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Magnetization reversals 
in core–shell sphere clusters: 
finite‑element micromagnetic 
simulation and machine learning 
analysis
Hyeon‑Kyu Park  & Sang‑Koog Kim *

Recently developed permanent magnets, featuring specially engineered microstructures of 
inhomogeneous magnetic phases, are being considered as cost-effective alternatives to homogeneous 
single-main-phase hard magnets composed of Nd2Fe14B, without compromising performance. 
In this study, we conducted a comprehensive examination of a core–shell sphere cluster model 
of Ce-substituted inhomogeneous Nd2-δCeδFe14B phases versus homogeneous magnetic phases, 
utilizing finite-element micromagnetic simulation and machine learning methods. This involved a 
meticulous, sphere-by-sphere analysis of individual demagnetization curves calculated from the 
cluster model. The grain-by-grain analyses unveiled that these individual demagnetization curves 
can elucidate the overall magnetization reversal in terms of the nucleation and coercive fields for 
each sphere. Furthermore, it was observed that Nd-rich spheres exhibited much broader ranges of 
nucleation and coercive field distributions, while Nd-lean spheres showed relatively narrower ranges. 
To identify the key parameter responsible for the notable differences in the nucleation fields, we 
constructed a machine learning regression model. The model utilized numerous hyperparameter 
sets, optimized through the very fast simulated annealing algorithm, to ensure reliable training. 
Using the kernel SHapley Additive eXplanation (SHAP) technique, we inferred that stray fields among 
the 11 parameters were closely related to coercivity. We further substantiated the machine learning 
models’ inference by establishing an analytical model based on the eigenvalue problem in classical 
micromagnetic theory. Our grain-by-grain interpretation can guide the optimal design of granular hard 
magnets from Nd2Fe14B and other abundant rare earth transition elements, focusing on extraordinary 
performance through the careful adjustment of microstructures and elemental compositions.

Demagnetization curves, magnetization hysteresis curves on the second quadrant, provide useful information on 
the characteristic properties of hard-magnetic materials1–3. The magnetic energy product BH and its maximum 
(BH)max, or magnetostatic energy can be calculated from the demagnetization curves, besides the remanence and 
coercivity that can be directly obtained from them. In this respect, the demagnetization curves of granular hard 
magnets are the key to understanding magnetization reversals and enhancing the performance of hard magnets. 
Thus, the characteristic shape of demagnetization curves has been intensively studied from earlier theoretical 
works including macrospin approximation4,5, Sharrock equation6–8, linear response theory9, Avrami kinetics10, 
Jiles-Atherton equation2,11, Preisach formalism12, and micromagnetic theory1,13,14. The micromagnetic theory and 
simulations allow determining demagnetization curves (or hysteresis curves) according to a variety of factors 
including intrinsic material parameters15,16, microstructures12,17–31, and damping constant and field sweep rate8,26, 
thus helping understand correlations between the demagnetization curve and the microstructures/compositions 
of granular magnets. For example, the microstructure effects of individual grains on the macroscopic perfor-
mance of hard magnets have been extensively investigated in terms of the size20,23–25, crystallographic orientation 
of grains18–24, as well as precipitated phases within grain boundaries, and their thickness15,24,27–31. Very recently, 
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several machine-learning models have also revealed the correlations between coercivity and (BH)max, switching 
field, and hysteresis loop with microstructure fingerprints. This AI-driven understanding of key microstructure 
factors has played a pivotal role in custom designs of the internal microstructures of hard magnets15,16,20,24.

In this context, it is intriguing to explore the underlying physics of magnetization reversals in core–shell 
multi-main phase (MMP) magnets. Such magnets were fabricated from conventional magnetic materials dur-
ing dual-alloy processes, with the aim of substituting the costly neodymium (Nd) element with more abundant 
lanthanides such as La and Ce30,32,33. For example, it was reported that the MMP magnets incorporating 36 wt% 
La-Ce exhibited ~ 27% higher cost performance than that of the single-main-phase magnets with the same 
composition, albeit with a roughly 15% reduction in the (BH)max value32. The enhanced cost performance was 
attributed to exchange coupling at the interfaces and intergranular dipolar interaction, according to measure-
ments of the Curie temperature and recoil curves.

Also, several machine learning models were applied in studies of hard-magnetic materials to deduce the 
input-to-output relationships of magnetic properties, even with a relatively small number of datasets15,16,20,22,24. 
However, these models often have the limitation of not explicitly revealing the internal parameters, especially in 
the case of highly accurate models such as neural networks. Explainable artificial intelligence (XAI) techniques 
offer a solution by providing a set of numbers known as importance values. These values quantify the contribution 
of each input feature to the model’s output. The importance values can be extracted using specific algorithms, 
including the kernel SHapley Additive exPlanations (SHAP)34.

In this study, we utilized a novel approach, a grain-by-grain analysis of the demagnetization curves of all 
individual grains in given MMP magnets, in order to understand the underlying reversal mechanism of MMP 
magnets contributing to the overall demagnetization curve of the entire volume. We applied this grain-by-grain 
analysis to datasets obtained from finite-element micromagnetic simulations. These simulations were conducted 
on a core–shell sphere cluster model with various inhomogeneous magnetic phases of Nd2Fe14B and NdCeFe14B, 
each with different shell compositions surrounding each core sphere. Further, we discovered that the overall 
nucleation fields and coercivity were divided into two distinct broad and narrow distributions for the Nd-rich 
and Nd-lean individual grains, respectively. We attributed these differences to the stray fields resulting from the 
dipolar interactions of the individual spheres, which influence the nucleation field of the reversed domain in 
each sphere.

According to the kernel SHAP analysis of machine-learning models constructed for the coercivity of either 
Nd-rich or -lean grains, the magnitude of stray fields and the position of grains were the major factors contrib-
uting to the broader distributions of coercivity in Nd-rich grains. Such AI model interpretations align with the 
findings that adjustments to the shell compositions of both grain types can manipulate nucleation and coercive 
fields via intergranular magnetostatic interactions. The role of magnetostatic interactions was further explained 
by an analytical nucleation model composed of two hard-magnetic spheres.

Results and discussion
Core–shell sphere cluster model with inhomogeneous magnetic phases.  Our model studied 
here is composed of 55 spherical grains arranged in a double-layered cuboctahedron configuration with a core–
shell structure30,32 in each sphere (Fig. 1a). Among various truncated octahedrons, the cuboctahedron possesses 
a sphericity of 0.905, close to 1. The cuboctahedron cluster comprises a specific number of spheres given by 
(2n + 1)(5n2 + 5n + 3)/3, where n (= 0, 1, 2,..) is the number of layers in the cluster model35. The sphere cluster 
model was designed to have a demagnetization factor of 1/3 in all directions36–38, thus eliminating possible shape 
anisotropy from the overall cluster volume. Each spherical grain has a 68 nm diameter with a 2-nm-thick shell, 
and each sphere was separated from its neighboring grains by a 2-nm air gap (Fig. 1b). We note that our model 
did not incorporate the soft or nonmagnetic defects that could serve as nucleation sites and pin domain walls, 
thereby potentially leading to an overestimated coercivity compared to experimental values39,40. The 68  nm 
diameter is considerably larger than the critical diameter (19.7 nm for Nd2Fe14B) for coherent magnetization 
rotation, but is smaller than a diameter (201 nm for Nd2Fe14B) above which multi-domain states are prevalent14. 
The air gap between neighboring grains inhibits short-range exchange coupling between them, thereby behaving 
as a nonmagnetic phase28–30.

