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Application of serum SERS 
technology combined with deep 
learning algorithm in the rapid 
diagnosis of immune diseases 
and chronic kidney disease
Jie Yang 1,7, Xiaomei Chen 2,3,4,7, Cainan Luo 2,3, Zhengfang Li 2,3, Chen Chen 1, Shibin Han 5, 
Xiaoyi Lv 6, Lijun Wu 2,3* & Cheng Chen 6*

Surface-enhanced Raman spectroscopy (SERS), as a rapid, non-invasive and reliable spectroscopic 
detection technique, has promising applications in disease screening and diagnosis. In this paper, an 
annealed silver nanoparticles/porous silicon Bragg reflector (AgNPs/PSB) composite SERS substrate 
with high sensitivity and strong stability was prepared by immersion plating and heat treatment using 
porous silicon Bragg reflector (PSB) as the substrate. The substrate combines the five deep learning 
algorithms of the improved AlexNet, ResNet, SqueezeNet, temporal convolutional network (TCN) 
and multiscale fusion convolutional neural network (MCNN). We constructed rapid screening models 
for patients with primary Sjögren’s syndrome (pSS) and healthy controls (HC), diabetic nephropathy 
patients (DN) and healthy controls (HC), respectively. The results showed that the annealed AgNPs/
PSB composite SERS substrates performed well in diagnosing. Among them, the MCNN model had 
the best classification effect in the two groups of experiments, with an accuracy rate of 94.7% and 
92.0%, respectively. Previous studies have indicated that the AgNPs/PSB composite SERS substrate, 
combined with machine learning algorithms, has achieved promising classification results in disease 
diagnosis. This study shows that SERS technology based on annealed AgNPs/PSB composite substrate 
combined with deep learning algorithm has a greater developmental prospect and research value 
in the early identification and screening of immune diseases and chronic kidney disease, providing 
reference ideas for non-invasive and rapid clinical medical diagnosis of patients.

Primary Sjogren’s syndrome (pSS) and diabetic nephropathy (DN) are a chronic  disease1,2. As an autoimmune 
disease, the average prevalence of pSS is 0.06%, among them, women are 9 times more than  men3. An estimated 
35 million people worldwide will be  affected4,5. DN is one of the world’s most common chronic kidney diseases, 
diabetes accounts for 11.3% of global deaths. Some studies suggest that by 2025, 472 million people will have 
diabetes  worldwide6–8. In addition, pSS and DN can lead to severe  complications9,10. As the number of patients 
continues to grow in recent years, it has caused severe economic pressure on the state, society and individuals. 
Therefore, early screening is vital to reduce the incidence of pSS and DN and to improve disease management and 
patient prognosis. Currently, salivary gland biopsy is an essential indicator for the diagnosis of  pSS11. However, 
this is an invasive method, and the accurate interpretation of the biopsy is susceptible to the subjective experience 
of the physician, leading to misdiagnosis. The Glucose Tolerance Test (OGTT) method is the “gold standard” for 
the early diagnosis of  DN7. However, the test is complex and time-consuming, and it can cause discomfort and 
increase the psychological burden of patients, making it unsuitable for mass population screening.
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Raman spectroscopy is a non-invasive, fast and accurate optical detection technique. It can give fingerprint 
information on molecular structure and  content12 and has raised much interest in medical screening, environ-
mental protection, and food  safety13–15. However, in practical applications, the weak signal intensity of Raman 
spectroscopy, small scattering cross section and susceptibility to fluorescence interference limit its application 
in molecular detection. Surface-enhanced Raman spectroscopy (SERS), a method based on adsorption on metal 
nanostructures to amplify the Raman signal of analytes, can enhance the signal to  1010–1014 times in the active 
matrix, increasing the sensitivity of Raman spectroscopy as much as  possible16,17. At present, SERS technology 
has become a promising bioassay technology for a wide range of applications in cancer, genetic diseases and 
infectious  diseases18–20. With the rise of SERS technology, there is also increasing interest in choosing SERS metal 
substrates. Numerous studies have shown that the silver nanoparticles (AgNPs) structure has good stability and 
reproducibility and is a low-cost and scalable  method21–23, so AgNPs have become the preferred SERS substrate 
for researchers. In addition, in studies focusing on SERS detection, related reports indicate that porous silicon 
(PSi) is a rather suitable SERS  substrate24–26. It has many favorable properties, such as large surface area, open 
porous structure and non-toxicity25,27. In recent years, people have tried to combine PSi with nano-precious metal 
particles to apply SERS technology, and outstanding achievements have also been made. For example, in 2020, 
Wali et al. prepared a new generation of AuNPs/PSi SERS-active substrates with strong enhanced performance 
and reproducibility, and the substrates exhibited efficient detection  capabilities28. In 2021, Gao et al. designed a 
SERS substrate to diagnose cervical and breast cancer. Combining gold nanoparticles with porous silicon pho-
tonic crystals with a central wavelength of 785 nm has prepared a SERS substrate with excellent performance. It 
has realized cervical and breast cancer detection in clinical  medicine16. In addition, annealing helps to optimize 
the particle size and morphological structure of silver nanoparticles, which further optimizes the electric field 
distribution of silver nanoparticles, thus enabling more sensitive SERS  performance29,30.

