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Enhanced machine 
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volume factor at reservoir 
conditions
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Since the oil formation volume factor (Bo) is crucial for various calculations in petroleum engineering, 
such as estimating original oil in place, fluid flow in the porous reservoir medium, and production 
from wells, this parameter is predicted using conventional methods including experimental tests, 
correlations, Equations of State, and artificial intelligence models. As a substitute to conventional 
black oil methods, the compositional oil method has been recently used for accurately predicting 
the oil formation volume factor. Although oil composition is essential for estimating this parameter, 
it is time-consuming and cost-intensive to obtain through laboratory analysis. Therefore, the input 
parameter of dissolved gas in oil has been used as a representative of the amount of light components 
in oil, which is an effective factor in determining oil volume changes, along with other parameters, 
including pressure, API gravity, and reservoir temperature. This study created machine learning 
models utilizing Gradient Boosting Decision Tree (GBDT) techniques, which also incorporated 
Extreme Gradient Boosting (XGBoost), GradientBoosting, and CatBoost. A comparison of the results 
with recent correlations and machine learning methods adopting a compositional approach by 
implementing tree-based bagging methods: Extra Trees (ETs), Random Forest (RF), and Decision Trees 
(DTs), is then performed. Statistical and graphical indicators demonstrate that the XGBoost model 
outperforms the other models in estimating the Bo parameter across the reservoir pressure region 
(above and below bubble point pressure); the new method has significantly improved the accuracy of 
the compositional method, as the average absolute relative deviation is now only 0.2598%, which is 
four times lower than the previous (compositional approach) error rate. The findings of this study can 
be used for precise prediction of the volumetric properties of hydrocarbon reservoir fluids without the 
need for conducting routine laboratory analyses by only employing wellhead data.

Abbreviations
AARD	� Average absolute relative deviation, %
AI	� Artificial intelligence
ANFIS	� Adaptive neuro-fuzzy inference system
bbl	� Barrel
CCE	� Constant composition expansion
CPU	� Central processing unit
DL	� Differential liberation
DTs	� Decision Trees
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EOS	� Equations of State
ETs	� Extra Trees
GA	� Genetic Algorithm
GBDT	� Gradient Boosting Decision Tree
GOR	� Gas-oil ratio, SCF/STB
GP	� Genetic programming
LSSVM	� Least squares support vector machine
MELM	� Multi-layer extreme learning machine
ML	� Machine learning
NaN	� Not a number
NN	� Artificial neural network
OFVF	� Oil formation volume factor, bbl/STB
PSO	� Particle Swarm Optimizer
PVT	� Pressure–volume–temprature
RF	� Random Forest
RMSE	� Root mean square error, unit of the original value
SA	� Simulated annealing
SCF	� Standard cubic foot
Std	� Standard deviation, unit of the original value
STB	� Standard barrel
SVM	� Support Vector Machine
TOB	� Transparent Open Box
XGBoost	� Extreme Gradient Boosting

Parameters
a	� Representative of a weak learner
Bo	� Oil formation volume factor, bbl/STB
Bob	� Oil formation volume factor at bubble point pressure, bbl/STB
BoD	� Oil formation volume factor from DL test at desired pressure, bbl/STB
BoDb	� Oil formation volume factor at bubble point pressure from DL test, bbl/STB
BoSb	� Oil formation volume factor at bubble point pressure obtained from separator test
F(x)	� Objective function
Rs	� Solution gas-oil ratio, SCF/STB
h(xi; a)	� Desired regression tree function
k	� Number of subsets
L1	� Overfitting preventer regularization
L2	� Overfitting preventer regularization
Ly,x

(

y, F(x)
)

	� Cost function
N	� Number of data points
Oiexp	� Experimental/actual output
Oipred	� Predicted/estimated output
O	� Mean of outputs
P	� Pressure, psia
Pb	� Bubble point pressure, psia
R2	� Coefficient of determination
(

Vt
Vb

)

CCE
	� Total relative volume by CCE test

x	� Features of interest
y	� Target data

Among the fluid properties of hydrocarbon reservoirs, the oil formation volume factor (Bo) plays a vital role. 
This parameter indicates the change in the volume of produced oil from the reservoir to surface conditions. In 
fact, the volume of oil that enters the stock tank under surface conditions is less than the volume of oil produced 
in reservoir conditions that enter the production well. The oil volume change (from reservoir to surface condi-
tions) is most affected by the significant pressure reduction below the bubble point and the resultant release of 
dissolved gases in oil, especially in large amounts of solution gases. Therefore, the oil formation volume factor 
defined as below is always equal to or greater than 11,2.

The unprecise prediction of this parameter could make various processes and calculations challenging for 
oil engineers. These processes and calculations include reservoir simulations, inflow performance, fluid flow in 
porous media, place-in-oil estimation, material balance, well test analysis, and economic analysis3–17

The ideal method to determine the PVT properties of oil samples is to use experimental tests, which are 
often costly and time-consuming. Hence, there have been numerous studies on predicting PVT properties using 
correlations3,14,18–20, equations21, and developing various artificial intelligence-based approaches21–35. Table 1 
provides a brief overview of the advantages and disadvantages of the aforementioned methods. Despite the 

(1)Bo =
Reservoir oil volume at specified temperature and pressure

Stock tank oil from reservoir oil
.
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simplicity of applying correlations for predicting PVT properties, especially the Bo parameter, they produce 
significant errors, limiting their application in sensitive activities (for example, estimating original oil in place). 
Artificial Intelligence-based methods can adequately limit this error with time and cost savings.

