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Kardar–Parisi–Zhang roughening 
associated with nucleation‑limited 
steady crystal growth
Noriko Akutsu 

The roughness of crystal surfaces and the shape of crystals play important roles in multiscale 
phenomena. For example, the roughness of the crystal surface affects the frictional and optical 
properties of materials such as ice or silica. Theoretical studies on crystal surfaces based on the 
symmetry principle proposed that the growing surfaces of crystal growth could be classified in the 
universal class of Kardar–Parisi–Zhang (KPZ), but experiments rarely observe KPZ properties. To fill 
this the gap, extensive numerical calculations of the crystal growth rates and the surface roughness 
(surface width) have been performed for a nanoscale lattice model using the Monte Carlo method. 
The results indicate that a (001) surface is smooth within the single nucleation growth region. In 
contrast, the same surface is atomically smooth but thermodynamically rough in the poly‑nucleation 
growth region in conjunction with a KPZ roughness exponent. Inclined surfaces are known to become 
Berezinskii–Kosterlitz–Thouless (BKT) rough surfaces both at and near equilibrium. The two types of 
steps associated with the (001) and (111) terraces were found to induce KPZ surface roughness, while 
the interplay between steps and multilayered islands promoted BKT roughness.

Surface roughness is a complex phenomenon to analyze even in the case that the length scale is limited to less 
than 2 μm1. This topic is also complicated by the possibility of two types of roughness:  atomic2 and thermody-
namic. Molecular dynamics (MD)  simulations3 have demonstrated that a crystal surface becomes diffuse over 
several surface layers, often accompanied by lattice distortions. Atomic roughness also tends to increase the 
surface growth velocity, V. In contrast, an atomically smooth surface is sharp on the atomic scale.

Thermodynamic  roughness4,5 can be defined based on the criteria

where L is the linear size of the system and W = W(L, t) =
√

[h(�x, t)− �h(�x, t)�]2 , in which h(�x, t) is the height 
of the surface at site �x at time t. At equilibrium, there will be a thermal roughening transition temperature, TR , 
for a two-dimensional (2D) surface in a 3D system. For a given temperature, T < TR , the surface will be smooth 
based on Eq. (1) while, at TR < T , the surface will be rough with W2 diverging logarithmically from L. The latter 
is characteristic behavior linked to the Berezinskii–Kosterlitz–Thouless (BKT) universality  class6,7. This thermo-
dynamic roughening transition is directly connected to a shape transition occurring at equilibrium and referred 
to as the faceting  transition8–11. This phenomenon is associated with the equilibrium crystal shape (ECS), which 
is the shape of a crystallite having the least total surface free energy.

It should also be noted that an atomically rough surface is different from a thermodynamically rough surface. 
Examples of surfaces that are atomically rough but thermodynamically smooth include the facet surfaces of a 
4 He crystal in superfluid  He12,13 and of  Pb14, Ag2S15,16 and Ag2Se15. An example of an atomically smooth but 
thermodynamically rough surface is the inclined (stepped) surface of a lattice  model17–19. Here, the “inclined 
surface” is a surface tilted from a singular surface which forms a cusp singularity on the Wulff figure (the polar 
graph of the surface tension). The singular surface then forms a facet plane on the ECS at lower temperatures 
than TR of the singular  surface8–11.

In the case of kinetic roughening, various types have also been reported. Based on studies of crystal growth, 
kinetically rough surfaces are thought to grow via an adhesive  process20–27. In this case, the surface grows linearly 
as a response to the driving force for crystal growth, �µ , defined as �µ = µambient − µcrystal , where µcrystal is 
the bulk chemical potential of the crystal and µambient is the bulk chemical potential of the ambient phase. The 
kinetic roughening point, �µc , was studied by Van Veenendaal et al.22, considering the experimental definition 

(1)Rough surface:W → ∞ as L → ∞; Smooth surface:W → const. as L → ∞,
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of kinetic roughening, and Cuppen et al.23, considering a non-equilibrium definition of kinetic roughening that 
also includes MC simulations for the nearest neighbor (nn) Kossel solid-on-solid (SOS) model. For so-called 
classical  criteria22, �µc is calculated based on the relationship πγ 2

s /(3kBT�µc) ∼ 125, where γs is the step ten-
sion, which is the step free energy per unit length.

Meanwhile, in the field of statistical mechanics, the term kinetic roughening is used to refer to Kardar–Par-
isi–Zhang (KPZ)  roughening28. For fluctuating surfaces (or interfaces), the Family–Vicsek scaling  relationship29–35 
has been widely used to describe the self-affine surface. The Family–Vicsek scaling relationship for a surface 
can be expressed as

where α , β and z are the roughness, growth and dynamic exponents, respectively. In the non-equilibrium steady 
state, the surface width is characterized by the roughness exponent α . Based on the symmetry principle, a surface 
growth equation including a nonlinear term obtained from the KPZ  model28 can be derived as

where ht is the surface height at time t, v0 is the constant surface velocity, ν > 0 is a coefficient related to surface 
tension, � is a coefficient for the nonlinear term and ηt is white noise in space and time. In the case of a 2D sur-
face in a 3D system, the values of these exponents are predicted to be α = 0.3869 , β = 0.2398 and z = 1.6131
34,35 (KPZ-rough surface). The experimentally determined values of various systems such as directed polymers 
are known to agree with these exponents, indicating that these systems belong to the KPZ universality class. 
However, in the case of crystal growth, the observed roughness exponents tend to differ from those predicted 
by the KPZ  model30,35,36, with the exception of several special surface  systems37,38.