To emulate the inhomogeneous phases of MMP magnets, our sphere cluster model consisted of two cores 
with distinct compositions—Nd2Fe14B (Nd-rich) and NdCeFe14B (Nd-lean), each enveloped by a single shell of 
Nd2-δCeδFe14B and Nd1+δCe1-δFe14B (0 ≤ δ ≤ 0.5), respectively. Notably, 28 Nd-rich spheres and 27 Nd-lean spheres 
were randomly dispersed as illustrated in Fig. 1c. In this model, we assume that the net content of Ce in the 
two different shells encompassing the Nd-rich and -lean cores are conserved, irrespective of given values of δ. 
The configurations of the Nd-rich and Nd-lean spheres were kept constant while δ was varied within a range of 
0–0.5 at increments of 0.1. We assumed that our core–shell microstructures were formed by diffusion processes 
between Nd2Fe14B and NdCeFe14B particles mixed at 5:5 ratio, with the same diffusivity for Nd and Ce atoms. In 
this scenario, Nd atoms from the Nd2Fe14B particle and Ce atoms from the NdCeFe14B particle were presumed 
to exchange at a 1:1 rate. As such, the possible compositions of the Nd-rich and Nd-lean shell are anticipated to 
be Nd2-δCeδFe14B and Nd1+δCe1-δFe14B (0 ≤ δ ≤ 0.5), respectively.

Demagnetization curves.  Figure 2 shows an example of simulation results for the overall demagnetiza-
tion curve (thick black line) of all the spheres (entire cluster model system), and two separate demagnetization 
curves exclusively representing the Nd-rich and -lean spheres for the case of δ = 0.3. The overall demagnetization 
curve exhibits a significant, sudden drop in < mz > just beyond the nucleation field HN, succeeded by a series of 
relatively smaller-step curves. This type of curve is typical for a reversal process of the nucleation of reversed 
domains, as is often observed in exchange-decoupled magnets28,29. The entire demagnetization curve can be 
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Figure 1.   (a) Perspective view of a sphere-cluster model, each sphere featuring a core–shell structure along with 
the indicated dimensions. (b) The dimensions of the core–shell structure within each sphere. Individual spheres 
are separated by a 2-nm thick nonmagnetic medium. The inset shows the surface meshes of each sphere in the 
Class-I geodesic polyhedron, {3,5 +}19,0. (c) A cuboctahedron cluster model consisting of 28 Nd-rich spheres 
(red-tinted color for Nd2Fe14B) and 27 Nd-lean spheres (blue color for NdCeFe14B), each covered by a thin shell 
of Nd2-δCeδFe14B (pink) and Nd1+δCe1-δFe14B (light blue), respectively.

Figure 2.   Demagnetization curves obtained from the core–shell sphere-cluster model with δ = 0.3. The pink-, 
light-blue-, black lines correspond to the normalized curves of Nd-rich spheres, Nd-lean spheres, and all 
spheres, respectively.
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dissected into two separate curves, obtained from only the Nd-rich and -lean spheres, depicted in red and blue 
colors, respectively. Notably, these two decomposed demagnetization curves exhibit stark contrasts: a single pro-
nounced step-drop for the Nd-lean spheres versus numerous minor step-drops for the Nd-rich spheres. In detail, 
the Nd-lean spheres show a sharp, significant drop in the magnetization at μ0Hz =  ~ − 4.3 T, while the Nd-rich 
spheres shows a few moderate-step drops before Hc but many minor step drops after Hc. Therefore, the entire-
system value of Hc is the cumulative result of the reversals of the Nd-rich and -lean spheres and is dominated by 
the switching of the Nd-rich spheres. Moreover, the reversal process of the Nd-rich spheres was composed of a 
sequence of successive switching of the individual Nd-rich spheres, each with different nucleation fields, across 
a wide range of HN. The sequential reversal processes of Nd-lean and -rich grains are visually depicted in Sup-
plemental Movie S1, available online.

Grain‑by‑grain analysis of demagnetization curves and the reversals of individual spheres.  To 
understand the overall demagnetization curve characterized by numerous step-like drops in magnetization 
shown in Fig. 2, we performed a grain-by-grain analysis, separating the demagnetization curves of individual 
spheres. Because the multiple steps observed in the overall demagnetization curve result from different nuclea-
tion fields required for switching reversed domains in each individual sphere, we interpreted the demagnetiza-
tion curves sphere-by-sphere.

Figure 3a highlights parts of the cluster model, emphasizing a Nd-lean sphere labeled as #17 and its twelve 
nearest neighboring (NN) spheres. The demagnetization curves for sphere #17 and some of the NN spheres are 
separately plotted in Fig. 3b. The μ0Hc values for sphere #17 and five Nd-lean spheres ranged from 4.26 to 4.32 T. 
Figure 3c shows snapshot images of local z-component magnetizations (mz) distributions at μ0Hz = − 4.27, − 4.29, 
and − 4.31 T for sphere #17 and the twelve NN spheres. The magnetization reversal occurred sphere-by-sphere 
via the individual switching of each sphere, similar to exchange-decoupled magnets28,29, although the reversal 
in sphere #17 was not coherent. To quantitatively interpret the switching of individual spheres, demagnetiza-
tion curves are plotted to represent the varying values of coercive field hc, nucleation field hN, and field width 

Figure 3.   Representation of grain-by-grain analysis for demagnetization curves. (a) Highlight of 12 spheres 
surrounding a single sphere, labeled as #17. (b) Demagnetization curves of several individual spheres, along 
with the coercive force hc, the nucleation field hN, and its slope Δh as defined within the diagram. The thick blue 
line indicates the demagnetization curve of sphere #17, while thin lines correspond to those of its neighboring 
spheres. The snapshot images in (c) describe the temporal magnetizations at the indicated values of external 
magnetic fields. The colors indicate mz as indicated by the color bar.
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Δh as illustrated for different spheres. The parameters hc and hN were defined as the fields obtained at < mz >  = 0 
and < mz >  = 0.9mr, respectively, while Δh is defined as the difference in μ0Hz between < mz >  = 0.9mr and − 0.9. 
Since the reversal of each sphere in our model is incoherent within the volume of each sphere, the value of Δh 
also approximately measures the mobility of domain walls within each sphere.