SERS technology is widely used in the biomedical field because it can significantly enhance the Raman signal 
of biological samples such as serum and urine. Its combination with deep learning algorithms can further expand 
the application of SERS technology to achieve rapid screening of diseases. Related studies have shown that deep 
learning algorithms better analyze spectral signals, including Raman  spectra31–33. Recently, Raman spectroscopy 
combined with deep learning algorithms has been well used in disease detection and diagnosis. For example, 
Chen et al. used various deep learning algorithms, such as multilayer perceptron (MLP) and recursive neural 
network (RNN), combined with serum Raman spectroscopy, achieved screening and diagnosis of glioma, and 
achieved better  results34. At the same time, in diagnosing other diseases, there are also many applications of deep 
learning combined with SERS technology. For example, Cheng et al. fabricated a SERS substrate consisting of a 
composite of Au–Ag nanocomplexes and ZnO nanopillars. They combined it with a CNN classifier and achieved 
an innovative biosensing method for liver  disease35. Shin et al. collected plasma samples from healthy controls 
and lung cancer patients and obtained SERS spectra of exosomes. They used deep learning spectral analysis of 
SERS technology to identify lung cancer patients. Finally, the feasibility of combining SERS spectroscopy with 
deep learning in screening plasma samples for lung cancer was  shown33. In general, the combination of SERS 
technology and deep learning algorithm has made a tremendous breakthrough in clinical medical diagnosis and 
is full of great potential in the  future35.

In this study, we fabricated an annealed AgNPs/PSB composite SERS substrate with high sensitivity and 
strong stability by immersion plating and heat treatment using PSB as the substrate. In addition, reproducible 
and simple silicon-based SERS substrate preparation processes and good biocompatibility offer opportunities for 
the commercial development of SERS substrates. In previous studies, the stability of the AgNPs/PSB composite 
SERS substrate has also been demonstrated. Feature extraction was conducted using PCA, and in combination 
with machine learning, an SVM classification model was established, leading to favorable diagnostic  outcomes36. 
In this paper, to further verify the potential of the SERS substrate and technology in disease diagnosis, we 
constructed two groups of experiments for HC/pSS and HC/DN. The experiment established five classification 
models based on serum SERS spectrum combined with deep learning algorithm: AlexNet, ResNet, SqueezeNet, 
TCN and MCNN. Both sets of experimental results showed that the combination of SERS spectroscopy and deep 
learning algorithms could quickly and effectively distinguish healthy controls from chronic disease patients. 
Therefore, this study shows the feasibility of the SERS technology based on the annealed AgNPs/PSB composite 
substrate combined with deep learning algorithms for the diagnosis of immune diseases and chronic kidney 
diseases. From the perspective of SERS spectrum, it provides an interesting and effective reference idea for the 
rapid identification and screening of immune diseases and chronic kidney diseases.