In our previous  work39, we found crossover phenomena between BKT rough and KPZ rough surfaces at �µcr 
for inclined surfaces using the Monte Carlo method based on the nn restricted solid-on-solid (RSOS) model on 
a square lattice. Here, the term “restricted” indicates that the surface height difference between nearest neighbor 
sites is limited to {0,±1} . In the work, thermally excited structures such as adatoms, adholes, islands or negative 
islands (clusters of adholes) on terraces are found to cause the crossover phenomena. These thermally excited 
structures are thought to be irrelevant and they only renormalize the step tension for the thermal roughening 
transition at equilibrium. However, several Monte Carlo results on the surface width W suggested a complex 
surface slope dependence of W.

The aim of the present work is to clarify what makes the growing crystal surface KPZ rough using the 
RSOS model with and without surface steps. In addition, we obtain the detailed surface slope dependence of W 
explicitly. For this purpose, extensive numerical data on growth rate and surface roughness of planar or inclined 
surfaces were collected using the Monte Carlo method for a non-equilibrium steady state.

The RSOS model is more restricted than the Kossel SOS model studied by Van Veenendaal et al.22 or the 
absolute SOS (ASOS)  model4,40. However, the model has a special characteristic in that an almost ideal terrace-
step-kink (TSK)  model41,42 is  realized39,43 around a (111) surface due to the RSOS restriction. In the ideal TSK 
model, thermally excited structures are prohibited on the terrace  surface44,45.

The RSOS model is a more microscopic model than the models used in phase field  calculations46, whereas it 
is a coarse grained model for the purposes of first principles quantum mechanical  calculations47.

It should also be noted that the RSOS model is equivalent to a 19-vertex  model48,49 and, because the latter 
represents a non-integrable system, the RSOS model cannot be solved exactly using the Bethe ansatz  approach50. 
This is one of the reasons why the present work chose to study the RSOS model numerically.

At equilibrium, the RSOS model employed in the present work is equivalent to that previously used to deter-
mine roughness exponents by Amar and  Family51,52. It is also important to note that a model used in the field of 
nonlinear dynamics with the restriction of the height difference being an integer is also sometimes referred to 
as the RSOS model but is known as the ASOS model in the field of roughening transition  studies4,40.

During the present work, surface diffusion, volume diffusion and elastic effects were not taken into 
consideration.

Model and calculations
RSOS model
The surface energy of a surface with an orientation close to (001) exhibiting (001) terrace roughness can be 
expressed by the discrete  Hamiltonian39

where h(n, m) is the surface height at site (n, m) on a square lattice, N is the total number of lattice points, εsurf is 
the surface energy per unit cell on the planar (001) surface and ε is the microscopic ledge energy associated with 
nearest neighbor (nn) interactions. The summation with respect to (n, m) is over all sites on the square lattice. 
The RSOS condition, meaning that the height difference between nearest neighbor sites is restricted to {0,±1} , 
is required implicitly. In this equation, �µ is the driving force for crystal growth. To exclude diffusion effects, 
the ambient phase is assumed to be uniform. In the nanometer length scale near equilibrium, this assumption 
can be realized. In the case that the ambient phase is an ideal solution, �µ = kBT lnC/Ceq

53, where kB is the 
Boltzmann constant, T is temperature, C is the concentration of the solute and Ceq is the concentration of the 

(2)
W(L, t) ∼ Lα f (L−z t), z = α/β ,

W(L, t) ∼ Lα as t → ∞,

(3)
∂ht

∂t
= v0 + ν∇2ht +

�

2
(∇ht)

2 + ηt

(4)HRSOS = Nεsurf +
∑

n,m

ε[|h(n+ 1,m)− h(n,m)| + |h(n,m+ 1)− h(n,m)|] −
∑

n,m

�µ h(n,m),
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solute at saturation. If the ambient phase is an ideal gas, �µ = kBT ln P/Peq
54, where P is the gas pressure and 

Peq is the gas pressure at equilibrium. ε and �µ in the present model correspond to φ and �µ in Van Veenendaal 
et al.’s  work22.

Since the RSOS model is a coarse grained model used for the purpose of first principles quantum mechanical 
calculations, εsurf  and ε relate to the surface free energy in the atomic model include the entropy for lattice vibra-
tions and  distortions47. Thus, these variables are affected by temperature. However, the present work assumes 
constant values for εsurf  and ε in all calculations.

Monte Carlo calculations
In this work, the surface configuration was updated using the Metropolis algorithm and the energy difference, 
�E , was calculated based on Eq. (4). The first 2× 108 Monte Carlo steps per site (MCS/site) were ignored and 
each quantity was averaged over the subsequent 2× 108 MCS/site. The surface slope p and the surface growth 
velocity V were calculated as macroscopic variables, such as

where Nstep is the number of steps, which was fixed during the simulation, a = 1 is a lattice constant and τ̃ is set 
to 2× 108 MCS/site.

When considering an inclined surface, the squared surface width was calculated as

where W is a surface width normal to the inclined surface, g is a geometrical factor defined as 1+ p2x + p2y with 
px = ∂�h�/∂x and py = ∂�h�/∂y55, x̃ and ỹ are the [110] and [1̄10] directions, respectively, and �·�ỹ and �·�x̃ are 
the averages over the ỹ and x̃ directions.

Periodic boundary conditions were adopted in the vertical ( [1̄10] ) direction. In the horizontal ([110]) direc-
tion, periodic boundary conditions were adopted while also adding the number of steps, Nstep.

Crystal growth proceeds by the attachment/detachment of specific units. As such, the number of units in the 
crystal does not have to be conserved during the process, making this a non-conserved system. The present work 
also did not include unit exchange on the surface, meaning that surface diffusion was neglected. At equilibrium, 
the unit attachment rate will equal the detachment rate. The attachment rate automatically increases whereas 
the detachment rate decreases as �µ increases.