Distributions of hc, hN, and Δh for all individual spheres.  The distributions of all the hc, hN, and Δh 
values for the Nd-rich (red color) and Nd-lean (blue) spheres in the core–shell sphere cluster model with an 
inhomogeneous composition of δ = 0.3 are depicted as histograms (Fig. 4). The normal distribution curves (fR 
and fL) for the Nd-rich and -lean spheres are separately plotted, accompanied by the corresponding mean and 
standard deviation values calculated using the following equations.

where NR (NL) represents the number of the Nd-rich (Nd-lean) spheres, including both core and shell (56 for 
Nd-rich and 54 for Nd-lean spheres in this model), b denotes the bin width of the histograms, while 〈hc〉R ( 〈hc〉L ) 
and σR

hc
 ( σ L

hc
 ) refer to the mean value and the standard deviation of hc, respectively. The fitting values of the mean 

and standard deviations were summarized in Supplementary Table S1 online. Normal distribution curves of hN 
and Δh were obtained in the same manner. The hc and hN of the Nd-rich grains were distributed over a wide range 
from − 6 to − 4.5 T, with the mean values of �hc�R = −5.07 T and �hN �R = −5.06 T , and standard deviations of 
σR
hc

= 416.7 mT and σR
hN

= 418.0 mT , respectively. In contrast, the Nd-lean spheres displayed relatively narrow 
distributions centered around �hc�L = −5.07 T and �hN �L = −5.06 T , and standard deviations of σ L

hc
= 18.5 mT 

and σ L
hN

= 17.8 mT , respectively. Hence, the many step-like demagnetization curve for the Nd-rich grains (as 
seen Fig. 2) is attributed to the variation in nucleation fields across a wide range. The extremely broad ranges of 
hc and hN for the Nd-rich grains will be explained in the following section, with reference to the uneven distri-
bution of stray fields affecting each Nd-rich grain14. On the other hand, the similar and narrow distributions of 
��h�R = 19.5 mT and ��h�L = 17.0 mT with σR

�h = 3.20 mT and σ L
�h = 2.76 mT for both the Nd-rich and -lean 

grains indicate comparable domain wall mobilities in both types of grains. According to the one-dimensional 
model, the speed of domain walls is expressed as

where δDW is the domain wall width and Hext the applied magnetic field driving the domain walls46. The width 
of domain wall in a curved geometry depends on the curvature value, the position within each sphere particle, 
as well as the direction of domain wall expansion relative to the crystallographic orientations1,18,42–44. Taking into 
account the Bloch domain wall width δDW = π

√

Aex

/

K1 for core regions and the mean coercive fields as the 
driving field values (δDW = 1.34 and 1.48 nm; |< hc >|= ~ 5.07 and ~ 4.29 T for Nd-rich and Nd-lean grains, respec-
tively), the values of vDW for the Nd-rich and -lean grains are estimated to be 1.88 km/s and 1.75 km/s, respec-
tively. The vDW values differ only by + 7.0% ( vRDW > vLDW ) between the two types of grains. This is a compensated 
result of − 10.6% and + 18.3% differences in the values of δDW ( δRDW < δLDW ) and driving fields ( 〈hc〉R > 〈hc〉

L).
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Figure 4.   Histograms displaying the distributions of hc, hN, and Δh values of all individual spheres in the case of 
δ = 0.3. The red bars indicate Nd-rich spheres, while the blue bars denote Nd-lean spheres. Dotted lines represent 
the fitted normal distributions of hc, hN, and Δh for both Nd-rich and -lean spheres.
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Explaining the broader distribution of hc in Nd‑rich grains by machine learning approach.  To 
identify the mechanism behind the broad distributions of hN and hc observed in Nd-rich grains, we constructed 
machine learning models based on artificial neural networks. We then extracted the feature importance values, 
which quantitatively measure the influence of features on the model’s output, using kernel SHAP interpretation34. 
Previous studies20 have identified crystallographic misorientations and relative position of grains as key features 
determining each grain’s switching field. In a similar manner, we compiled 11 features characterizing each grain, 
which include the material parameters (xCe), the relative position of grains (rx, ry, rz, r), the number of neighbor-
ing grains of different types (NNrich, NNlean), and the mean stray field acting on each grain ( Hx

stray , H
y
stray , Hz

stray , 

Hstray =

√

(Hx
stray)

2 + (H
y
stray)

2 + (Hz
stray)

2 ). The vector stray field acting on the i-th grain was calculated using 
an approximate macrospin model that employs volume-average z-component magnetizations45: 
H

i
stray = −

∑

j �=i

∇�
ij
M with the magnetic scalar potential

where J j,coreS  ( J j,shellS  ), 
〈

m
j,core
z

〉

 ( 
〈

m
j,shell
z

〉

 ), and Rcore ( Rshell ) are the saturation polarization, volume-average 
z-component magnetization, radius of core (shell) part of the j-th grain, and rij and θij are the center-to-center 
distance and angle between the i- and j-th grains. The stray fields closely corresponded with the demagnetizing 
fields calculated from the micromagnetic simulations, as exemplified in the case of sphere #17, shown in Sup-
plementary Fig. S1 online.

Using the 11 features, we trained 100 artificial neural network models with different sets of hyperparameters, 
optimized by the very fast simulated annealing (VFSA) algorithm24. The optimized models accurately reproduced 
prediction values comparable to those of the original datasets (Fig. 5a). Predictions had a root mean square error 
(RMSE) of 5.3 (± 4.2) mT and 102.4 (± 26.9) mT, and an R2 score of 0.99 (± < 0.01) and 0.96 (± 0.019) for the train-
ing and test datasets, respectively (Fig. 5b). By employing the kernel SHAP interpretation method, we extracted 
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Figure 5.   Machine learning approach for analyzing coercivity variation. (a) Parity plot comparing the original 
simulation data (hc) with the predictions made by 100 machine learning models ( hpredc  ) using different sets of 
hyperparameters optimized by VFSA. The large dots shaded in orange and green indicate the predictions for the 
train and test datasets, respectively, while the small dots in red and deep-green represent the mean of predictions 
for the train and test datasets, respectively. (b) Violin plots depicting the RMSE and R2 between the simulation 
datasets and predictions for the train and test datasets made by the 100 models. (c) Kernel SHAP interpretation 
reveals the importance values of the 11 features used to train the models. Features with negative importance 
values enhance the |hc|, while those with positive values reduce |hc|.
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the importance values of the 11 features, which are measures of their contributions to the model’s prediction34. 
Therefore, a negative importance value contributes to a larger |hc| and a positive one to a smaller |hc|.

In Fig. 5c, the importance values, calculated from the hc prediction of the 100 neural network models, are 
summarized in violin plots with whiskers indicating maximum, medium and minimum values. Among the 11 
features, the contribution by the stray field magnitude (Hstray) was the most important factor for Nd-rich grains 
and the second most important for Nd-lean grains, with importance values of − 0.706 and -0.243, respectively. 
The number of neighboring Nd-rich grains (NNrich) was the key factor that most increased the |hc| of the Nd-lean 
grains, with the value of − 0.29, but it was also the factor that most decreased the |hc| of the Nd-rich grains, with 
the value of + 0.169. In contrast, the z-position of the grains (rz) decreased |hc| of Nd-lean grains (importance 
value: + 0.105) and increased |hc| of Nd-rich grains (− 0.344). However, the material nature of the grain itself (xCe) 
had negligible effects on |hc| of either type of grains (+ 0.02 for Nd-lean, + 0.01 for Nd-rich grains).

The |hc| of Nd-rich grains was influenced more significantly by Hstray and rz (importance values: − 0.706, 
− 0.344) than the |hc| of Nd-lean grains (− 0.243, + 0.105). Consequently, the broader distributions of hc in Nd-
rich grains can be attributed to the stray field and the z-position of each grain. As referenced in studies20,24, the 
latter was one of the most prevalent features of weak grains and resulted in anomalously small values of switch-
ing field and magnetic energy products. Though the importance values of Hstray and rz had similar trends, they 
showed weak correlation (ρ = 0.06) in our model. In the latter part of this paper, we will analyze the switching 
field (or hc) from the perspective of stray fields (Hz). This interpretation will be based on an eigenvalue problem 
rooted in micromagnetic theory.