Materials and methods
Chemicals
The silicon wafers were purchased from Tianjin Semiconductor Research Institute. Silver nitrate  (AgNO3), hydro-
fluoric acid (HF) and ethanol  (CH3CH2OH) were purchased from Sinopharm Chemical Reagent Co. All were 
analytical standards available for use with no purification of any kind. The entire experiment used ionized water.

Experimental materials
All samples in our study were obtained from the People’s Hospital of Xinjiang Uygur Autonomous Region 
and were approved by the Ethics Committee of the People’s Hospital of Xinjiang Uygur Autonomous Region 
(KY20220311003). All studies were conducted in accordance with relevant guidelines/regulations, and informed 
consent was obtained from all participants. In this experiment, a total of 9 pSS patients, 10 DN patients and 7 
healthy controls were collected, and fresh blood samples were collected. Table 1 contains demographic informa-
tion about the patients and healthy controls, such as their age and sex. Anticoagulant-free peripheral blood was 
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drawn. Centrifuge at 4000 r/min for 5 min at 4 °C, and then obtained the serum from the uppermost clear night, 
and stored it in a − 80 °C refrigerator for subsequent spectrum collection.

Preparation of SERS substrates
In our method, PSB was first prepared by anodic electrochemical etching. A p-type boron-doped single crystal 
silicon wafer (crystal orientation < 100 >) with the resistivity of 0.03–0.06 Ω·cm was cut into 2 × 2  cm2 squares. 
Then acetone, anhydrous ethanol and deionized water in the ultrasonic cleaner for 10 min to reduce the impact 
of impurities such as dust and grease on corrosion. Then put the silicon wafer into the etching tank, among them, 
wherein the etching tank was made of polytetrafluoroethylene, and the etching solution in the etching tank was 
composed of HF and anhydrous ethanol according to the mixed concentration ratio of 1:1. Then the Labview 
program was used to set the high and low refractive index layers, where the current densities were 65 mA/cm2 
and 115 mA/cm2, and the etching times were 1.2 s and 1 s, respectively. In the corrosion process, to ensure suf-
ficient fluoride and the uniformity of corrosion, each layer of PSi was formed in a ventilated environment with a 
time interval of 3 s. The corroded PSi was then rinsed with ionized water and dried in a nitrogen  atmosphere36.

Then AgNPs were reduced on the PSB surface by taking advantage of a large number of Si–H bonds on 
the PSB and the reducing nature of the bonds. In the experiment, we immersed the prepared PSB substrate in 
 AgNO3 solution with a concentration of 0.01 M and used the immersion plating method to reduce AgNPs on 
the PSB in situ.

Finally, annealing treatment was performed, and the prepared substrate was annealed using a muffle furnace. 
We annealed at 300 °C for 1 h to complete the annealing of the AgNPs/PSB substrate.

SERS data acquisition
The SERS measurement scheme of serum samples on AgNPs/PSB substrates is shown in Fig. 1. SERS spectra of 
serum samples were acquired using a high-resolution confocal Raman spectrometer (LabRAM HR Evolution, 
gora Raman spectroscopy, ideaoptics, China). The laser wavelength was 785 nm, the laser power was 160 mW, 
the power irradiated on the sample surface was 112 mW, the objective lens specification (NA = 10 × , the laser spot 
size was 2.2 μm), and the spectral resolution of the spectrometer was 5  cm–1, and the integration time was 15 s. 
The laser beam was focused on the sample surface by a 10 × mirror, with a spectral range from 400 to 1800  cm−1. 
Different positions of each sample were measured 3 times, and 27 spectra were obtained for pSS patients, 30 
spectra for DN patients and 21 spectra for HC, for a total of 78 spectral data.