To estimate the Bo parameter with good accuracy, several studies have employed potent machine learning 
methods21,24,25,29,33,35 such as tree-based algorithms, Support Vector Machine (SVM), linear/non-linear regression, 
deep learning, and neural network4,21–24,27,29,30,32, and other network-based methods such as Adaptive Neuro-
Fuzzy Inference System (ANFIS). These methods were developed based on experimental data from reservoirs in 
different regions, for this purpose, a part of the data is used for training and the other part is applied for testing 
the models. Moreover, several studies combined the aforementioned artificial intelligence methods with optimi-
zation algorithms23,25–27,29,33,34 such as Genetic Algorithm (GA), Simulated Annealing (SA), and Particle Swarm 
Optimizer (PSO) for optimizing input parameters. Utilizing an optimization algorithm prior to the develop-
ment of a Machine Learning model confers benefits including improved performance, accelerated convergence, 

Table 1.   Advantages and disadvantages of previous employed methods.

Methods Advantages Disadvantages

Corrolations3,14,18–20

(1) Simplicity Correlations are often simple mathematical expres-
sions that can be easily implemented and used without requiring 
complex calculations
(2) Quick calculations Correlations are typically computationally 
efficient, allowing for fast calculations and analysis
(3) Data availability Correlations are often developed based on 
large datasets and extensive experimental measurements, making 
them readily available for use

(1) Limited accuracy Correlations are empirical relationships 
derived from experimental data. As a result, they may not accurately 
capture the complex physics and fluid behavior of oil systems in all 
cases, leading to inaccuracies in predicting the Bo
(2) Applicability limitations Correlations are usually developed for 
specific ranges of temperature, pressure, and fluid composition. 
Extrapolating their use beyond these ranges may lead to unreliable 
results
(3) Lack of customization Correlations are general relationships that 
do not account for specific characteristics of a particular reservoir. 
They may not capture reservoir specific effects and variations, 
potentially leading to inaccuracies in Bo predictions

Equations of State21

(1) Thermodynamic consistency EOS provides a rigorous and 
thermodynamically consistent approach to model the behavior of 
fluids. They can handle a wide range of temperature, pressure, and 
fluid compositions, making them applicable to various reservoir 
conditions
(2) Accuracy EOS can offer higher accuracy compared to correla-
tions when properly calibrated and parameterized. They consider 
the intermolecular interactions and phase behavior of the fluid, 
providing more detailed predictions
(3) Customization EOS can be customized and adjusted to match 
the specific characteristics of a particular reservoir. This allows for a 
more accurate representation of the fluid behavior and can improve 
Bo predictions

(1) Complexity EOS calculations are more complex and computa-
tionally demanding compared to correlations. They often require 
extensive fluid characterization and parameterization, which can be 
time-consuming and data-intensive
(2) Parameter uncertainty Accurate parameter estimation and 
calibration are crucial for EOS models. Obtaining reliable and 
accurate parameters may require additional experimental data, and 
uncertainties in the parameters can impact the accuracy of the Bo 
predictions
(3) Implementation challenges Proper implementation and usage of 
EOS models may require specialized software and expertise in fluid 
thermodynamics, which can pose challenges for some users

Nueral network4,21–24,27,29,30,32

(1) Nonlinearity Neural networks are capable of modeling non-
linear relationships in data, allowing them to capture complex 
patterns and make more accurate predictions
(2) Feature learning Neural networks can automatically learn rel-
evant features from raw data, reducing the need for manual feature 
engineering
(3) Adaptability Neural networks can adapt and learn from new 
data, making them suitable for tasks where the underlying patterns 
or relationships change over time

(1) Training complexity Neural networks often require a large 
amount of training data and significant computational resources to 
train properly
(2) Black-box nature Neural networks are often considered black-
box models, making it challenging to interpret and understand the 
inner workings of the model
(3) Overfitting Neural networks, especially with a large number of 
parameters, are prone to overfitting if not properly regularized or if 
the training data is limited or noisy
(4) Computational cost Training and running neural networks can 
be computationally expensive, especially for deep architectures with 
numerous layers

Traditional machine learning21,24,25,29,33,35

(1) Simplicity Traditional machine learning algorithms are often 
simpler to understand and interpret compared to complex models 
like neural networks
(2) Interpretability Traditional machine learning algorithms often 
provide transparent and interpretable models, allowing users to 
understand the factors driving the predictions
(3) Well-established theory Traditional machine learning algorithms 
are based on well-established statistical and mathematical princi-
ples, allowing for a better understanding of their behavior

(1) Limited capacity for complex patterns Traditional machine learn-
ing algorithms may struggle to capture highly complex patterns in 
data, particularly those involving nonlinearity or high-dimensional 
relationships
(2) Feature engineering Traditional machine learning algorithms 
often require manual feature engineering, where domain knowledge 
is needed to select relevant features and design appropriate repre-
sentations
(3) Limited scalability Some traditional machine learning algorithms 
may have limitations in handling large datasets or datasets with 
high-dimensional features
(4) Sensitivity to input data Traditional machine learning algorithms 
may be sensitive to the quality and distribution of input data, which 
can affect their performance

Ensemble machine learning21,29

(1) Improved accuracy Ensemble methods combine multiple 
models, reducing bias and variance which leads to improved overall 
predictive accuracy
(2) Robustness Ensemble methods can be more robust to outliers 
and noise in the data, as the combined predictions can mitigate the 
impact of individual model errors
(3) Generalization Ensemble methods can capture a wider range of 
patterns and relationships in the data, enhancing their generaliza-
tion capabilities
(4) Model diversity Ensemble methods incorporate diverse models, 
leveraging different perspectives and reducing the risk of model 
limitations

(1) Lack of transparency Ensemble models can be less transparent 
and harder to interpret compared to single models, making it chal-
lenging to understand the underlying decision-making process
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enhanced generalization, increased efficiency, customization according to specific requirements, and improved 
interpretability of the model. Also, it is worthy to be mentioned that, some studies have presented their results 
as correlations14,23–27,30,31. To better explain the development of the literature, some of the major studies in the 
past decade are discussed in the following.