Grain‑by‑grain analysis for inhomogeneous magnetic phases.  To account for the distinct depend-
encies of coercive forces and nucleation fields on δ, we examined the demagnetization curves using a grain-by-
grain analysis, as shown in the hc, hN, and Δh histograms (see Fig. 6). The mean and standard deviations of these 
parameters for different δ values are summarized in Supplementary Table S2 online and in Fig. 7, along with 
those from the single-main-phase model. As shown in Fig. 8, the means of hc and hN of Nd-lean grains ( 〈hc〉L 
and 〈hN 〉L ) decrease as δ values increase, aligned with the trend of overall nucleation fields. On the other hand, 
〈hc〉

R and 〈hN 〉R increase with δ, following the same trend as the overall coercive forces. These variations can 
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be explained in terms of an inverse dependence of anisotropy fields ( hA = 2µ0K1/JS ) on δ, which monotoni-
cally varies from 6.71 (δ = 0) to 5.24 T (δ = 0.5), as indicated by the Kronmüller relation ( hc = αhA − NJS , α is 
the microstructure factor and N the effective demagnetization factor)14. The increase in Ce contents of shells 
(XCe = δ/2100 at%) suggests a depletion of Nd atoms from the shell of Nd-rich grains, leading to a decrease in 
anisotropy fields in the Nd-rich grains’ shell region, where reversed domains are initially nucleated. At the same 
time, the surplus Nd atoms are integrated into the shell region of Nd-lean grains, enhancing their anisotropy 
fields. We will discuss the δ dependence of 〈hN 〉R(L) in more detail in the next section, using empirical relations. 
To compare with parameters from the single-main-phase model, its 〈hc〉 and 〈hN 〉 values are marked with a green 
asterisk, lying between the curves for Nd-rich and -lean grains due to the intermediate Ce content of the material 
assumed in our single-main-phase magnet model (Nd1.5082Ce0.4918Fe14B).

Exploring the mechanism behind variations in hN with δ.  In the previous section, we found that the 
stray fields are the most essential among other features. However, relying solely on the results-driven machine 
learning model for this inference lacks a physics background. Therefore, in this section, we further established 
an analytical model that involves solving the nucleation problem in classical micromagnetic theory. It is worth 
noting that the nucleation field varies with different δ, although the overall chemical formula for the sphere 
cluster, Nd2-xCexFe14B (0.491 ≤ x ≤ 0.5), has minimal differences with cerium stoichiometry varying at most by 
1.8%. Apart from the chemical compositions, microstructural factors such as intergranular exchange stiffness, 
easy axis alignment, and grain sizes can cause discrepancies between experimental and ideal coercivity and/or 
nucleation fields, a problem well-known as Brown’s paradox14,46,47. In previous studies14,48–50, this discrepancy 
between experimental and ideal coercivity in granular materials was explained in relation to demagnetizing 
fields. The demagnetizing fields were linked to the physical characteristics of grains20,49 and the cavity field origi-
nating from the sheath of grains48 as demonstrated by Monte-Carlo simulations50. However, assessing coercivity 
through simulation methods has limitations, as the calculated coercivity depends on the dynamic features of the 
model system such as damping parameter and sweep rates14. Furthermore, these methods provide less detailed 
insights into the mechanism behind the relationship between the material parameters and coercivity than ana-
lytical expressions do.

Figure 7.   Plots of < hc > , < hN > , and < Δh > averaged for the Nd-rich and Nd-lean spheres as a fucntion of δ. The 
green asterisk indicates those for the single-main-phase sphere cluster model of δ = 0.3.
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Thus, we used an analytical macrospin model that accounts for inter-particle magnetostatic interaction energy 
to demonstrate that the stray field can reduce the coercivity of magnetically coupled particles. The nucleation 
field was calculated using the principle that the second derivative of the magnetic energy holds a zero eigen-
value when the nucleation of reversed domains begins47,51. We developed a model geometry composed of two 
hard-magnetic spheres with a radius R and a center-to-center distance d, both exhibiting uniaxial anisotropy 
(Fig. 8a). Around the point of nucleation, the magnetic energy of the two spheres, which are coupled through 
magnetostatic interactions, is approximately given as,

where θi, MS,i, and h◦N ,i (i = 1, 2) correspond to the spin angle, saturation magnetization, and ideal nucleation field 
of sphere i., respectively. The first and second terms are the Taylor expansions of Stoner-Wohlfarth particles up 
to the second order of θi, on the verge of nucleation ( θi ≈ 0 ), or

with hN = −hA = −2K1/µ0MS < 0 , representing the ideal nucleation field. Using the nucleation condition, 
which states that the determinant of ∂2E

∂(θ1,θ2)
 becomes zero at nucleation ( θ1, θ2 ≈ 0), the nucleation fields of the 

i-th sphere in the coupled system ( hN ,i ) is given as

(4)E(θ1, θ2) =
µ0M

2
S,1

2
(h− h◦N ,1)θ

2
1 +

µ0M
2
S,2

2
(h− h◦N ,2)θ

2
2 +

2

3
µ0MS,1MS,2

(

R

d

)3

cos θ1 cos θ2

ESW (θ) = K1 sin
2 θ − µ0MSh cos θ = µ0MS
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2
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Figure 8.   The coupled Stoner-Wohlfarth model. (a) The model geometry of vertically aligned magnetic 
particles of a radius R, separated by an interparticle gap of d. (b) The plot of the coercive field discrepancy 
in relation to the radius and interparticle gap, shown on logarithmic scales. Fitting curves using Eq. (6) are 
represented by dotted lines. (c) The plot of the nucleation field discrepancy in relation to the saturation 
polarization of surrounding grains, with fitting curves represented by dotted lines.
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Based on this dependency relation, the decrease in nucleation field in general systems with a grain radius R, 
interparticle distances d, and the saturation magnetization of the other particle as MS should scale as follows:

with positive exponents a, b, and c. To validate this scaling rule, we performed additional micromagnetic simula-
tions. These simulations were conducted using the material parameters of Nd2Fe14B and NdCeFe14B, sphere radii 
(R) ranging from 2 to 40 nm, and center-to-center distance (d) from 6.4 to 409.6 nm, which satisfies d > 2R . The 
coercive fields were calculated by applying an external magnetic field in the -z direction to the spheres, which had 
initially been magnetized to m = [0, 0, 1] . In Fig. 8b, the differences between the coercive fields of those systems 
and the coercive field of single spheres with the same dimensions are plotted, along with the fitting curves based 
on (6). The parameters a and b extracted from the datasets ranged from 0.13 to 1.35 and 0.35 to 1.68, respectively.

The empirical relation (6) was applied to the datasets in Fig. 8, aiming to illustrate the discrepancy between 
the nucleation fields calculated from simulations and the ideal nucleation fields as described in47. The values 
of 〈hN 〉R(L) for δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5 were fitted with Eq. (6) in Fig. 8c. The discrepancies in the nucleation 
field of Nd-rich (-lean) grains ( |�hN |

R(L) = �hN �
R(L) − h◦N ) are plotted against the volume-average saturation 

magnetization of Nd-lean (-rich) grains, with both axes on a logarithmic scale. The volume-average saturation 
polarization, 〈JS〉

L(R)
V  , was calculated based on volume fractions, as follows:

With vcore , Jcore,L(R)S  and vshell , J
shell,L(R)
S  , representing the volume fraction and saturation polarization 

of Nd-rich (-lean) grains. The ideal nucleation field h◦N for the curling rotation mode was calculated from 
hA = 2x21µ0Aex/JSR

2 + 2µ0K1/JS − JS/3 with x1 = 2.081650. The c values, obtained by fitting Eq. (6) to |�hN |
R 

and |�hN |
L (Fig. 8c) were 3.97 and 11.8, respectively, both indicating a positive value of c.