Table 1.  Demographic information of pSS patients, DN patients and healthy controls.

pSS DN HC

(n = 9) (n = 10) (n = 7)

Age

 Mean 51.2(± 7.9) 53.6(± 8.1) 52.5(± 8.3)

Gender

 Male 3 6 2

 Female 6 4 5

Figure 1.  Serum SERS measurement protocol.
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Data preprocessing
Since the serum SERS spectrum collected by the spectrometer is interfered with by factors such as measure-
ment conditions, detection environment and hardware facilities, the spectrum is complex, which will affect the 
analysis effect to a large extent. Therefore, performing a preprocessing operation on the collected spectral data is 
necessary. In the experiment, we corrected by using the morpho3.2 software in the instrument (Version 3.2.26, 
Shanghai Fuxiang Optics Co., Ltd, Building 4, No. 200 Guoding East Road, Yangpu District, Shanghai). The 
instrument response in the spectrum was corrected by subtracting the dark current, detector response and optical 
system signal. The adaptive iteratively reweighted penalized least squares (airPLS) method has the advantages of 
simplicity, convenience and  flexibility37,38, and is the most widely used method for baseline correction in recent 
years. It mainly introduces sparse matrix technology and adaptive iterative technology, which can quickly fit the 
difference between the baseline and the original  signal39. Therefore, in this paper, we used the airPLS method for 
baseline correction. The airPLS parameters were set as follows: the number of iterations was 500, the threshold 
was 0.1, the asymmetry factor was 0.05, and the number of baseline points was 30. Then the SERS spectrum was 
linearly normalized to convert the input spectral data to the range of [0–1]. Its formula is:

Among them, xl and y are the values before and after normalization, respectively, and xmax and x min are the 
maximum and minimum values of the sample data, respectively. This can eliminate noise interference and reduce 
data complexity, thus improving the convergence  speed40. The preprocessing of this experiment was carried out 
in Matlab2016b.

Classification model
Deep learning has become a hot topic of discussion in artificial intelligence, capable of efficiently processing data 
such as images, speech, and  texts41. With the vigorous growth of the deep learning industry and the update of 
computer hardware, deep learning has shown its advantages and capabilities over traditional machine learning. 
It is now commonly used in medical diagnostics, food safety and bioinformatics. In addition, improvements to 
the model will further improve deep learning performance. Deep learning also has a higher fault tolerance and 
greater adaptability compared to machine  learning42. Similarly, deep learning has recently been applied to spectral 
signal  analysis32. Therefore, in the future, deep learning will have more excellent development prospects and 
application value in research. In this study, the models we constructed are AlexNet, ResNet, SqueezeNet, TCN 
and MCNN. Among them, the first four are deep learning algorithms with broad influence in recent years, and 
MCNN is a novel model we have designed. During the experiment, all the 2D convolutional layers of the model 
were changed to 1D convolutional layers. The selected optimizer was Adam. The number of iterations was 200, 
the batch was set to 24, and the learning rate was 0.000001. Figure 2 shows the structure of the five models. The 
classification model was established and realized through Python3.7.6. The code for this study was available at 
https:// github. com/ tianq iong6 19/ The- five- neural- netwo rks.

AlexNet is the classical CNN model, and its appearance significantly advanced the progress of deep learning. 
AlexNet can not only effectively avoid gradient dispersion but also has significant advantages for handling com-
plex  data43. Due to this study’s small number of samples, the 1-dimensional spectral data contained a relatively 
small number of features. To improve the performance, we made improvements to AlexNet. The structure of 
the fine-tuned AlexNet model is shown in Fig. 2a. The model consists of five 1D convolutional layers, the aggre-
gation layers of the first two convolutional layers are deleted, and the Relu activation function is used, with a 
Dropout of 0.5 and 0.2 for the fully connected layers to prevent overfitting of the model. The input data is feature 
extracted through multiple convolutional layers, and then the information extracted by the convolutional layer 
is compressed through the pooling layer. The flatten layer converts the data output by the pooling layer into one-
dimensional data, and then passes through two ReLu activation layers, and finally passes through the softmax 
function outputs classification probabilities.