Studies based on the development of correlations include Arabloo et al.14, who used LINGO, Fattah and 
Lashin25, who used the non-linear regression technique and Genetic Programming (GP) based on volatile oil res-
ervoirs data bank, and Mahdiani and Norouzi26, who used the Simulated Annealing (SA) optimization method. 
The presented correlations for predicting Bo are based on common parameters such as reservoir temperature, 
solution oil–gas ratio, API gravity, and gas relative density. They all claimed that the proposed correlations 
improved the prediction accuracy compared to previous ones.

Saghafi et al.27 proposed models and correlations for predicting oil formation volume factor using Adaptive 
Neuro-Fuzzy Inference System (ANFIS). In addition to that, a functional correlation implementing the Genetic 
Programming (GP) model was proposed based on the aforementioned parameters.

In another study, Seyyedattar et al.29 used other tree-based methods such as Extra Tree (ET) in addition to 
ANFIS to estimate the oil formation volume factor. This study also extensively discussed the ET model’s remark-
able capability to estimate the intended parameter with a wide range of features.

In another major study, Rashidi et al.33 combined Machine Learning with optimization methods to achieve 
improvement. This study employed two Machine Learning algorithms (Multi-layer Extreme Learning Machine 
(MELM) and Least Squares Support Vector Machine (LSSVM)) and two methods in order to optimize the param-
eters (a Genetic Algorithm (GA) and a Particle Swarm Optimizer (PSO)). It is also noteworthy that applying the 
PSO method instead of GA halved the prediction error.

All of the reviewed studies that used artificial intelligence to predict Bo were based on the black oil method and 
conventional features (such as reservoir temperature, solution gas-oil ratio, API gravity, and gas relative density).

Larestani et al.21 utilized multiple machine learning techniques such as ETs, RF, DTs, generalized regression 
neural networks, and cascade-forward backpropagation network in conjunction with radial basis function and 
multilayer perceptron neural networks to estimate oil formation volume factor based on the compositional oil 
method. This study used oil composition (obtained from oil composition analysis) and other common input 
parameters to introduce ETs as the superior model based on statistical and graphical comparisons. To express 
this model’s efficiency, various comparisons were made with correlations, previous machine learning methods, 
and Equations of State (EOS).

Aforementioned studies used machine learning and neural network to estimate the Bo parameter. Despite 
their efficiency, all these methods were effectively Black Boxes that hid the exact relationship between inputs and 
outputs and prevented distinguishing these functions clearly. To overcome this limitation, Wood and Choubineh28 
used the Transparent Open Box (TOB) learning network algorithm that led to more logical and accurate predic-
tions. Note that the proposed method was only evaluated for predicting the oil formation volume factor in the 
bubble point.

In all of these studies, the key issue addressed is the more precise estimation of Bo with reduced computational 
errors. Furthermore, it is essential that these methods are optimized in terms of both time and computational 
costs. To achieve this, innovative artificial intelligence-based techniques have been employed, along with their 
simultaneous integration.

This study aimed to accurately estimate the oil formation volume factor (Bo) using machine learning methods 
in various reservoir pressure and temperature ranges through black oil parameters and without implementing the 
results of oil composition analysis. The database used for training and testing the models covers a wide range of 
PVT data from Iran’s oil reservoirs, including 1241 data points from Constant Composition Expansion (CCE), 
Differential Liberation (DL), and separator tests. Three advanced soft computing approaches that rely on Gradi-
ent Boosting Decision Tree (GBDT) were utilized. These include XGBoost, GradientBoosting, and CatBoost. 
Hence, the developed models can reliably predict Bo in other Iranian oil reservoirs.

In this study, the reservoir pressure parameter is also used as an effective parameter along with other input 
parameters, including reservoir temperature, API gravity, and the solution gas-oil ratio (Rs) of the samples. To 
express the performance of the GBDT-developed models, quantitative and qualitative analyzes as well as com-
parison with previous Machine Learning approaches, including Random Forest (RF), Decision Trees (DTs), and 
Extra Trees (ETs) based on the oil composition method, is used. The advantage of the proposed method is the 
non-dependence of Bo estimation on its values at lower pressures (e.g., bubble point pressure).

The remaining part of the document is structured as follows: The “Model” section provides an overview of the 
fundamental principles and algorithms of each soft computing technique that has been implemented. The sec-
tion titled “Results and discussion” outlines the approach taken, model creation, and provides an analysis of the 
findings and subsequent discussions. Finally, the “Conclusion” section summarizes the key findings of the study.

Model
The study utilizes an emerging Machine Learning technique known as ensemble, which combines multiple 
classifiers to enhance the robustness and improve the accuracy of classification performance. This technique 
is more effective in dealing with noise compared to single-classifier methods36,37. This research employs three 
ensemble techniques that utilize a Gradient Boosting Decision Tree algorithm: GradientBoosting, CatBoost, and 
XGBoost38–40. Some reasons for implementing boosting methods can be discussed as follows:

(1)	 Parallelization and scalability Many boosting implementations, such as XGBoost are designed to be highly 
parallelizable and scalable. They can efficiently utilize parallel computing resources, such as multi-core 
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CPUs or distributed computing frameworks, to speed up the training process and handle large-scale data-
sets.