According to our analytical nucleation model, the stray field alone can account for a large part of the discrep-
ancy mismatch between the calculated and ideal coercivity values. By addressing an eigenvalue problem for the 
two-sphere model, we demonstrated that the introduction of a stray field, as a magnetostatic interaction term, 
results in decreases of nucleation fields. This finding is consistent with the interpretation given by the kernel 
SHAP of the machine-learning-based regression model shown in Fig. 5c. From a mathematical standpoint, the 
convex position of the energy function, which is approximately expanded by polynomials as shown in Eq. (4), 
is altered by the superposition of stray fields emanating from magnetic charges in other domains. Consider-
ing that the stray fields in uniformly magnetized spheres result from surface magnetic charges, the stray field 
model can explain the coercivity mechanisms of core–shell MMP magnets and potentially phenomena related 
to microstructure, such as Brown’s paradox.

Directly applying our macro-spin model to previously published experimental results on MMP magnets 
proved challenging. However, our model, which demonstrates a decrease in hN with increase in R and a decrease 
in d, provides insights into previous experimental observations related to grain sizes and grain-to-grain exchange 
interactions. For example, the decrease in hc with an increase in R has been attributed to surface defects, in 
analogue with structural mechanical weakest-link statistics52,53. On the other hand, the reduction in hc with 
d (or increased inter-grain exchange coupling) was explained through micromagnetic simulations in earlier 
studies24,28,29.

Comparison with the single‑main‑phase model.  In comparison with our inhomogeneous phase mag-
net model, we also examined a single-main-phase magnet model with a homogeneous composition equivalent 
to δ = 0.3 (Nd1.51Ce0.49Fe14B). The hc, hN, and Δh values for the individual spheres were extracted using the afore-
mentioned grain-by-grain analysis, as summarized in Fig.  9 and Supplementary Table  S1 online. The mean 
values of hc and hN from this homogenous phase model were − 4.87 and − 4.86 T, respectively, excluding the four 
outlier values spanning over − 5.5 to − 5 T. These outlier values correspond to the delayed reversals of specific 
grains which are in small amount and have negligible effects on the overall coercive forces and nucleation fields. 

(6)�hN ∼ −Rad−bM
c
S .

�JS�
L(R)
V = vcoreJ

core,L(R)
S + vshell J

shell,L(R)
S ,

Figure 9.   Histograms for the distributions of hc, hN, and Δh values for all the individual spheres having a 
homogenous composition equivalent to the core–shell sphere cluster model of δ = 0.3. Dotted lines represent the 
normal distributions of hc, hN, and Δh.
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On the other hand, the standard deviations of hc and hN are 13.1 and 12.7 mT, respectively, which are less than 
those for the inhomogeneous phase model with δ = 0.3. The distribution of Δh (mean value, 16.3 mT) for the 
single-main-phase magnet model is very similar to that for the inhomogeneous phase model. Hence, the calcu-
lated domain-wall speed was 1.88 km/s, roughly equivalent to those for MMP models. The standard deviation of 
Δh was also less than that of MMP grains similar to the case of hc and hN.

The overall nucleation field and coercive force, as explained in the previous sections, were superior in the 
single-main-phase magnet model compared to MMP models, which are composed of 28 Nd-rich grains and 
27 Nd-lean grains. It is important to note that the Ce contents in the MMP or dual-main phase magnets, and 
single-main phase magnets are generally different from those in the starting materials due to the formation of 
precipitate phases around the thermodynamically stable RE2Fe14B-phase grains28–30,32.

Summary
We utilized finite-element micromagnetic simulations to investigate the individual demagnetization curves of 
spheres with varying Nd-rich and -lean core-shells within a sphere- cluster model. The overall demagnetization 
curve from the entire inhomogeneous magnetic phases can be constructed as the summation of the demagnetiza-
tion curves of the individual grains. Through our grain-by-grain analysis of the coercive force hc and nucleation 
field hN for each grain, we observed that the Nd-lean grains reversed (nucleated) at nearly identical (at least 
similar) values of hc (hN). This was then followed by the intermittent reversal (nucleation) of the Nd-rich grains 
at widely varying values of hc (hN). This can be attributed to the localized, irregular dipolar fields produced by 
the Nd-lean grains that had undergone reversal before the Nd-rich grains. Furthermore, our machine learning 
analysis using kernel SHAP interpretation indicates significant contributions from the stray fields of reversed 
Nd-lean grains to the reversals of Nd-rich grains in a wide switching field range. The similar narrow distributions 
of Δh observed in both Nd-rich and -lean grains can be attributed to their comparable domain-wall mobilities.

Compared to the reversal of inhomogeneous magnetic phases (MMP), the single-main-phase model showed 
relatively narrow distributions ( σ SP

hc
= 13.1 mT , σ SP

hN
= 12.7 mT ) of hc and hN, with mean values higher than those 

from the MMP model. We emphasize that the magnitude of hN in the MMP model trended with the mean value 
of hN for Nd-lean grains ( 〈hN 〉L ) with respect to the δ values, while the magnitude of hc with the mean value of 
hc for Nd-rich grains ( 〈hc〉R ), owing to the distinct distributions of hN and hc values of the two types of grains. 
Furthermore, according to the proportionality between hc (hN) and the anisotropy field (hA) in the Kronmüller 
relation, the mean values of hc and hN in Nd-lean grains increased with δ due to the addition of Nd atoms in their 
shell, while those in Nd-rich grains decreased due to Nd atoms being depleted from the shells.

This work offers guidance for the optimal design of granular hard magnets composed of Nd2Fe14B and other 
abundant rare earth transition elements, aiming for cost-effective performance through meticulous adjustment 
of microstructures and elemental compositions.

Methods
Micromagnetic simulations.  The demagnetization curves of the sphere cluster model were numerically 
calculated using the finite-element micromagnetic simulation tool, FEMME54. This tool solves the Landau-Lif-
shitz-Gilbert equation13

Here γ is the gyromagnetic ratio, μ0 the permeability of vacuum, α the damping constant, and m and Heff the 
reduced magnetization (= μ0M/JS) and effective field. We used interpolated values from the material parameters 
of Nd2Fe14B (exchange constant Aex = 7.7 pJ/m; saturation polarization JS = 1.61 T; uniaxial anisotropy constant 
K1 = 4.3 MJ/m3) and Ce2Fe14B (exchange constant Aex = 5.0 pJ/m; saturation polarization JS = 1.17 T; uniaxial ani-
sotropy constant K1 = 1.5 MJ/m3)27 to represent the given compositional alloy materials. The damping constant, 
α, was set to 1 to expedite convergence14,55. The initial magnetization configuration was assumed to be m = [0, 
0, 1], and the external magnetic field was linearly decreased from μ0Hz =  + 7 T to − 7 T over a span of 70 ns.