ResNet innovatively introduces the residual module on the neural network. The residual block adopts the 
idea of constant mapping, and the use of shortcut connections effectively solves the problems of vanishing and 
exploding gradients, as well as model degradation in deep networks. Compared with the regular model, a short-
circuit mechanism is added to enable deeper layers to function through residual  learning44. Figure 2b shows this 
study’s structure of the ResNet network. The model contains eight residual blocks, where the activation functions 
of the convolution and dense layers use ReLu and softmax, respectively. The convolutional layer performs feature 
extraction on the input data, and then passes through eight residual blocks in turn, and then the flatten layer 
converts the output data of the residual block into one-dimensional data, and finally outputs the classification 
result of the spectral data through softmax.

SqueezeNet is a classic lightweight network that maximizes computing efficiency without reducing model 
accuracy, not only optimizing the network but also lowering the computational  cost45. SqueezeNet takes a dif-
ferent approach from traditional convolution and proposes the Fire module. Among them, the Fire module is 
composed of 3 convolutional layers, including 1 squeeze module and 2 extension modules. Figure 2c shows this 
study’s structure of the SqueezeNet network. The SqueezeNet model includes four Fire modules. The spectral 
data first passes through the convolutional layer and the pooling layer to extract and compress the local infor-
mation of the original features, then passes through the four Fire modules in turn, and then passes through the 
convolutional layer with a kernel of 2, and finally the results of model processing are output through the global 
avgpool layer and softmax layer.

TCN is an advanced time series processing network. The expanded TCN architecture consists of residual 
blocks containing causal convolutional layers. Causal convolution continues the way CNN imitates LSTM, which 

(1)y =
x1 − xmin

xmax − xmin

,

https://github.com/tianqiong619/The-five-neural-networks
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other CNN models do not  have46. Because the object of study is spectral data, the designed TCN uses a one-
dimensional convolutional network. The fine-tuned TCN model structure is shown in Fig. 2d. The TCN designed 
in this paper contains two residual blocks, each consisting of two causal convolutional layers. The input data first 
passes through two residual blocks, then the flatten layer converts the features output by the residual block into 
one-dimensional data, and finally the softmax function outputs the classification result.

Figure 2.  The structure diagram of the five models after fine-tuning: (a) AlexNet model, (b) ResNet model, (c) 
SqueezeNet model, (d) TCN model, (e) MCNN model.
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The MCNN model mainly performs feature extraction through different convolutional layers and integrates 
some novel ideas. The structure of MCNN is shown in Fig. 2e. It mainly consists of three 1D convolutional lay-
ers, one flatten layer, and two fully connected layers. In this study, LeakyRelu is used as the activation function, 
a batch normalization layer (BN) is introduced to improve the model training and convergence speed further, 
and a dropout layer is added to avoid model overfitting and gradient disappearance. To extract more detailed 
and sufficient features of spectral samples, we build three convolutional layers, and the kernel size increases with 
the deepening of the convolutional layers. The input spectral data passes through three convolutional layers and 
the LeakyRelu layer in turn, then the network fuses the features extracted from the three layers so that features 
of different depths can be taken into account. The flatten layer then converts the features in the convolutional 
layer into one-dimensional data and connects a fully connected layer. Finally, softmax outputs the classification 
results of the SERS spectral data.

Model metrics
We used different metrics to evaluate the performance of the five classification models, namely Sensitivity, 
Specificity, Precision, and Accuracy. According to Table 2, the index values were calculated with the formulas 
as (2, 3, 4 and 5):

Results
SERS effect of serum samples
Figure 3a and b show the comparison of the surface morphology of the SERS substrate before and after high 
temperature annealing. The particle size of silver nanoparticles prepared by immersion-plating method before 
annealing is 80 ~ 200 nm, and the particle size of silver nanoparticles changes obviously after annealing, and the 
particle size is 20 ~ 70 nm. We compared with the AgNPs before high-temperature annealing, Fig. 3b can show 
that the particle size of our AgNPs is more uniform after annealing. To demonstrate the enhancement effect of 

(2)Sensitivity =
TP

TP + FN
,

(3)Specificity =
TN

FP + TN
,

(4)Pr ecision =
TP

TP + FP
,

(5)Accuracy =
TP + TN

TP + TN + FP + FN
.