(2)	 Improved predictive accuracy Boosting methods excel at improving predictive accuracy compared to other 
traditional machine learning algorithms. They combine multiple weak models (often decision trees) to 
create a strong ensemble model that can capture complex relationships in the data. By iteratively focusing 
on the samples that are difficult to predict, boosting methods gradually improve the overall accuracy of 
the model.

(3)	 Robustness to overfitting Boosting methods are effective in reducing overfitting. They utilize techniques 
such as regularization to mitigate the risk of overfitting the training data. This allows boosting models to 
generalize well to unseen data and perform consistently on different datasets.

In order to facilitate a more comprehensible perception, Table 2 provides a concise overview of the advantages, 
disadvantages, and applications of each utilized model.

GradientBoosting41,42.  The boosting technique is focused on iterating and reevaluating errors at each step 
to create a robust learner by combining multiple weaker learners. The training data used for the model can be 
defined as  x = {x1, x2, . . . , xn} representing the features of interest and y as the target data. In essence, this 
method aims to find the approximate value of ˜F(x) for F(x) based on the following condition:

where, Ly,x
(

y, F(x)
)

 is the cost function and argmin
F(x)

Ly,x
(

y, F(x)
)

 is the value of F(x) for which Ly,x
(

y, F(x)
)

 
achieves its minimum. The cost function enhances the accuracy of parameter prediction by attaining the mini-
mum value. Each weak learner endeavors to improve upon and reduce the errors of the previous weak learner. 
Ultimately, the objective is to obtain the desired regression tree function (i.e., h(xi; a) ) where parameter a rep-
resents a weak learner. Each decision tree is then adjusted and aligned to its determined slope. Fm(x) is updated 
in the final step based on the iterations performed43. For more detailed information, please refer to the Supple-
mentary File—Sect. 2.1—GradientBoosting.

CatBoost44,45.  CatBoost is a relatively new Gradient Boosting Decision Tree (GBDT) method. GBDT is 
known to perform well when applied to datasets containing numerical features. However, some datasets may 
contain string features such as gender or country names. These features may greatly impact the accuracy of our 
final predictions, so it is crucial not to ignore or eliminate them. Therefore, it is customary to convert categorical 
(string) features into numerical features before training a dataset.

Unlike some other GBDT-based methods, CatBoost offers a notable advantage by being able to handle cat-
egorical features during the training process. As mentioned earlier, categorical features are inherently non-numer-
ical. To incorporate them into our model, we need to convert them into numerical features before commenc-
ing the training process. For detailed information about the conversion methods and how CatBoost addresses 
potential issues Prokhorenkova et al.46 that may arise during this process, please refer to the Supplementary 
File—Sect. 2.2—CatBoost.

XGBoost47.  The Extreme Gradient Boosting (XGBoost) algorithm, which was developed and introduced 
by Chen et al.48, belongs to modern Machine Learning techniques based on Gradient Boosting Decision Trees. 
This algorithm aims to minimize errors and maximize adaptability by creating a large number of trees (e.g., k) to 
approximate the estimated value as closely as possible. By combining weak learners, the algorithm builds a strong 
learner. However, in this algorithm, weak learners are constructed through residual fitting49,50. The XGBoost 
model extends the cost function by incorporating first-order Taylor information and presenting second-order 

(2)˜F(x) = argmin
F(x)

Ly,x
(

y, F(x)
)

,

Table 2.   Advantages, disadvantages and applications of each utilized model.

Gradient Boosting43 CatBoost46 XGBoost48

Advantages
(1) Recommendation systems
(2) Natural language processing
(3) Image and video analysis
(4) Fraud detection

(1) Built-in handling of categorical features
(2) Automatic handling of missing values
(3) Excellent handling of large datasets

(1) High predictive performance
(2) Efficient implementation
(3) Regularization techniques to pre-
vent overfitting
(4) Feature importance ranking

Disadvantages
(1) Sensitive to hyperparameter tuning
(2) Prone to overfitting with complex datasets
(3) Lack of built-in handling for categorical features

(1) Longer training time for large datasets
(2) Relatively high memory consumption
(3) Requires more computational resources

(1) Requires tuning of hyperparameters
2) Limited handling of categorical 
features
(3) Difficult to interpret complex 
models

Applications
(1) Predictive modeling in various domains
(2) Financial risk analysis
(3) Healthcare and medical research
(4) Customer churn prediction

(1) Recommendation systems
(2) Natural language processing
(3) Image and video analysis
(4) Fraud detection

(1) Classification and regression 
problems
(2) Feature selection and ranking
(3) Anomaly detection
(4) Time series forecasting
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derivative information. This enhancement enables faster convergence during the learning process. Additionally, 
the XGBoost algorithm includes a regularization component in the cost function, which helps control complex-
ity and reduces the risk of overfitting. For a more detailed understanding of the general process of the XGBoost 
algorithm, please refer to the Supplementary File—Sect. 2.3—XGBoost.

To provide a more tangible comprehension, Fig. 1 illustrates the proposed algorithm structure51.
The name and version of the packages used in the analysis and model development are as follows:

NumPy: 1.22.4;
pandas: 1.5.3;
scikit-learn: 1.2.2;
catboost: 1.2;
xgboost: 1.7.6;
seaborn: 0.12.2;
matplotlib: 3.7.1.