Results
KPZ roughening on a (001) Surface
Monte Carlo results
Figure 1 presents the Monte Carlo results for the surface growth velocity, V, and the scaled surface width, W, 
with regard to the (001) surface. Figure 1a indicates that the surface grows exponentially with respect to �µ 
during the 2D nucleation process for �µ/ε < 2.0 . In contrast, for 2.0 ≤ �µ , the surface grows linearly via an 
adhesive growth process. Because the temperature value of kBT/ε = 0.4 is far less than the thermal roughening 
temperature of kBTR/ε = 1.57848, 56, the (001) surface is atomically and thermodynamically smooth at equilib-
rium. It should be noted that the 2D critical nucleus sizes on the (001) surface were determined to be 2a and a 
for �µ/ε = 1 and 2, respectively, assuming that each nucleus was a square. In addition, the 2D critical nucleus 
sizes at the edges of the straight (01) steps were less than a for 1 < �µ/ε . In these processes, an atom (that is, the 
growth unit) attached at the edges of the steps associated with an island will increase the island’s size on average 

(5)p = Nstepa/L, V = (�h(t + τ̃ )� − �h(t)�)/τ̃ ,

(6)gW2 = ��[h(x̃, ỹ, t)− �h(x̃, t)�ỹ]2�ỹ�x̃ ,

Figure 1.  Surface growth velocity and scaled surface widths at the (001) surface ( p = 0 ) as functions of �µ . 
(a) Surface growth velocity with unit of a/τ , where a ( = 1 ) is the unit height and τ is the time interval for 1 
MCS/site. Line: V = 0.0643�µ/ε − 0.0412 . (b) The squared surface width, W2 = �[h(�x)− �h�]2� , scaled by 
the logarithm of the system size, L. (c) The surface width scaled by Lα with the roughness exponent α ≈ 0.385 
determined from the KPZ model. kBT/ε = 0.4.
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in the case of 1 < �µ/ε . The attachment of an adatom to the (001) surface, which is also regarded as an island, 
will increase its size on average for 2 < �µ/ε.

Figure 1b,c provide the scaled surface width data. Near equilibrium and for �µ/ε < 0.55 , W = 0 and the 
surface is atomically and thermodynamically smooth. However, in the region defined by 0.55 ≤ �µ/ε < 2.0 , the 
surface width, W, increases as the system size, L, increases, meaning that the surface is thermodynamically rough.

To our surprise, in the present work the roughened surface was found to have a KPZ roughness exponent. In 
the non-equilibrium steady state, the roughness exponent α determines the universality class for a 2D growing 
surface (Eq. (2)). In Fig. 1c the surface widths are scaled by Lα and exhibit good agreement with the KPZ rough-
ness exponent ( α ≈ 0.385 ). Herein, the KPZ roughening point is designated as �µ

(001)
KPZ = 0.55ε , while the end 

of the KPZ rough surface is designated as �µ
(001)
KtoB = 2.0ε.

In Fig. 2a–c, images acquired at 4× 108 MCS/site are shown for �µ/ε = 0.8 , 1.4 and 2.6, respectively. From 
Fig. 2a,b, it is evident that poly-nucleated multilayer islands appeared on the (001) surface and the perimeter of 
each island is also apparent. At �µ/ε = 0.8 (Fig. 2a), island-on-island structures can be seen, otherwise referred 
to as multilayer  islands57, having distorted square morphologies. The side view presented in Fig. 2b also clearly 
indicates an island-on-island structure associated with �µ/ε = 1.4 . These islands are known to coalesce to 
complete the growth  layer24–26, and so a self-affine surface exhibiting KPZ roughness was formed based on the 
island-on-island structure.

It should be noted that this KPZ rough surface represents a type of faceted rough surface that is atomically 
smooth but thermodynamically rough. The authors previously proposed the new concept of a so-called faceted 
rough surface and provided numerical evidence related to kinetic  roughening1 based on evaluating the surface 
roughness of surface systems between the atomic and mesoscopic length scales. A faceted rough surface is defined 
as being atomically smooth but thermodynamically rough, even though such surfaces grow via a 2D poly-nucle-
ation process. Our prior  work1 using the Monte Carlo method demonstrated that an inclined surface meeting 
the criteria will be thermodynamically rough with a roughness exponent of α = 0.60 in the non-equilibrium 
steady state. This result provided evidence for the possibility of a large roughness exponent.

�µ
(001)
KPZ  is also a crossover point between the single and poly-nucleation growth processes. For small �µ 

values, V will be proportional to the single nucleation rate per area, In ∝ exp(−G∗/kBT) , according to the 
relationship V = L2In . Here, G∗ is the free energy change for the formation of a critical nucleus. Based on the 
thermodynamics of a 2D island (see the “Analysis of 2D single nucleation” subsection in the Methods section), 
G∗/kBT can be expressed as G∗/kBT = γ 2

s,total/(4SkBT�µ) ≡ g∗/�µ (Eqs. (12) and (13)), where γs,total is the 
total step free energy at the perimeter of the 2D equilibrium crystal shape with the Lagrange multiplier being 1 

Figure 2.  Images of simulated p = 0 surfaces. Upper figures: overhead views. Lower figures: side views showing 
the height along the lower perimeters of the upper figures for�µ/ε = (a) 0.8, (b) 1.4 and (c) 2.6. kBT/ε = 0.4 . 
L = 320×

√
2 . �µcr/ε = 0.339. To better indicate the shapes of the steps on the crystal surfaces, the surface 

height is represented by 10 degrees of brightness, with a brighter color corresponding to a greater height.