Finite-element meshes on the sphere’s surface were constructed using geodesic polyhedrons. These are approx-
imations of spheres composed of triangles (Fig. 1c), with edge lengths shorter than the exchange length (2.7 nm 
for Nd2Fe14B). This design ensures the correct evaluation of the exchange interaction term in the model 
system1,14,54. As the small sizes of micromagnetic cells allow for a precise description of domain walls (3–5 nm56,57), 

we restricted our mesh sizes in the finite-element simulations to be below min(lex , lK )
54, where lex =

√

2Aexµ0

/

J2S  

and lK =

√

Aex

/

K1  . In the present FEMME simulations, mesh sizes of ~ 2 nm were sufficient to accurately 
describe the domain wall configuration in the Nd2Fe14B material, with characteristic widths of 
δBlochDW = π lex = 4.24 nm . The Class-I icosahedron-based geodesic polyhedrons, with a subdivision frequency of 
19, have edge lengths of approximately 1.98 nm ({3,5 +}19,0 by Wenninger notation58). These were calculated using 
the open-source code, Antiprism59. Tetrahedron meshes were then generated inside the geodesic polyhedrons 
using the TetGen software60.

Optimization of machine learning models.  To develop the machine learning models, we generated 100 
artificial neural network (ANN) models using the scikit-learn package in Python. We employed the MLPRegres-
sor function from the scikit-learn package, which generates a single-layered artificial neural network trained 
via backpropagation. The hidden layer consisted of 100 nodes, while the input layer took nucleation fields of 
the core and shell parts from 55 grains (110 in total). These were divided into a training set of 77 and a test set 

dm

dt
= −γµ0m×Heff + αm×

dm

dt
.
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of 33. Due to the small size of the datasets, we trained 100 machine learning models with various hyperparam-
eters determined by the Very Fast Simulated Annealing (VFSA) algorithm24. Nevertheless, the majority of our 
machine learning models showed fairly good predictions, with R2 > 0.92. Our VFSA algorithm incorporated an 
adaptive cooling schedule,

where f (x) , xcand , and xcurr indicate the objective function, candidate solution, and current solution, respectively. 
The candidate solution for hyperparameters was searched for 30 times at each temperature, continuing until the 
current temperature reached 10–30.

Kernel SHAP interpretation.  The trained machine learning models were analyzed with kernel SHAP 
interpretation implemented, as implemented by the alibi package34. According to Ref.34, the importance values 
of machine learning models are calculated from the contribution of the i-th feature out of M features. The output 
of the model, denoted as f, with reference to the average output f0 is

where g(x′) and x′ ∈ {0, 1}M are the explainable model and coalition vector, respectively.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 18 May 2023; Accepted: 11 September 2023

References
	 1.	 Fidler, J. Hard magnets. In Compendium on Electromagnetic Analysis: From Electrostatics to Photonics: Fundamentals and Applica-

tions for Physicists and Engineers Volume 1 Electrostatic and Magnetic Phenomena (ed. Donahue, M.) 325–348 (World Scientific 
Publishing, 2020).

	 2.	 Coey, J. M. D. Perspective and prospects for rare earth permanent magnets. Engineering 6, 119–131. https://​doi.​org/​10.​1016/j.​eng.​
2018.​11.​034 (2020).

	 3.	 Jiles, D. Introduction to Magnetism and Magnetic Materials (CRC Press, 2015).
	 4.	 Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. A 240(826), 

599–642. https://​doi.​org/​10.​1098/​rsta.​1948.​0007 (1948).
	 5.	 Ntallis, N. et al. Macrospin model of an assembly of magnetically coupled core-shell nanoparticles. Phys. Rev. B 106, 104402. 

https://​doi.​org/​10.​1103/​PhysR​evB.​106.​104402 (2022).
	 6.	 El-Hilo, M., de Witte, A. M., O’Grady, K. & Chantrell, R. W. The sweep rate dependence of coercivity in recording media. J. Magn. 

Magn. Mater. 117, L307–L310. https://​doi.​org/​10.​1016/​0304-​8853(92)​90085-3 (1992).
	 7.	 Feng, X. & Visschera, P. B. Sweep-rate-dependent coercivity simulation of FePt particle arrays. J. Appl. Phys. 95, 7043. https://​doi.​

org/​10.​1063/1.​16678​08 (2004).
	 8.	 Plumer, M. L., Leblanc, M. D., Whitehead, J. P. & van Ek, J. Micromagnetic simulations of sweep-rate dependent coercivity in 

perpendicular recording media. J. Appl. Phys. 111, 123905. https://​doi.​org/​10.​1063/1.​47293​28 (2012).
	 9.	 Carrey, J., Mehdaoui, B. & Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain 

nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921. https://​doi.​org/​10.​1063/1.​35515​82 
(2011).

	10.	 Raquet, B., Mamy, R. & Ousset, J. C. Magnetization reversal dynamics in ultrathin magnetic layers. Phys. Rev. B 54, 4128. https://​
doi.​org/​10.​1103/​PhysR​evB.​54.​4128 (1996).

	11.	 Zirka, S. E., Moroz, Y. I., Harrison, R. G. & Chwastek, K. On physical aspects of the Jiles-Atherton hysteresis models. J. Appl. Phys. 
112, 043916. https://​doi.​org/​10.​1063/1.​47479​15 (2012).

	12.	 Van de Wiele, B., Vandenbossche, L., Dupré, L. & De Zutter, D. Energy considerations in a micromagnetic hysteresis model and 
the Preisach model. J. Appl. Phys. 108, 103902. https://​doi.​org/​10.​1063/1.​35057​79 (2010).

	13.	 Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40(6), 3443–3449. https://​
doi.​org/​10.​1109/​TMAG.​2004.​836740 (2004).

	14.	 Kronmüller, H. & Fähnle, M. Micromagnetism and the Microstructure of Ferromagnetic Solids (Cambridge University Press, 2003).
	15.	 Kovacs, A. et al. Computational design of rare-earth reduced permanent magnets. Engineering 6, 148–153. https://​doi.​org/​10.​

1016/j.​eng.​2019.​11.​006 (2020).
	16.	 Dengina, E., Bolyachkin, A., Sepehri-Amin, H. & Hono, K. Machine learning approach for evaluation of nanodefects and magnetic 

anisotropy in FePt granular films. Scr. Mat. 218, 114797. https://​doi.​org/​10.​1016/j.​scrip​tamat.​2022.​114797 (2022).
	17.	 Krone, P., Makarov, D., Albrecht, M., Schrefl, T. & Suess, D. Magnetization reversal processes of single nanomagnets and their 

energy barrier. J. Magn. Magn. Mater. 322, 3771–3776. https://​doi.​org/​10.​1016/j.​jmmm.​2010.​07.​041 (2010).
	18.	 Toson, P., Asali, A., Wallisch, W., Zickler, G. & Fidler, J. Nanostructured hard magnets: A micromagnetic study. IEEE Trans. Magn. 

51(1), 1–4. https://​doi.​org/​10.​1109/​TMAG.​2014.​23590​93 (2015).
	19.	 Niarchos, D. et al. Toward rare-earth-free permanent magnets: A combinatorial approach exploiting the possibilities of modelling, 

shape anisotropy in elongated nanoparticles, and combinatorial thin-film approach. JOM 67(6), 1318–1328. https://​doi.​org/​10.​
1007/​s11837-​015-​1431-7 (2015).

	20.	 Exl, L. et al. Magnetic microstructure machine learning analysis. J. Phys. Mater. 2, 014001. https://​doi.​org/​10.​1088/​2515-​7639/​
aaf26d (2019).

	21.	 Kim, S.-K., Hwang, S. & Lee, J.-H. Effect of misalignments of individual grains’ easy axis on magnetization reversal process in 
granular NdFeB magnets: A finite-element micromagnetic simulation study. J. Magn. Magn. Mater. 486, 165257. https://​doi.​org/​
10.​1016/j.​jmmm.​2019.​165257 (2019).