Results and discussion
Model development.  The databank is obtained from a series of PVT tests on various samples of Iranian oil 
in a wide pressure range above and below each sample’s bubble point. At pressures exceeding the bubble point, 
the Bo parameter is obtained from DL and separator tests. At the same time, it is necessary to use CCE and sepa-
rator tests to determine these parameters at pressures below the bubble point. The following correlations are used 
to obtain this parameter from the results of mentioned experiments1:

(

Vt
Vb

)

CCE
 is the total relative volume by the CCE test. BoSb is the oil formation volume factor at bubble point 

pressure obtained from the separator test. BoDb is the oil formation volume factor at bubble point pressure from 
the DL test and BoD is the oil formation volume factor from the DL test at the desired pressure.

Therefore, a total of 1241 experimental data points, which adequately represent Iranian crude oil samples, 
were collected and used to develop efficient models for Bo estimation with greater accuracy. The features used in 
each sample include reservoir pressure and temperature, API gravity, and solution gas-oil ratio (Rs) which has 
physical base and are also implemented in known correlations that are used in Bo estimation.

It is important to note that the methodology employed in this approach relies on black oil, which reduces the 
number of features to save time and reduce memory consumption and can lead to more efficient commercial 

(3)Bo =

(

Vt

Vb

)

CCE

BoSb (P ≥ Pb),

(4)Bo = BoD
BoSb

BoDb
(P < Pb).

Figure 1.   Schematic of XGBoost algorithm.
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simulators. Also, five data preprocessing stages are applied which are summarized in Fig. 2. Running preproc-
essing stages before model development offers advantages such as improved data quality, enhanced feature 
representation, and better handling of missing or irrelevant data, leading to improved model performance and 
generalization capabilities. Additionally, preprocessing allows efficient data transformation, normalization, and 
scaling, enabling the model to effectively learn patterns and relationships in the data.

By analyzing the results presented in Fig. 3 and taking into account expert opinion, 8 outliers were detected 
among the collected data. Although these points are valid, they exhibit a significant departure from the majority 
of the data samples. Their considerable deviation from the mean strongly influences the parameters and coef-
ficients estimated by Machine Learning models, which may compromise predictive performance. Hence, these 
data points are excluded from the training and testing datasets.

Table 3 provides a comprehensive overview of whole data (including the train and test data ranges) utilized 
for constructing the models.

To ensure robust and dependable results, it is important to note that the databank was randomly split into 
two subsets. The first subset, comprising 80% of the data, was used to train the models, while the second subset, 
which contained the remaining 20% of the data, was used to evaluate the effectiveness of the models. Therefore, 
the reliability of developed models can be compared to blind cases.

Figure 2.   Data preprocessing steps.

Figure 3.   Data joint plots for outliers’ detection.
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Regarding the evaluation of the model using testing data, a comprehensive analysis has been conducted to 
ensure that the testing data falls within the range of the training data. This evaluation was based on the informa-
tion provided in the Tables 4 and 5. Statistical variables, including mean and standard deviation, were calculated 
for the training data. Subsequently, it was verified that the values reported for the testing data aligns within an 
acceptable range determined by these statistical measurements. It is hereby confirmed that the testing data 
demonstrates a strong alignment with the characteristics and distributions observed in the training data. Con-
sequently, this validation ensures the performance of the model and its generalizability to real-world scenarios.

Grid Search is a hyperparameter tuning technique used in machine learning to find the optimal values for a 
set of hyperparameters that can produce the best model performance. Hyperparameters are model parameters 
that cannot be learned from the data and should be specified beforehand. Grid Search involves defining a set of 
values for each hyperparameter, creating a grid of all possible combinations of hyperparameter values, and then 
evaluating each combination using a performance metric such as accuracy or mean squared error. The combina-
tion of hyperparameter values that produces the best performance on the evaluation metric is then selected as 
the optimal hyperparameter52.

Table 6 displays the control parameters for algorithms utilized in this paper, which are the outcome of 
hyperparameters.

Performance evaluation.  This study employed various statistical and graphical comparisons to examine 
the capability and adequacy of the models. The correlations for obtaining the statistical indicators are presented 
in the following:

1.	 Average absolute relative deviation (AARD):

2.	 Coefficient of determination (R2):

(5)AARD% =
1

N

N
∑

i=1

∣

∣

∣

∣

Oiexp − Oipred

Oiexp

∣

∣

∣

∣

× 100.

Table 3.   Statistical ranges and parameters related to inputs/outputs employed for developing models.

No Parameters Unit Count Mean Std Min 25% 50% 75% Max

1 Pressure psi 1233 2618.08 1757.94 14.70 1230.00 2428.00 3833.00 10,072.00

2 Temperature °F 1233 215.43 40.21 110.00 190.00 208.00 247.00 290.00

3 Solution GOR (Rs) SCF/STB 1233 607.46 496.64 0.00 327.77 473.52 771.18 2866.89

4 API – 1233 26.90 6.49 13.35 21.67 26.74 30.39 44.52

5 Oil formation volume factor (Bo) bbl/STB 1233 1.42 0.30 1.02 1.25 1.33 1.50 2.83

Table 4.   Statistical ranges for training data.