Figure 3.  Surface growth velocity data for a 2D nucleation process. The points A, B and C indicate �µ
(001)
KtoB , 

�µ
(001)
kr  and �µ

(001)
KPZ  , respectively. (a) Dotted line: y = −8.45x + 5.72 , where y = ln(V) and x = 1/�µ . Dashed 

line: y = −8.62x + 4.76 . (b) Dashed line y = −3.67x − 0.373 , where y = ln(V/v
2/3
s ) . p = 0 . kBT/ε = 0.4.
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and S is the corresponding  area58. In this work, γs,total and S were calculated based on the 2D Ising model using 
the imaginary path-weight random walk  method59,60. Then, γs,totala/ε = 6.441 and S/a2 = 3.001 were determined 
at kBT/ε = 0.4 . On this basis, a value of g∗/ε = 8.640 was obtained.

Figure 3 plots ln(V) as a function of ε/�µ and ln(V/v
2/3
s ) as a function of ε/�µ based on the Monte Carlo 

results in Fig. 1a, where vs is the step velocity (Eq. (15) in the Methods section). For �µ < �µ
(001)
KPZ  , the slopes of 

the lines obtained using different system sizes are in good agreement and are close to the value of 8.640 calcu-
lated using the Ising model. For larger �µ , the logarithm of V/v

2/3
s  was plotted against 1/�µ (Fig. 3b) because

for 2D poly-nucleation25,26.
The Monte Carlo results obtained for 0.55 < �µ/ε < 1.2 form a suitably straight line for L = 320

√
2 , 240

√
2 

and 160
√
2 . The least squares fit to these values gave a slope of −3.67 , the absolute value of which is larger than 

the expected value of g∗/3 = 2.88 based on 2D poly-nucleation  theory25,26 Eq. (7). In contrast, in the case of 
1.2 < �µ/ε , the Monte Carlo data deviate from a straight line. Here it is important to recall that �µ

(001)
kr = 1.15ε

39 for a relatively high growth velocity, V (Fig. 1a).
As is evident from Fig. 1b, for 2.0 ≤ �µ/ε , the surface approaches BKT roughness as �µ is increased. In 

addition, at �µ/ε = 2.6 (Fig. 2c), island-on-island structures are still seen but the size of the islands decreases 
and the side view of the surface indicates a greater number of fine irregularities. Furthermore, the surface velocity 
in this region increases linearly as �µ increases (Fig. 1a). Based on the results concerning this structure and the 
surface growth velocity data, the surface can be said to be kinetically, atomically and thermodynamically rough.

For large �µ , various types of kinetic roughening are known to occur in the crystal growth  field22–26,57. One 
kinetic roughening point with the classical  criteria22, �µc , is defined as πγ 2

s /(3kBT�µc) ∼ g∗/(3�µc) ∼ 125 
or g∗/�µc ∼ 126. By substituting g∗ of the Monte Carlo result in the equation, we have �µc/ε ∼ 2.88 or 8.64, 
which is a large value compared with the Monte Carlo result of �µ

(001)
KtoB = 2.0 at which adhesive growth starts 

for �µ
(001)
KtoB < �µ.

Another criterion for �µc is obtained from the zeros of the non-equilibrium step free  energy23. Leaving aside 
whether non-equilibrium step free energy is well defined, the zeros of the step free energy explain why the surface 
is atomically and thermodynamically rough, and why the surface steps are not clear. We estimated �µc/ε for 
the Cuppen et al. results for the present case using Fig. 2 in Ref.23, giving a value of 1.3, where φ/kBT is 2.5, and 
�µc/kBT ∼ 3.3 . �µc/ε ∼ 1.3 is small compared with the Monte Carlo result of �µ

(001)
KtoB = 2.0.

It should be noted that the size of the critical nucleus is 1 at �µ/ε = 2.0 if we assume that the island shape 
is square (Eq. (14) in the Methods section). As stated by   Saito25, another criterion for �µc is that the size of the 
critical nucleus becomes sufficiently small. We may therefore adopt “the size of the critical nucleus is one” as the 
criterion for �µ

(001)
KtoB . According to the 2D single nucleation theory (see the “Analysis of 2D single nucleation” 

subsection in the Methods section), the quantities at equilibrium are �µ and γ̂s,total , where γ̂s,total is the total step 
free energy around the 2D island. The step free energy at equilibrium should be calculated in the long step length 
limit to correctly take into consideration the entropy for the zig-zag structure of a step. However, when the size 
of the critical nucleus becomes 2 or 1, the entropy for the zig-zag structure is almost excluded because the step 
is too short to take a zig-zag structure. Since the lattice structure is simple cubic, the shape of the nucleus can be 
assumed to be a square with straight sides for a small nucleus, resulting from the finite size effect. Then, from Eq. 
(14) in the Methods section, the size of the critical nucleus �c is given by �c = 2ε/�µ . For 1.0 < �µ/ε < 2.0 , 
the critical size of a square on a (001) terrace is less than 2 but larger than 1. This means that on average a single 
atom on the (001) terrace detaches. For 2.0 < �µ/ε , the critical size of a square on a (001) terrace is less than 
1. Hence, on average less than a single atom detaches from the (001) terrace. Therefore, we adopt “the size of 
the critical nucleus is one” as the criterion for �µ

(001)
KtoB . We will return to this point in the Discussion section.