Table 2.  Confusion matrix.

Predicted

Observed

Positive Negative

Positive TP FP

Negative FN TN

Figure 3.  (a) and (b) Comparison of substrate surface morphology before and after annealing.
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our prepared AgNPs/PSB substrates of sera, we measured serum SERS spectra and conventional Raman spectra 
of pSS patients on a dry surface. As shown in Fig. 4, we plotted the mean Raman, mean SERS spectra of pSS 
patient serum samples. Among them, the shaded area represents the standard deviation of the mean. As could 
be seen from the shaded area in the figure, there were fluctuations in the same spectrum at different peaks. But 
at the same time, there were significant differences between the two spectra at some peaks, such as at 520  cm–1, 
635  cm–1, 846  cm–1, 1120  cm–1, 1439  cm–1, etc. By comparing the SERS spectrum of the serum sample with the 
conventional Raman spectrum, it showed that the SERS enhanced data collected in the experiment was helpful 
to the subsequent classification experiment model.

Spectral analysis of serum SERS
Figure 5 shows the mean serum Raman spectra of HC and pSS, HC and DN after pretreatment over the 400  cm−1 
to 1800  cm−1 range. As shown, the waveforms of the different spectra in patients and healthy controls were simi-
lar, but the magnitude of fluctuations differed. The serum SERS spectra of pSS patients peaked at 520, 635, 714, 
1120, 1317, 1439 and 1652  cm−1, and these peaks also appeared in the SERS spectra of sera from DN patients 
and HC. The differences in SERS spectra between HC and pSS patients and HC and DN patients demonstrate 
that the lesions in pSS and DN cause changes in blood composition, resulting in differential SERS spectral 

Figure 4.  Comparison of SERS spectra and conventional Raman spectra of pSS patients (the shaded area 
represents the standard deviation of the mean).

Figure 5.  (a) is the normalized mean Raman spectrum of HC/pSS (the shaded area represents the standard 
deviation of the mean). (b) is the normalized mean Raman spectrum of HC/DN (the shaded area represents the 
standard deviation of the mean).
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intensity between the two groups. This provides an essential theoretical basis for accurately classifying patients 
and healthy controls.

Sample division
To prevent the SERS spectra from being confused with the training set and test set data due to random division, 
and to ensure the real validity of the experimental results. We collected three measurements of each serum 
sample as a set and divided them into training and test sets in a 7:3 ratio. To measure the model’s prediction 
performance and reduce overfitting, we used a five-fold cross-validation to validate the model and calculate the 
average of the results of the five runs.

Data augmentation
Data augmentation is a commonly used method to expand the sample size of the training set, and it can effectively 
increase the diversity of the training set. In recent years, data augmentation combining spectral data and deep 
learning has been widely used in disease  diagnosis47. Among them, data augmentation methods using Gaussian 
white noise are also used more often in spectroscopy  studies40,48. To increase the amount of data to improve the 
generalization ability of the model, in this study, we expanded the training set by a factor of 10 with Gaussian 
white noise of different intensities. The final spectrum data for pSS was 207, the spectrum data for DN was 240, 
and the spectrum data for HC was 171.