Tj+1 =
Tj

1+ exp
[

−
(

f (xcand)− f (xcurr)
)

/T0

]

f (x) = g(x′) = f0 +

M
∑

i=1

x′iφi ,

https://doi.org/10.1016/j.eng.2018.11.034
https://doi.org/10.1016/j.eng.2018.11.034
https://doi.org/10.1098/rsta.1948.0007
https://doi.org/10.1103/PhysRevB.106.104402
https://doi.org/10.1016/0304-8853(92)90085-3
https://doi.org/10.1063/1.1667808
https://doi.org/10.1063/1.1667808
https://doi.org/10.1063/1.4729328
https://doi.org/10.1063/1.3551582
https://doi.org/10.1103/PhysRevB.54.4128
https://doi.org/10.1103/PhysRevB.54.4128
https://doi.org/10.1063/1.4747915
https://doi.org/10.1063/1.3505779
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1109/TMAG.2004.836740
https://doi.org/10.1016/j.eng.2019.11.006
https://doi.org/10.1016/j.eng.2019.11.006
https://doi.org/10.1016/j.scriptamat.2022.114797
https://doi.org/10.1016/j.jmmm.2010.07.041
https://doi.org/10.1109/TMAG.2014.2359093
https://doi.org/10.1007/s11837-015-1431-7
https://doi.org/10.1007/s11837-015-1431-7
https://doi.org/10.1088/2515-7639/aaf26d
https://doi.org/10.1088/2515-7639/aaf26d
https://doi.org/10.1016/j.jmmm.2019.165257
https://doi.org/10.1016/j.jmmm.2019.165257


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15240  | https://doi.org/10.1038/s41598-023-42498-z

www.nature.com/scientificreports/

	22.	 Gusenbauer, M. et al. Extracting local nucleation fields in permanent magnets using machine learning. npj Comput. Mater. 6, 89. 
https://​doi.​org/​10.​1038/​s41524-​020-​00361-z (2020).

	23.	 Tsukahara, H., Iwano, K., Ishikawa, T., Mitsumata, C. & Ono, K. Relationship between magnetic nucleation and the microstructure 
of a hot-deformed permanent magnet: micromagnetic simulation. NPG Asia Mater. 12, 29. https://​doi.​org/​10.​1038/​s41427-​020-​
0210-2 (2020).

	24.	 Park, H.-K., Lee, J.-H., Lee, J. & Kim, S.-K. Optimizing machine learning models for granular NdFeB magnets by very fast simulated 
annealing. Sci. Rep. 11, 3792. https://​doi.​org/​10.​1038/​s41598-​021-​83315-9 (2021).

	25.	 Bao, L., Yun, G., Bai, N. & Cao, Y. Grain-size effect on coercivity of Nd–Fe–B nanomagnets: micromagnetics simulation based on 
a multi-grain model. Appl. Phys. Express 14, 085505. https://​doi.​org/​10.​35848/​1882-​0786/​ac14d9 (2021).

	26.	 Behbahani, R., Plumer, M. L. & Saika-Voivod, I. Micromagnetic simulations of clusters of nanoparticles with internal structure: 
Application to magnetic hyperthermia. Phys. Rev. Appl. 18, 034034. https://​doi.​org/​10.​1103/​PhysR​evApp​lied.​18.​034034 (2022).

	27.	 Liu, D. et al. Micromagnetic simulation of the influence of grain boundary on cerium substituted Nd-Fe-B magnets. AIP Adv. 7, 
056201. https://​doi.​org/​10.​1063/1.​49728​03 (2017).

	28.	 Sasaki, T. T. et al. Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet. Scr. 
Mater. 113, 218–221. https://​doi.​org/​10.​1016/j.​scrip​tamat.​2015.​10.​042 (2016).

	29.	 Soderžnik, M. et al. Magnetization reversal of exchange-coupled and exchange-decoupled Nd-Fe-B magnets observed by magneto-
optical Kerr effect microscopy. Acta Mater. 135, 68–76. https://​doi.​org/​10.​1016/j.​actam​at.​2017.​05.​006 (2017).

	30.	 Ma, T. et al. Grain boundary restructuring of multi-main-phase Nd–Ce–Fe–B sintered magnets with Nd hydrides. Acta Mater. 
142, 18–28. https://​doi.​org/​10.​1016/j.​actam​at.​2017.​09.​045 (2018).

	31.	 Lee, J.-H., Choe, J., Hwang, S. & Kim, S.-K. Magnetization reversal mechanism and coercivity enhancement in three-dimensional 
granular Nd–Fe–B magnets studied by micromagnetic simulations. J. Appl. Phys. 122, 073901. https://​doi.​org/​10.​1063/1.​49987​44 
(2017).

	32.	 Jin, J., Ma, T., Zhang, Y., Bai, G. & Yan, M. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit: 
Solution to global rare earth criticality. Sci. Rep. 6, 32200. https://​doi.​org/​10.​1038/​srep3​2200 (2016).

	33.	 Kim, C. et al. Micromagnetic simulation of microstructure effect for binary-main-phase Nd–Ce–Fe–B magnets. J. Phys. D 33, 
445801. https://​doi.​org/​10.​1088/​1361-​648X/​ac1aa1 (2021).

	34.	 Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. https://​doi.​org/​10.​48550/​arXiv.​1705.​07874 
(2017).

	35.	 Ferrando, R. Structure and Properties of Nanoalloys (Elsevier, 2016).
	36.	 Bleaney, B. & Hull, R. A. The effective susceptibility of a paramagnetic powder. Proc. R. Soc. Lond. Ser. A 178(972), 86–92. https://​

doi.​org/​10.​1098/​rspa.​1941.​0045 (1941).
	37.	 Bjørk, R. & Bahl, C. R. H. Demagnetization factor for a powder of randomly packed spherical particles. Appl. Phys. Lett. 103, 

102403. https://​doi.​org/​10.​1063/1.​48201​41 (2013).
	38.	 Normile, P. S. et al. Demagnetization effects in dense nanoparticle assemblies. Appl. Phys. Lett. 109, 152404. https://​doi.​org/​10.​

1063/1.​49645​17 (2016).
	39.	 Zhao, G. P., Wang, X. L., Yang, C., Xie, L. H. & Zhou, G. Self-pinning: Dominant coercivity mechanism in exchange-coupled 

permanent/composite magnets. J. Appl. Phys. 101, 09K102. https://​doi.​org/​10.​1063/1.​27114​04 (2007).
	40.	 Zhao, G. P. & Wang, X. L. Nucleation, pinning, and coercivity in magnetic nanosystems: An analytical micromagnetic approach. 

Phys. Rev. B 74, 012409. https://​doi.​org/​10.​1103/​PhysR​evB.​74.​012409 (2006).
	41.	 Mougin, A. et al. Domain wall mobility, stability and Walker breakdown in magnetic nanowires. EPL 78, 57007. https://​doi.​org/​

10.​1209/​0295-​5075/​78/​57007 (2007).
	42.	 Fernandez-Roldan, J. A. et al. Modeling magnetic-feld-induced domain wall propagation in modulated-diameter cylindrical 

nanowires. Sci. Rep. 9, 5130. https://​doi.​org/​10.​1038/​s41598-​019-​40794-1 (2019).
	43.	 Usov, N. A. & Nesmeyanov, M. S. Multi-domain structures in spheroidal Co nanoparticles. Sci. Rep. 10, 10173. https://​doi.​org/​10.​

1038/​s41598-​020-​67173-5 (2020).
	44.	 Moreno, R., Carvalho-Santos, V. L., Altbir, D. & Chubykalo-Fesenko, O. Detailed examination of domain wall types, their widths 

and critical diameters in cylindrical magnetic nanowires. J. Magn. Magn. Mater. 542, 168495. https://​doi.​org/​10.​1016/j.​jmmm.​
2021.​168495 (2022).