AKPZ criteria
Here it is helpful to examine the extent of agreement between the Monte Carlo results and the KPZ equation. The 
crossover from BKT roughness to KPZ roughness on a surface can be discussed using the arguments proposed 
in Refs.52,61. The relationship between the surface velocity and the fluctuation width was discussed by  Wolf61 
using the renormalization group method based on the anisotropic KPZ (AKPZ) model. The values of �x̃ and �ỹ 
are given by

where p is the surface slope in the x̃ direction for an inclined surface.  Wolf61 reported the criteria for the clas-
sification of surface width as follows:

For the limit p → 0 , the surface growth velocity on an inclined surface can be expressed as V ≈ vsp for 
�µ < �µ

(001)
KPZ  (Fig. 4a,b). In the case of this �µ range, the surface grows based on a TSK process. In contrast, 

for �µ
(001)
KPZ < �µ < �µ

(001)
KtoB , islands are frequently formed on the (001) terraces. Using a magnified version of 

(7)V ∝ (vs)
2/3I1/3n

(8)�x̃ = ∂2V/∂p2, �ỹ = (∂V/∂p)/p,

(9)
�x̃�ỹ > 0 W ∝ Lα (algebraic rough)

�x̃�ỹ ≤ 0 α = 0, W2 ∝ ln L.
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Fig. 4a, we confirmed that V = V0 + cpp
2 + O (p3) for p → 0 , where cp is a positive coefficient at �µ/ε = 0.8 

with L = 320
√
2 . Note that this effect of the slope on V in the vicinity of p = 0 is revisited in the subsection 

titled “Kinetic shape changes of a crystallite.”
For �µ

(001)
KPZ < �µ < �µ

(001)
KtoB , ∂2V/∂p2 > 0 and (∂V/∂p)/p > 0 near p = 0 , giving a coefficient value of 

�x�y > 0 . Hence, the surface should be algebraically rough and the Monte Carlo data also show KPZ roughen-
ing on the surface.

In the case of �µ
(001)
KtoB < �µ , we have �x�y > 0 for the same reason as in the case of �µ

(001)
KPZ < �µ < �µ

(001)
KtoB . 

Consequently, the surface should be algebraically rough but the Monte Carlo results suggest BKT roughening. 

Figure 4.  The effects of slope, p and �µ on surface growth velocity. (a) The surface growth velocity scaled 
by V1.061 (the surface growth velocity at p = 1.061 ) as a function of the slope value. Line: Eq. (10). Symbols: 
L = 240

√
2a , 160

√
2a and 80

√
2a with a = 1 . Note that V is independent of system size. (b) A polar graph of 

surface velocity normal to the inclined surface, Vn = V/
√
g  , where g = 1+ p2x + p2y . Taking angle θ = 0 as the 

〈001〉 direction, Vn are plotted from the origin to the normal direction of the surface between the �1̄1̄1� ( −54.74◦ ) 
and 〈111〉 (54.74◦ ) directions. Dark shaded area: surface orientations less than −54.74◦ and larger than 54.74◦ . 
Light shaded area: terrace-step-kink (TSK) regions with 0.9 < |p| . L = 240

√
2 . (c) Surface growth velocity as a 

function of �µ for several slopes. L = 160
√
2a with a = 1 . kBT/ε = 0.4 . �µcr/ε = 0.3.

Figure 5.  Scaled surface widths as functions of the driving force with (a) p = 3
√
2/4 ≈ 1.061 , (b) 

p = 3
√
2/8 ≈ 0.530 and (c) p = 7

√
2/40 ≈ 0.247 . The upper subfigures show gW2 scaled by ln L . The lower 

subfigures show √gW scaled by Lα . kBT/ε = 0.4 . �µcr/ε = 0.3.
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Therefore, we conclude that the AKPZ criteria (Eq. (9)) are partly consistent with the Monte Carlo results for 
a (001) surface.

Inclined surfaces
This section clarifies the difference in surface roughness between a  TSK41,42 model surface and a surface with 
terrace roughness for inclined surfaces. In the ideal TSK model, an inclined surface consists of a train of elemen-
tary steps having unit heights with no islands or negative islands (that is, clusters of adholes) on the terraces.

Figure 5 summarizes the effect of �µ on the scaled surface width for several surface slopes and system sizes at 
a temperature of kBT/ε = 0.4 . Here, the upper subfigures show the squared surface widths scaled by ln L , while 
the lower subfigures present the surface widths scaled by Lα . In Fig. 6, the calculated scaled surface widths for 
several �µ and system sizes at a temperature kBT/ε = 0.4 are plotted as functions of slope. The upper subfigures 
show the squared surface widths scaled by ln L , while the lower subfigures show the surface width scaled by Lα 
with α = 0.385 (that is, the value of the KPZ roughness exponent).

The logarithmic divergence of gW2 for an inclined surface at equilibrium is well  established4,5,18,19,39. Here, 
g = 1+ p2x + p2y is the first fundamental quantity in the differential  geometry10,55. For all slopes near equilibrium, 
the surface with �µ/ε ≤ 0.3 exhibits BKT roughening (see Figs. 5 and  6a). Hence, the present work confirms 
that the crossover point between BKT and KPZ roughening of an inclined surfaces is �µcr/ε = 0.3.

Surfaces with almost ideal TSK structures
Hereafter, we consider an inclined surface for which �µcr < �µ . As is evident from Fig. 4a, in the case of large 
surface slopes ( 0.9 < p ) near the (111) surface, the surface growth velocities are in good agreement with one 
another because the surfaces have almost the ideal TSK structure due to the RSOS  restriction39,43,62. Figure 4c 
indicates the effect of �µ on V and demonstrates that V for p = 1.061 plateaus at 0.8 ≤ �µ/ε . Physically, surface 
growth occurs via the attachment and detachment of the atoms (here represented as cubes or growth units) at 
the step edges.

The lower subfigure in Fig. 5a demonstrates that, at p = 1.061 , a stepped surface without terrace islands 
becomes algebraically rough at �µcr < �µ . Here, the roughness exponent is α = 0.33 and so is slightly smaller 
than the expected value for a KPZ roughened surface. From Fig. 6b–d, it is apparent from the surface widths 
for surfaces with 0.9 < p < 1.25 that the surfaces are algebraically rough. In addition, the roughness exponent 
appears to gradually decrease as p increases.