Classification model results
In this experiment, pSS patients, DN patients and HC were divided into two groups. The 1st group was HC and 
pSS, and the 2nd group was HC and DN. The predicted values and results of the detailed results of the model five-
fold cross-validation are shown in Supplementary Tables S1–S20, and the strip plots are shown in Supplementary 
Material Figs. S1–S50. The results of the five models are shown in Table 3. In the first group of experiments with 
HC and pSS patients, the MCNN model had the highest classification accuracy of 94.7%. Among them, the 
accuracy rates of AlexNet, SqueezeNet and TCN models all exceed 85%, while the ResNet model had a lower 
accuracy rate than other models, which was 82.7%. In order to further evaluate the classification performance 
of the five models, we plotted the receiver-operating characteristic (ROC) curves. AUC is the area-under-the-
ROC curve, and the larger the AUC value, the better the experimental effects. Figure 6 shows the ROC curve 
of the average results of the model runs. Among them, the AUC of the MCNN model was 0.989, and the AUC 
of the ResNet model was the lowest, which was 0.919. In the experiments of the second group of HC and DN 
patients, the MCNN model achieved the best results in terms of accuracy, sensitivity, specificity, precision, and 
AUC, with 92.0%, 95.6%, 86.7%, 91.6% and 0.972, respectively. The accuracy, sensitivity, specificity, precision and 
AUC of the SqueezeNet model were not ideal, which were 76.0%, 64.4%, 93.3%, 96.4% and 0.825, respectively. 
Combining the results of the evaluation indexes of the two experimental models, we believed that the MCNN 
model had the best discriminatory effect on patients.

Discussion
SERS, as a rapid, non-invasive and reliable spectroscopic detection technique, reflects biomolecules’ rich chemical 
fingerprint information, such as proteins, nucleic acids and  lipids49,50. Table 4 lists the major Raman peak posi-
tions and assignments of serum SERS spectra. In combination with the spectrograms and Table 4, the Raman 
peaks located at 566, 635, 776, 846, 924, 980, 1120, 1190 and 1652  cm−1 were observed, and the peaks at these 
bands were higher for pSS and DN patients than for HC. Raman peak at 566  cm−1 represents tryptophan, Raman 
peak at 635  cm−1 represents tyrosine, Raman peak at 846  cm−1 represents valine, Raman peak at 924  cm−1 rep-
resents C–C stretching of proline and collagen, Raman peak at 1120  cm−1 represents carotene, and Raman peak 
at 1652  cm−1 represents lipid. This suggests that pSS and DN patients have higher levels of tryptophan, tyrosine, 
valine, carotene and lipid than HC. Raman peaks at 520, 714 and 1439  cm−1, the Raman peak intensity of HC 
was higher than pSS and DN patients. Raman peak at 520  cm−1 represents proteins, Raman peak at 714  cm−1 
represents polysaccharides, and Raman peak at 1439  cm−1 represents phospholipids. This suggests that blood 

Table 3.  Experimental results of the five models.

Comparison group Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC 

HC vs pSS

AlexNet 89.3 100 73.3 85.1 0.941

ResNet 82.7 97.8 60.0 78.7 0.919

SqueezeNet 92.0 97.8 83.3 89.8 0.958

TCN 93.3 100 83.3 90.0 0.988

MCNN 94.7 100 86.7 92.0 0.989

HC vs DN

AlexNet 88.0 95.6 76.7 86.5 0.949

ResNet 80.0 84.4 73.3 84.0 0.853

SqueezeNet 76.0 64.4 93.3 96.4 0.825

TCN 82.7 97.8 60.0 78.9 0.900

MCNN 92.0 95.6 86.7 91.6 0.972



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15719  | https://doi.org/10.1038/s41598-023-42719-5

www.nature.com/scientificreports/

composition in patients with pSS and DN has altered, resulting in less concentration of proteins, polysaccha-
rides and phospholipids in patients than in HC. Raman peak at 1317  cm−1 represents guanine, Raman peak at 
1524  cm−1 represents carotenoid, Raman peak at 1577  cm−1 represents phenylalanine. The pSS patients at these 
peaks were higher than HC, while the peaks in DN patients were slightly lower than HC. The difference in Raman 
spectral intensity at the peak between patients and healthy controls reflects the differences in the content of 
substances such as polysaccharides, protein and lipids in the human body. Therefore, this provides a feasibility 
and biological basis for using serum SERS spectroscopy to identify both types of samples.