No Parameters Unit Count Mean Std Min 25% 50% 75% Max

1 Pressure psi 987 2585.46 1765.57 14.70 1223.00 2423.00 3833.00 10,072.00

2 Temperature °F 987 214.90 40.29 110.00 190.00 208.00 247.00 290.00

3 Solution GOR (Rs) SCF/STB 987 605.00 502.94 0.00 314.85 473.52 771.18 2866.89

4 API – 987 26.96 6.51 13.35 21.67 26.74 30.39 44.52

5 Oil formation volume factor (Bo) bbl/STB 987 1.42 0.30 1.02 1.25 1.33 1.50 2.83

Table 5.   Statistical ranges for testing data.

No Parameters Unit Count Mean Std Min 25% 50% 75% Max

1 Pressure psi 246 2748.43 217.55 14.70 1535.00 2525.00 3837.00 8535.00

2 Temperature °F 246 217.55 39.89 110.00 190.00 208.00 248.00 290.00

3 Solution GOR (Rs) SCF/STB 246 617.00 471.49 0.00 340.91 478.83 755.57 2487.61

4 API – 246 26.67 6.42 13.35 21.52 26.30 30.26 44.52

5 Oil formation volume factor (Bo) bbl/STB 246 1.43 0.29 1.03 1.26 1.34 1.48 2.52
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3.	 Root mean square error (RMSE):

In Eqs. (5), (6), and (7) Oi represents the output (oil formation volume factor (Bo)), and exp represents the 
actual Bo values, while pred represents the estimated Bo values. Furthermore, O denotes the mean of the outputs, 
and N represents the total number of data points.

To demonstrate the strength of our models, we conducted a tenfold cross-validation on the training dataset. 
The process of cross-validation involves dividing the training set into k subsets, training a model with k − 1 folds, 
and validating the model with the remaining data. The performance of the model is then evaluated as the average 
of the values obtained for each fold. In this study, a tenfold cross-validation was performed, and the resulting 
RMSE-score was found to be 0.0198 for XGBoost as shown in Table 7. It could be seen later that this reported 
RMSE-score suggests that the XGBoost model performed well not only on the 20% of data used for test but also 
on the dataset used for training, indicating that the model is highly accurate and reliable.

(6)R2 = 1−

∑N
i=1

(

Oiexp − Oipred

)2

∑N
i=1

(

Oipred − O
)2

.

(7)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

Oiexp − Oipred

)2
.

Table 6.   Control parameters employed in development and application of soft computing techniques.

Parameters Value

GradientBoosting

n-Estimators 120

Max depth 5

Learning rate 0.10

Subsample 1

Alpha 0.90

Min samples split 2

XGBoost

n-Estimators 94

Max depth 9

Learning rate 0.08

Subsample 0.75

Gamma 0

Col sample by tree 1

CatBoost

Depth 7

Learning rate 0.07

Iterations 300

Best model min trees 1

Bootstrap type MVS

Leaf estimation method Newton

Table 7.   Performance measure reported by tenfold cross-validation.

Folds XGBoost (RMSE) GradientBoosting (RMSE) CatBoost (RMSE)

Fold-1 0.0189 0.0236 0.0241

Fold-2 0.0207 0.0280 0.0289

Fold-3 0.0251 0.0225 0.0224

Fold-4 0.0145 0.0172 0.0196

Fold-5 0.0181 0.0259 0.0286

Fold-6 0.0176 0.0232 0.0209

Fold-7 0.0259 0.0183 0.0187

Fold-8 0.0193 0.0212 0.0203

Fold-9 0.0156 0.0288 0.0270

Fold-10 0.0224 0.0240 0.0255

Folds mean 0.0198 0.0232 0.0236
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Combining graphical evaluation with statistical indicators facilitates the examination of models in terms 
of accurate Bo estimation. In Fig. 4. According to cross plots the uniform distribution of predictions along the 
X–Y axis suggests that these models produce accurate predictions. The majority of the test data, with minimal 
deviation from the X–Y axis in the case of XGBoost, indicates excellent performance and suggests that XGBoost 
outperforms other methods in terms of efficiency. The overlap between the predicted values and the actual values 
in the cross-plot evaluation method can be used to assess how accurately and effectively the models perform.

Figure 4.   Cross plots of the implemented models: (a) XGBoost, (b) GradientBoosting, and (c) CatBoost.
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Table 8 reports the statistical indicators of the developed models. The results illustrate that with average 
absolute relative deviation (AARD) and coefficient of determination (R2) of 0.2598% and 0.9994, respectively, 
the XGBoost model outperforms the other models for Bo estimation. In the following, these statistical indicators 
are used for comparing the models with reviewed methods in terms of performance.

The time and memory occupied by each model are additional performance indicators that can be used 
alongside error analysis based on statistical indicators. Therefore, the average Training Time, Inference time, and 
occupied memory are reported in Table 9 which indicates that XGBoost is significantly faster while requiring 
less Time and Memory for train and test.

The study finds that XGBoost has improved upon the Gradient Boosting Decision Tree (GBDT) technique 
in several key areas. Firstly, XGBoost utilizes a second-order Taylor expansion with both first and second orders 
as improved residuals, whereas traditional GBDT only uses the first-order Taylor expansion. This feature allows 
XGBoost to capture more complex relationships between features and enhance its prediction power. Secondly, 
XGBoost incorporates a regularization term in its objective function to control the model’s complexity and pre-
vent overfitting. This regularization improves the model’s generalization performance on new data. Overall, the 
study concludes that the combination of these features makes XGBoost a highly effective and versatile Machine 
Learning method. Lastly, XGBoost uses the random forest column sampling method to further reduce the chance 
of overfitting. Hence, the XGBoost model has shown excellent learning performance and training speed45.