At this point, it is helpful to ascertain agreement with the AKPZ criteria in Eq. (9). Since ∂(V/V1.601)/∂p < 0 
and ∂2V/V1.601/∂p

2 < 0 , �x̃�ỹ > 0 based on Eq. (9). Hence, the surfaces should be algebraically rough, which 
is consistent with the Monte Carlo results for 0.9 < p . For the limit p →

√
2 , the present numerical results con-

firm that ∂2(V/V1.601)/∂p
2 → 0 and that V = v

neg
s (

√
2− p) , where vnegs  is the step velocity for a negative step, 

meaning a step associated with a (111) terrace. These results demonstrate that the contribution of the nonlinear 
terms in the KPZ or AKPZ equation are reduced as p approaches 

√
2.

On this basis, we conclude that the effects of the slope and �µ on the surface width for 0.9 < p as obtained 
using the Monte Carlo method are consistent with the KPZ or AKPZ criteria.

Figure 6.  Scaled surface widths as functions of the slope. (a) �µ/ε = 0.2 . (b) �µ/ε = 0.8 . (c) �µ/ε = 1.4 . (d) 
�µ/ε = 2.2 . The upper subfigures show gW2 scaled by ln L . The lower subfigures show √gW scaled by Lα with 
a KPZ roughness exponent of α ≈ 0.385 . kBT/ε = 0.4 . �µcr/ε = 0.3.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16086  | https://doi.org/10.1038/s41598-023-43002-3

www.nature.com/scientificreports/

Kinetic shape changes of a crystallite
Figure 4c presents results for surfaces with p = 0.247 and 0.530 and shows that V increases steeply for 
�µ

(001)
kr < �µ as �µ increases, except for the surface for which p = 1.061 . This steep increase in V (other than 

the above exception) provides evidence that island formation on (001) terraces resulting from the 2D nucleation 
process causes a steep increase in V, as is also the case for p = 0.

When assessing crystal growth, it is interesting that the anisotropy with respect to V for �µ < �µ
(001)
KPZ  is 

large compared with that in the corresponding Wulff  figure63 showing the polar graph of the surface tension. 
This can be seen from Fig. 4b. The significant anisotropy of V indicates that the crystallite grows such that it has 
a wider (001) facet compared with the equilibrium shape for �µ < �µ

(001)
KPZ .

This effect occurs because there are two kinds of steps around p ∼ 0.7 associated with two kinds of terraces: 
the (001) and (111) terraces. As noted in the previous section, steps with (111) terraces and (001) side surfaces 
can be considered as negative steps. In this scenario, steps with small p values will grow to the right (e.g. see 
Fig. 7), whereas negative steps with large p values will grow to the left. For p values of 0.5–0.8, a surface having 
a mixture of steps including negative steps will grow in both directions (see the Supplementary Movie 1 S1). In 
the case of �µ < �µ

(001)
KPZ  , the surface velocity, V, can be written as

where w(001) and w(111) are the statistical weights for the number of steps determined by the surface slope, p. 
Because vs is approximately equivalent to vnegs  (see Eq. (15)) for �µ < �µ

(001)
KPZ  , the slope dependence of V 

is almost symmetrical along with p = 1/
√
2 (Fig. 4a). Figure 4a plots the line obtained from Eq. (10) with 

V1.061 = (vs + v
neg
s )3/(8

√
2) and this line is seen to be in good agreement around both limits p → 0 and 

p →
√
2 . It should also be noted that the values obtained using the Monte Carlo method for p ∼ 0.7 are higher 

than those produced by Eq. (10).
For �µ

(001)
KPZ < �µ , because ∂V/∂p = 0 at p = 0 , the planar shape on the (001) surface becomes unstable 

in conjunction with infinitesimally small fluctuations in the slope. Hence, a kinetic version of the faceting 
transition is expected to occur at �µ

(001)
KPZ  . For �µ

(001)
KPZ < �µ < �µ

(001)
kr  , V continues to exhibit a high degree 

of anisotropy. Hence, the (001) surface should not be planar but rather should exhibit some small degree of 
curvature. For �µ

(001)
kr < �µ , the anisotropy in V is drastically reduced in the vicinity of the (001) surface. In 

particular, in the region �µ
(001)
KtoB < �µ , the concentration of adatoms on the (001) terraces is so large that the 

elementary step as the edge of the (001) terrace cannot be well defined (see Fig. 7c,c’), similar to the behavior 
of a surface with TR < T.

(10)
V = vsp w

(001) + v
neg
s (

√
2− p)w(111),

w(001) = (
√
2− p)/

√
2, w(111) = p/

√
2,

Figure 7.  Images of simulated inclined surfaces. kBT/ε = 0.4 . �µcr/ε = 0.3 . (a) and (a′) �µ/ε = 0.8 . (b) and 
(b′) �µ/ε = 1.4 . (c) and (c′) �µ/ε = 2.2 . (a–c) Nstep = 8 . (a) L = 320

√
2 . (b) and (c) L = 240

√
2 . (a′), (b′) 

and (c′) p = 7
√
2/40 ≈ 0.247 surface. Nstep = 28 . L = 80×

√
2.
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Nonlinear effect
For p < 0.4 , the roughness change is complex due to the interplay between multilayered islands and steps. Near 
p = 0 , the surfaces are algebraically rough and √gW  decreases as p increases, as shown in Fig. 6b–d. With 
increases in p, a transition to a BKT roughened surfaces occurs near p ∼ 0.05 that is dependent on �µ . Here, 
the crossover point for p is denoted as p(p<0.4)

KtoB  . For �µ/ε = 0.8 , 1.4 and 2.2, p(p<0.4)
KtoB ≈ 0.017 , 0.051 and 0.073, 

respectively. In the vicinity of p = 0.3 , there is another transition to an algebraically roughened surface and this 
crossover point is denoted as p(p<0.4)

BtoK  . For �µ/ε = 0.8 , 1.4 and 2.2, p(p<0.4)
BtoK = 0.11 , 0.28 and 0.30, respectively. 

