
identical to differ slightly by a few nucleotides. This could result in candidates receiving fewer votes and failing 
the filter. Hence, we merge neighboring positions and represent them by a centroid with a combined count. At 
the end of this stage, we have all candidate positions for all spacers in a read.

In our experiment, each oligo has only one spacer. But in the general case, each oligo can contain multiple 
spacers. From the structure of the oligo, we know that each oligo with M motifs has M − 1 spacers, with each 
spacer being spaced apart by a distance d equal to the sum of the motif length and spacer length. In order to 
accommodate synthesis and sequencing errors, these inter-spacer gaps can be slightly more or less than the motif 
length depending on indel errors. Thus, we identify all possible chains of M − 1 positions which are within an 
expected distance threshold from each other.

As mentioned earlier, the candidate positions in these chains are approximate, as indel errors can result in 
observed starting position differing from actual starting position by a few nucleotides. We rectify and refine these 
positions to tolerate indel errors by using randomized embedding—a technique which has been demonstrated to 
be a scalable approach for mapping reads to references in genomic sequence alignment26. More specifically, for 
each candidate position, we extract a spacer-length portion of the read at that position and at several positions 
around that position. We embed each extracted read fragment using a randomized algorithm and compare with 
the embedded version of the original spacer motif using hamming distance. We select the shifted position with 
least embed distance as the final candidate position. As the number of candidate positions can be large, the use 
of embedding helps us to avoid expensive edit distance computations between the read and spacer motif, and 
use hamming distance between their embedded versions to rectify candidate positions.

Mapping.  Given a chain of refined candidate positions, we can extract the potion of each read between two 
neighboring spacers. These portions correspond to address and payload motifs. The next step is to identify the 
original motif for each observed motif in the read. This can be translated to a sequence mapping problem by 
considering the original motif library as the reference and the observed motif in the read as the query. Therefore, 
we use the ksw-lib27 to select the optimal original motif with the highest mapping score for each observed motif. 
After this step, we have multiple chains of mapped motifs.

Overlap check.  As we consider all possible chains, some chains might overlap each other. However, while each 
read can cover multiple oligos due to DOS, each nucleotide in a read should map to only one motif/oligo. Thus, 
the final step in the inference stage is to identify the optimal set of chains that do not overlap with each other. 
To do this, we traverse the chains to identify overlapping sets. For each overlapping set, we pick a chain with the 
highest mapping score such that no chain appears in two sets.

Consensus calling
Each original encoded oligo can be synthesized with duplication. Library preparation steps, like PCR, also 
amplify the pool of oligos by creating multiple copies of each oligo to ensure successful sequencing. Thus, an 
original oligo can be covered by multiple reads. For each read, the inference stage identifies the optimal set of 
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non-overlapping chains. As the final step, we apply consensus calling to group similar motif chains inferred 
from the inference stage, and obtain consensus to achieve higher confidence. We do this by first clustering the 
inferred oligos using their address motifs. Then, we select the most frequent motifs at each position as the final 
consensus motif as shown in Fig. 8.

Data availibility
The oligo sequences, the reads with Guppy basecalled, Bonito basecalled and Bonito basecalled post-processed by 
SaberSplit are available via https://​drive.​google.​com/​drive/​folde​rs/​1VPQU​Aye0B​UVUSn​ePoc8​M1mN7​GZw09u_​
1?​usp=​shari​ng.

Code availibility
The Motif-Search algorithm implementation is available via https://​gitlab.​eurec​om.​fr/​yan1/​motif-​search under 
MIT license. SaberSplit is available via https://​github.​com/​helix​works-​techn​ologi​es/​saber​split.
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