	45.	 Jackson, J. D. Classical Electrodynamics (Wiley, 1962).
	46.	 Bjørk, R. & Insinga, A. R. Explaining Browns paradox in NdFeB magnets from micromagnetic simulations. J. Magn. Magn. Mater. 

571, 170510. https://​doi.​org/​10.​1016/j.​jmmm.​2023.​170510 (2023).
	47.	 Brown, W. F. Micromagnetics (Interscience, 1963).
	48.	 Dobrynin, A. N., Barthem, V. M. T. S. & Givord, D. Revisiting magnetization processes in granular hard magnetic materials. Appl. 

Phys. Lett. 95, 052511. https://​doi.​org/​10.​1063/1.​31935​43 (2009).
	49.	 Bance, S. et al. Grain-size dependent demagnetizing factors in permanent magnets. J. Appl. Phys. 116, 233903. https://​doi.​org/​10.​

1063/1.​49048​54 (2014).
	50.	 Givord, D. & Dobrynin, A. N. Demagnetising fields in assemblies of magnetostatically coupled Stoner-Wohlfarth particles. J. Magn. 

Magn. Mater. 489, 165293. https://​doi.​org/​10.​1016/j.​jmmm.​2019.​165293 (2019).
	51.	 Ishii, Y. & Nakazawa, Y. Magnetization curling in a disk with a uniaxial anisotropy. J. Appl. Phys. 81, 1847. https://​doi.​org/​10.​

1063/1.​364067 (1997).
	52.	 Ramesh, R. & Srikrishna, K. Magnetization reversal in nucleation controlled magnets. I.. Theory. J. Appl. Phys. 64, 6406–6415. 

https://​doi.​org/​10.​1063/1.​342054 (1988).
	53.	 Fischbacher, J. et al. Searching the weakest link: Demagnetizing fields and magnetization reversal in permanent magnets. Scr. 

Mater. 154, 253–258. https://​doi.​org/​10.​1016/j.​scrip​tamat.​2017.​11.​020 (2018).
	54.	 Suess, D. et al. Time resolved micromagnetics using a preconditioned time integration method. J. Magn. Magn. Mater. 248, 298–311. 

https://​doi.​org/​10.​1016/​S0304-​8853(02)​00341-4 (2002).
	55.	 Kikuchi, R. On the minimum of magnetization reversal time. J. Appl. Phys. 27, 1352. https://​doi.​org/​10.​1063/1.​17222​62 (1956).
	56.	 Zhao, G. P., Zhao, L., Shen, L. C., Zou, J. & Qiu, L. Coercivity mechanisms in nanostructured permanent magnets. Chin. Phys. B 

28(7), 077505. https://​doi.​org/​10.​1088/​1674-​1056/​28/7/​077505 (2019).
	57.	 Si, W. et al. Deterioration of the coercivity due to the diffusion induced interface layer in hard/soft multilayers. Sci. Rep. 5, 16212. 

https://​doi.​org/​10.​1038/​srep1​6212 (2015).
	58.	 Wenninger, M. J. Polyhedron Models (Cambridge University Press, 1971).
	59.	 Antiprism - Polyhedron Modelling Software. https://​www.​antip​rism.​com (2019).
	60.	 Si, H. TetGen a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 11, 1–36. https://​doi.​org/​10.​1145/​

26296​97 (2015).

Acknowledgements
This research was supported by the Nano & Material Technology Development Program through the 
National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. 

https://doi.org/10.1038/s41524-020-00361-z
https://doi.org/10.1038/s41427-020-0210-2
https://doi.org/10.1038/s41427-020-0210-2
https://doi.org/10.1038/s41598-021-83315-9
https://doi.org/10.35848/1882-0786/ac14d9
https://doi.org/10.1103/PhysRevApplied.18.034034
https://doi.org/10.1063/1.4972803
https://doi.org/10.1016/j.scriptamat.2015.10.042
https://doi.org/10.1016/j.actamat.2017.05.006
https://doi.org/10.1016/j.actamat.2017.09.045
https://doi.org/10.1063/1.4998744
https://doi.org/10.1038/srep32200
https://doi.org/10.1088/1361-648X/ac1aa1
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1098/rspa.1941.0045
https://doi.org/10.1098/rspa.1941.0045
https://doi.org/10.1063/1.4820141
https://doi.org/10.1063/1.4964517
https://doi.org/10.1063/1.4964517
https://doi.org/10.1063/1.2711404
https://doi.org/10.1103/PhysRevB.74.012409
https://doi.org/10.1209/0295-5075/78/57007
https://doi.org/10.1209/0295-5075/78/57007
https://doi.org/10.1038/s41598-019-40794-1
https://doi.org/10.1038/s41598-020-67173-5
https://doi.org/10.1038/s41598-020-67173-5
https://doi.org/10.1016/j.jmmm.2021.168495
https://doi.org/10.1016/j.jmmm.2021.168495
https://doi.org/10.1016/j.jmmm.2023.170510
https://doi.org/10.1063/1.3193543
https://doi.org/10.1063/1.4904854
https://doi.org/10.1063/1.4904854
https://doi.org/10.1016/j.jmmm.2019.165293
https://doi.org/10.1063/1.364067
https://doi.org/10.1063/1.364067
https://doi.org/10.1063/1.342054
https://doi.org/10.1016/j.scriptamat.2017.11.020
https://doi.org/10.1016/S0304-8853(02)00341-4
https://doi.org/10.1063/1.1722262
https://doi.org/10.1088/1674-1056/28/7/077505
https://doi.org/10.1038/srep16212
https://www.antiprism.com
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697


14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15240  | https://doi.org/10.1038/s41598-023-42498-z

www.nature.com/scientificreports/

NRF-2020M3H4A3105640). The Institute of Engineering Research at Seoul National University provided addi-
tional research facilities for this work.

Author contributions
H.-K.P. and S.-K.K. conceived the main idea. H.-K.P. performed the micromagnetic simulations and analyzed 
the data according to the comments of S.-K.K. H.-K.P. and S.-K.K wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​42498-z.

Correspondence and requests for materials should be addressed to S.-K.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-42498-z
https://doi.org/10.1038/s41598-023-42498-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Magnetization reversals in core–shell sphere clusters: finite-element micromagnetic simulation and machine learning analysis
	Results and discussion
	Core–shell sphere cluster model with inhomogeneous magnetic phases. 
	Demagnetization curves. 
	Grain-by-grain analysis of demagnetization curves and the reversals of individual spheres. 
	Distributions of hc, hN, and Δh for all individual spheres. 
	Explaining the broader distribution of hc in Nd-rich grains by machine learning approach. 
	Grain-by-grain analysis for inhomogeneous magnetic phases. 
	Exploring the mechanism behind variations in hN with δ. 
	Comparison with the single-main-phase model. 

	Summary
	Methods
	Micromagnetic simulations. 
	Optimization of machine learning models. 
	Kernel SHAP interpretation. 

	References
	Acknowledgements