Both p(p<0.4)
KtoB  and p(p<0.4)

BtoK  increase as �µ increases.
Here, it is helpful to assess the level of consistency between Monte Carlo results and the AKPZ criteria. Using 

the data in Fig. 4a, the inflection point with respect to p was calculated based on the Monte Carlo data. This 
process gave 0.056, 0.17 and 0.14 for �µ/ε = 0.8 , 1.4 and 2.2, respectively and these inflection points are close to 
those for p(p<0.4)

KtoB  . That is, when p < p
(p<0.4)
KtoB  , ∂2V/∂p2 > 0 . On the basis of the criteria given by Eq. (9), the sur-

face should therefore be algebraically rough. In contrast, if p(p<0.4)
KtoB < p < 0.4 , ∂2V/∂p2 < 0 and Eq. (9) suggests 

that the surface should exhibit BKT roughening. Figure 7a–c demonstrate the coalescence of terrace islands to 
steps and this process enhances the step fluctuations for small values of p ( Nstep = 8 ). Therefore, we conclude that 
the nonlinear effect associated with surface growth makes the inclined surface near p = 0 algebraically rough.

Physically, the inflection point can be explained by an effect in which the inclined steps hinder the formation 
and free growth of multilayered islands. Figures 7a′–c′ present images of the surfaces for p = 0.247 ( Nstep = 28 ) 
and it is apparent that these surfaces appear different from those in (a), (b) and (c). In Fig. 7 a′–c′, fewer multi-
layered islands appear than in Fig. 2 and so it is evident that the KPZ structure was changed to a BKT structure.

In the case of p(p<0.4)
BtoK < p , the transition from BKT roughened to algebraically roughened cannot be explained 

by the KPZ criteria. The following subsection discusses the origin of this crossover point.

Competition between step growth velocity and nucleation rate on the terrace
From Fig. 5c, it is apparent that, for �µ/ε ∼ 1.5 at p = 0.247 , the surface width becomes BKT rough. A peak 
around �µ/ε ∼ 0.8 is also apparent. In our previous  work39, the peak was thought to be related to a kinetic 
roughening. However, from the extensive calculations in this study, that conclusion was found to be incorrect. In 
Fig. 7a′, the surface structure at �µ/ε = 0.8 is shown and this surface appears to be a TSK-type stepped surface. 
Few adatoms or adholes are seen on terraces in this area. Rather, as shown in the case of p = 1.061 , the TSK like 
surface crossovers from BKT rough to a power law rough for �µcr < �µ.

While, for the surface structure at �µ/ε = 1.4 , which is presented in Fig. 7b′, the elementary steps show 
numerous overhang structures and there are small numbers of islands or negative islands on the terraces. The 
poly-nucleated clusters on the terraces merge with growing steps, and then the step edges have generated over-
hang structures. Because islands having different heights or negative islands cannot merge completely with steps, 
the higher islands or lower negative islands act as obstacles to the growing steps. In this manner, fluctuations of 
the steps are reduced by the multi-height islands or negative islands. For �µ

(001)
kr < �µ , there is a non-negligible 

reduction in step fluctuations that produces a BKT roughened surface. As a result, the surface width decreases 
to form a peak as seen in Fig. 5c. We denote this crossover point for �µ as �µ

(p<0.4)

KtoB
 and note that �µ

(p<0.4)

KtoB
 is 

close to �µ
(001)
kr  when p = 0.247.

Discussion
In the case that of an inclined surface for which the temperature is higher than kBT/ε = 0.4 , the crossover 
point �µcr becomes  larger39. Hence, for kBT/ε = 0.63 and 1.7, �µcr/ε becomes 0.5 and 1.2,  respectively39. The 
population of adatoms on the (001) terraces will therefore be larger at higher temperatures and these adatoms 
will partially block the step fluctuations that generate surface BKT roughening.

In contrast, �µ
(001)
KPZ  decreases rapidly as temperature increases. Since the step free energy at equilibrium 

decreases as the temperature increases, 2D nuclei are formed more frequently, which leads to a crossover to poly 
nucleation easily. �µ

(001)
KPZ  becomes almost zero at kBT/ε ∼ 0.9 in our preliminary simulations.

Figures 4a,b reproduce qualitatively the characteristics of the angle dependence of the growth rate shown 
in Fig. 4 in the paper of Van Veenendaal et al.22, although the models are different from each other. At small 
�µ (Fig. 4 a in Ref. [22]), the angle dependence of the surface growth rate has a cusp singularity at p = 0 
for φ/kBT = 2 and �µ/kBT = 1 ( kBT/ε = 0.5 and �µ/ε = 0.5 ). For large �µ (Fig. 4 c in Ref. [22]), where 
φ/kBT = 2 and �µ/kBT = 3 , the angle dependence of the surface growth rate is parabolic at p = 0 . These 
agreements between the present results and Van Veenendaal et al.’s results around p = 0 indicate that the growth 
shape change of a crystalline near the (001) facet is a universal phenomenon associated with KPZ roughening.