In order to evaluate the accuracy of screening using serum SERS spectrum, we constructed two groups of 
experiments for HC/pSS and HC/DN, respectively, and proposed a study on the identification of immune diseases 
and chronic kidney disease using SERS spectrum combined with deep learning algorithms. In order to increase 
the robustness and generalizability of a model, we introduced data augmentation to the small sample dataset and 
expanded the training set by a factor of 10 using a Gaussian white noise approach. In addition, to further verify 
experimental reliability and determine the best classifier, we used a five-fold cross-validation method. The final 
evaluation criteria were based on the average of five times for each evaluation index. The experimental results 
show that in the HC and pSS experiments, the MCNN model performs the best, followed by TCN, and ResNet 
has a lower accuracy compared to other models. In another set of HC and DN experiments, the MCNN model 
achieved the best results, followed by AlexNet, while the SqueezeNet model had the lowest accuracy. Similarly, 
we plotted ROC curves to further evaluate the comprehensive performance of different model classifications, 
and MCNN performed best in both sets of experiments. Therefore, comparing the evaluation indicators of the 
two groups of experiments, the overall performance of the MCNN model was better than other models. The 
different results of the two sets of experiments may be related to the structure and characteristics of the model. 
Simple structured networks such as MCNN and AlexNet can learn useful information better, while the complex 

Figure 6.  (a) ROC curves of five models of HC and pSS. (b) ROC curves of five models of HC and DN.

Table 4.  Main Raman peak locations and assignments for human serum SERS spectra.

Wavenumber  (cm–1) Assignment

520 Proteins51

566 Tryptophan52

635 Tyrosine53

714 polysaccharides54

776 Phosphatidylinositol55

846 Valine51

924 C–C stretching of proline and  collagen56

980  =CH bending (lipids)55

1120 Carotene57

1190 Cytosine58

1317 Guanine59

1439 Phospholipids54

1524 Carotenoid55

1577 Phenylalanine60

1652 Lipid (C=C stretching)59
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network structure of ResNet and SqueezeNet does not work well instead. It also shows that complex deep learn-
ing networks are not always suitable for the feature mining of small samples. It is not necessary that the more 
the network structure is complex, the more effective the model is.

Previous research has indicated that the AgNPs/PSB composite substrate possesses favorable stability. By 
establishing a PCA-SVM model, the authors have demonstrated the superiority of combining SERS technol-
ogy with machine learning algorithms for disease screening purposes. This study shows the feasibility of SERS 
technology based on annealed AgNPs/PSB composite substrates combined with deep learning algorithms for the 
diagnosis of immune diseases and chronic kidney disease, which has a great development prospect and research 
value in the early identification and screening of immune diseases and chronic kidney disease. However, there 
may be limitations in the study because of the limited sample size of the current study. Thus, we intend to collect 
more sample data in the future to evaluate further the effectiveness of SERS technology combined with deep 
learning for the screening of immune diseases and chronic kidney disease. Through the validation analysis of 
this exploratory study, SERS technology combined with strong deep learning algorithms can be innovatively 
extended to the research of different diseases and the screening of special populations.

Conclusion
In this study, we developed an annealed AgNPs/PSB composite SERS substrate using PSB as a substrate, synthe-
sized by an immersion plating and heat treatment method, and used serum SERS spectroscopy combined with 
deep learning algorithms achieved rapid and accurate diagnosis of patients with different diseases. For HC/pSS 
and HC/DN, we constructed two sets of experiments, established five deep learning classification models, and 
used five-fold cross-validation to ensure the experiments’ reliability further. The results show that the MCNN 
algorithm is the most stable, with high accuracy, sensitivity and precision. Therefore, this study shows that SERS 
technology based on annealed AgNPs/PSB composite substrate combined with deep learning algorithm has a 
greater developmental prospect and research value in the early identification and screening of immune diseases 
and chronic kidney disease, providing reference ideas for non-invasive and rapid clinical medical diagnosis of 
patients.

Data availability
The datasets generated and analysed during the current study are not publicly available due to the nature of this 
research but are available from the corresponding author on reasonable request.
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