An alternative approach for evaluating model performance entails analyzing the predictive deviation of each 
model with respect to the Bo value acquired from experimental tests across the entire dataset. In this assessment, 
narrower ranges of deviation signify superior performance in parameter prediction and estimation. Figure 5 
shows the relative deviation of the developed models, revealing that the XGBoost model achieves less than 1% 
absolute relative deviation for the majority of the dataset. This outcome serves as evidence of the accuracy and 
efficiency of the XGBoost model.

Comparison of the developed models with previous approaches.  The previous sections employed 
statistical indicators and graphical tools to show the Bo estimation performance of the developed models for 
various pressure ranges. The XGBoost model, a machine learning method discussed in this study, had better 
performance among the others. Larestani et al.21 presented a Machine Learning approach based on the bagging 
method using compositional oil features21. This method was shown to be superior to previous Machine Learning 
methods and various Equations of State using the statistical indicators presented in the Supplementary File—
Sect. 3—Comparison with the preexisting approaches. Therefore, the results of this study will only be compared 
to Larestani et al.21 results in the following. Also note that for a fair comparison, the same databank was used for 
testing and training processes in the present study and Larestani et al.21.

Comparison with compositional study.  Using the oil composition method, 18 features in the normal method, 
including oil composition (methane to C11 and non-hydrocarbons), specific gravity and molecular weight of 
C12

+, reservoir temperature and pressure, and 7 features by division of oil components into three subgroups 
in the lumped method, Larestani et al.21 estimated Bo as the only desirable output parameter. As mentioned 
before, the features used for developing the models in this study include API gravity, temperature, pressure, 
and Rs. Table 10 compares the models from this study with the top three models of Larestani et al.21, which 
include tree-based bagging methods. As shown in Table 10, Larestani et al.21 introduced the Extra Trees model in 
lumped mode as the optimal model. Analysis of indicators suggests that all the models, especially the XGBoost 
technique, outperform the methods proposed by Larestani et al.21. As a novel and advanced Machine Learning 
model, XGBoost has reduced the ETs model’s error (Larestani et al.21 superior model) down to a quarter despite 
using fewer features (4 compared to 18 in normal mode/4 compared to 7 in lumped mode). This was achieved 
while presenting more accurate estimations and time and cost savings (independent of oil composition analysis), 
suggesting that it can be practical and economical for simulations.

Table 8.   Statistical indices used for describing the performance of proposed models.

Models

Train Test Overall

RMSE R2 AARD (%) RMSE R2 AARD (%) RMSE R2 AARD (%)

XGBoost 0.0046 0.9997 0.2085 0.0111 0.9980 0.4646 0.0059 0.9994 0.2598

GradientBoosting 0.0057 0.9996 0.2948 0.0159 0.9960 0.6110 0.0078 0.9989 0.3581

CatBoost 0.0105 0.9987 0.5293 0.0154 0.9962 0.9603 0.0114 0.9982 0.5615

Table 9.   Time and memory assessment of each modelling approach.

Models Training time (s) Inference time (s) Memory (MB)

XGBoost 0.11 0.001 271

GradientBoosting 0.21 0.002 281

CatBoost 0.68 0.004 254
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This paper provided train errors besides test errors to indicate whether the model suffers from overfitting or 
not. If the model has a significantly lower train error than the test error, it indicates potential overfitting. This 
difference suggests that the model is fitting the training data very well but struggles to generalize to new, unseen 
data. In this regard Table 10 and Fig. 6 compares the bar charts of AARD (%), RMSE, and R2 statistics for these 
models and the superior model from Larestani et al.21. Figure 6 shows a clear graphical representation of the 
superior performance of the developed models, especially XGBoost, in all error measurement statistics.

Figure 5.   Relative deviation (%) of estimated oil formation volume factor (Bo) values using the (a) XGBoost, 
(b) GradientBoosting, and (c) CatBoost model for test and train data points.
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As mentioned in the “Model” section, the black oil model was selected in order to reduce the number of 
input features as a consequence for time and memory savings. It should be noted that, likewise, Larestani et al.21 
selected the lumped models to significantly reduce the number of features. To compare runtimes and occupied 
memory for the XGBoost method used in this study and the lumped models in Larestani et al.21 study, the aver-
age runtimes and occupied memory are reported in Table 11. The results demonstrate that XGBoost requires 
significantly less computing time and memory. It is worthy to be noted that for having a fair comparison in 
computation time, all the developed models within this study, as well as developed models in Larestani et al.21 
study are compiled with CPU.

Figure 7 shows changes in Bo for different pressures relative to the bubble point suggesting that Bo changes 
were lower for pressures exceeding the bubble point. These limited changes could be attributed to the stable oil 
composition in pressures exceeding the bubble point where Bo changes are merely due to oil expansion in the 
reservoir. Meanwhile, solution gases are lower at pressures below the bubble point, which reduces oil volume 
closer to surface conditions. In fact, changes to oil composition due to solution gas evolved affect Bo at pressures 
lower than the bubble point, and the reduction in solution gases reduces Bo. Therefore, as a representative of 
oil composition53 and a crucial parameter of oil volume change, Rs can be included in the features set. To better 
illustrate the greater efficiency of the developed models, Fig. 8 shows the bar chart of their prediction error in 
the two pressure ranges (higher and lower than the bubble point).

In order to establish a reliable basis for comparison, this study provides a comprehensive analysis of the 
reasons behind the superiority of boosting methods over other bagging methods. Specifically, while the Extra 
Tree algorithm employs bagging, the XGBoost, CatBoost, and GradientBoosting algorithms utilize boosting 
techniques. Both boosting and bagging are ensemble methods that aim to improve the accuracy of Machine 
Learning models. However, their approaches differ, and which method is better depends on the specific problem 
and dataset.