On the other hand, for �µc for the (001) surface, our preliminary results were complex. If we adopt “the size 
of the critical nucleus is one” as the criterion for �µ

(001)
KtoB , �µ

(001)
KtoB does not depend on temperature if ε does not 

change. Referring to Fig. 2 in Ref.23, �µc decreases almost linearly from the value for kBT/ε = 0.5 to zero at about 
the Tc of the 2D nn Ising model. From our preliminary Monte Carlo results, there is a possibility that �µ

(001)
KtoB 

may be different from �µc . For the surface growth velocity, ∂V/∂�µ seems to change discontinuously around 
�µ/ε = 2.0 for several temperatures up to kBT/ε = 1.4 , which is lower than T(001)

R  but higher than Tc of the 2D 
nn Ising model. In addition, another characteristic point �µ

(001)
kr  also decreases as temperature increases. At 
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kBT/ε = 0.83 , �µ
(001)
kr /ε becomes about 0.2 with ∂2V/∂�µ2|�µ/ε=0.2 > 0 . While for kBT/ε = 1.4 , �µ

(001)
kr /ε 

is zero and ∂2V/∂�µ2|�µ/ε=0 is also zero. The surface is BKT rough at the region 0 ≤ �µ/ε < 2.0.
These preliminary results suggest that the interplay between KPZ roughening and BKT roughening around 

T
(001)
R  may occur. In this manner, the temperature dependences of �µc and �µ

(001)
KtoB are still open questions. 

Further studies are expected.

Conclusions
The following are the conclusions obtained from the present study of (001) surfaces.

• Monte Carlo results for 0 ≤ �µ < �µ
(001)
KPZ  show that the surface remains smooth during a single nucleation 

process. In contrast, in the case of �µ
(001)
KPZ ≤ �µ < �µ

(001)
KtoB , the surface undergoes KPZ roughening and 

grows via a 2D poly-nucleation process. The multilayer islands were found to be essential for the formation 
of the self-affine surface structure

• For �µ
(001)
KtoB ≤ �µ , the surface undergoes BKT roughening and is also kinetically and atomically rough 

with adhesive growth. The steps on the surface are difficult to define, similar to the case of a rough surface 
at temperatures defined by TR < T.

The conclusions for inclined surfaces are as follows.

• In the case of 0 < p <
√
2 , an inclined surface will exhibit BKT roughening for �µ < �µcr , where �µcr

39 
is a crossover point between BKT and algebraically rough surfaces

• The roughness of inclined surfaces varies in a complex manner depending on the values of �µ and slope, p, 
due to the interplay between step growth and the formation of multilayered islands on (001) terraces. The 
crossover points between BKT and algebraically rough surfaces are summarized in Table 1

• The surface growth velocity, V, exhibits greater anisotropy than that associated with surface tension for 
�µ < �µ

(001)
KPZ  due to the possibility of two kinds of steps: those with (001) terraces and those with (111) ter-

races. The growth shape of a crystallite involves a wider facet area than that at equilibrium. For �µ
(001)
KPZ < �µ , 

the non-equilibrium KPZ roughening transition induces a kinetic change in the crystallite shape on the 
nanoscale such that the (001) facets have very slightly curved surfaces. For �µ

(001)
KtoB < �µ , the anisotropy of 

V is drastically reduced such that the growth shape is expected to be nearly spherical
• The effects of the slope value on V and √gW are not equivalent but are approximately similar.

Methods
Analysis of 2D single nucleation
To obtain the nucleation barrier for a non-spherical shape, we introduce the scaling parameter � . Assuming the 
shape of the critical nucleus is similar to the 2D equilibrium crystal shape (ECS), γs,total is defined as the total 
step free energy of the ECS with the Lagrange multiplier being 1. If S is the area corresponding to the ECS, the 
island formation free energy, G, is given by

Table 1.  Characteristic driving forces and slopes ( L/(
√
2a) ≥ 240 , a = 1 ) for kBT/ε = 0.4.

Symbol Value/ǫ p Description

(001) Surface

�µ
(001)
KPZ

0.55 0 Smooth to KPZ rough surface transition point.

For �µ < �µ
(001)
KPZ

 , V = vsp ( p → 0 ); whereas for �µ
(001)
KPZ

< �µ , V = V0 + cpp
2 

( 0 < cp , p → 0 ). This change is explained by the AKPZ criteria.

�µ
(001)
kr

39 1.15 0 For �µ
(001)
kr < �µ , V0 becomes relatively large.

�µ
(001)
KtoB

2.0 0
Crossover point between a 2D poly-nucleation process (a KPZ roughened surface) 
and an adhesive growth process with kinetic and atomic roughening (a BKT 
roughened surface).

Inclined Surface

�µcr 0.3 0 < p <
√
2 Crossover point from a BKT roughened to algebraic or KPZ roughened  surface39.

�µ
(p<0.4)

KtoB
1.15 0.247

Crossover point from a KPZ roughened to BKT roughened surface.
This crossover is explained by the competition between the step growth velocity 
and 2D nucleation rate on terraces.

p
(p<0.4)

KtoB

Dependent 
on �µ

0–0.17 Crossover point from KPZ or algebraic roughened to BKT roughened surface.
This crossover is explained by the AKPZ criteria.

p
(p<0.4)

BtoK

Dependent 
on �µ

 0.1–0.4
Crossover point from BKT to algebraic or KPZ roughened surface.
This crossover is explained by the competition between the step growth velocity 
and 2D nucleation rate on terraces.
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where Ŝ is the area of the island and γ̂s,total is the total step free energy at the perimeter of the island. In the case 
that the island is the critical nucleus, ∂G/∂� = 0 and we have

Since G∗/kBT ≡ g∗/�µ , we can write

When the shape is a square with side length �a , we have Ŝ = (�a)2/a2 and γ̂s,total = 4(�a)(ε/a) , which leads to 
S = 1 and γs,total = 4ε . Then, we have

Estimation of v
s

To obtain the explicit form for vs , this work used parameters that provided the best least squares fit to the Monte 
Carlo results in Fig. 4 (c) for a negative step velocity vnegs  at p = 1.061 . Here, a negative step is defined as a step 
with a (111) terrace and (001) side surface, such that

The vs value at p = 0.09 was confirmed to equal vnegs  at p = 1.061 within a difference of 5%. The results obtained 
with p = 1.061 were employed to determine vs because there was a lack of nucleation on the (111) terraces for 
negative steps due to the RSOS restriction.

Data availibility
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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