Bagging, or bootstrap aggregating, is a method where multiple models are trained on different subsamples 
of the data with replacement, and the final prediction is a combination of the predictions from all the models. 
Bagging can reduce variance and overfitting.

On the other hand, Boosting is an iterative method that trains multiple weak models sequentially, where 
each subsequent model tries to correct the errors of the previous one. Boosting aims to reduce bias and improve 
model performance.

Several studies have compared the performance of boosting and bagging on various datasets, and the results 
are mixed. Some studies have shown that boosting outperforms bagging, while others have shown the opposite. 
A review of ensemble methods by Buciluǎ et al.54 found that boosting and bagging have similar performance on 
many datasets, but boosting tends to perform better on datasets with a small number of features.

In our study, there are 4 features and it’s obvious that 4 features aren’t high for Machine Learning tasks so 
boosting methods can perform better than bagging methods.

Samples.  Table 12 presents the experimental Bo values and the XGBoost model estimations for four Iranian 
oil samples at different pressures. Also, in order to provide a better outlook a graphical illustration is presented 
corresponding to each sample in Fig. 9. The figure evidently demonstrates the capability of the proposed model 
in reproducing the physical trend at different pressures which is in agreement with the general knowledge. 
Hence, it can be concluded more confidently that the XGBoost model can accurately estimate Bo regardless of 
the pressure range and oil type.

Conclusion
The AARD errors associated with the machine learning algorithms based on GBDT, namely XGBoost, Gradient-
Boosting, and CatBoost, in the present study are reported 0.2598%, 0.3581%, and 0.5615% respectively. Hence, 
the XGBoost model has attained the best results. On the other hand, the results from previous study concerning 
the utilization of bagging models demonstrate that the lumped Extra Tree model (the best-reported approach 

Table 10.   Performance of the developed models in comparison with the compositional models. a This study. 
b Larestani et al.21.

Models

Train Test Overall

RMSE R2 AARD (%) RMSE R2 AARD (%) RMSE R2 AARD (%)

XGBoosta 0.0046 0.9997 0.2085 0.0111 0.9980 0.4646 0.0059 0.9994 0.2598

GradientBoostinga 0.0057 0.9996 0.2948 0.0159 0.9960 0.6110 0.0078 0.9989 0.3581

CatBoosta 0.0105 0.9987 0.5293 0.0154 0.9962 0.9603 0.0114 0.9982 0.5615

Normal Random Forestb 0.0425 0.9866 0.9390 0.0541 0.9745 1.0424 0.0451 0.9844 0.9597

Normal Decision Treesb 0.0645 0.9703 1.2312 0.0430 0.9797 1.4002 0.0608 0.9717 1.2650

Normal Extra Treesb 0.0261 0.9944 1.2132 0.0342 0.9929 1.3511 0.0279 0.9940 1.2408

Lumped Random Forestb 0.0395 0.9894 0.9600 0.0250 0.9898 1.0426 0.0370 0.9895 0.9766

Lumped Decision Treesb 0.0966 0.9293 1.3422 0.0510 0.9793 1.4343 0.0893 0.9389 1.3607

Lumped Extra Treesb 0.0248 0.9954 1.1404 0.0320 0.9915 1.2785 0.0264 0.9947 1.1681
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by Larestani et al.21, exhibits the AARD error rate of 1.1681%. As a result, the XGBoost model has successfully 
improved the error value by 0.9% in comparison with lumped ETs.

Figure 6.   Error bar charts of the developed models in this study in comparison with the best compositional 
model (ETs) of Larestani et al.21 based on (a) AARD (%), (b) RMSE, and (c) R2 in estimating oil formation 
volume factor (Bo).
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The most significant advantage of the current study, is considering only four input parameters without the 
need of applying oil composition data compared to the bagging models implementing compositional approach 
along with a higher number of input parameters (18 parameters for the normal case/7 parameters for lumped 
case).

Additionally, another advantage is the development of a single model for all pressure regions in the reservoir, 
ranging from very low pressures to pressures exceeding the bubble point. Despite of this study, previous studies 
have employed two separate models for higher and lower pressure regions of the bubble point.

Furthermore, the favorable performance of XGBoost can be attributed to the following factors:

(1)	 To elaborate on the XGBoost algorithm, it is a relatively new method based on GBDT that creates trees of 
equal depths consecutively, making it faster than other GBDT-based models due to parallel processing. It 
also employs L1 and L2 regularization techniques to mitigate overfitting.

Table 11.   Time and memory assessment comparison of the XGBoost model vs. Larestani et al.21 lumped 
models.

Models Training time (s) Inference time (s) Memory (MB)

XGBoost 0.11 0.001 271

DTs 0.28 Not reported 313

RF 0.62 Not reported 339

ETs 0.99 Not reported 295

Figure 7.   Oil formation volume factor (Bo) vs. pressure curve.

Figure 8.   Accuracy of developed models in predicting oil formation volume factor (Bo) for two different 
pressure ranges (above and below bubble point pressure).
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(2)	 L1 regularization encourages parameters to approach zero, effectively removing the impact of certain fea-
tures, while L2 regularization reduces the magnitude of weights without forcing them to become precisely 
zero.

(3)	 The XGBoost model exhibits the capability to handle missing or NaN (Not a Number) data values, enhanc-
ing its robustness and practicality in real-world applications.

Table 12.   Experimental Bo values and the XGBoost model estimations for four Iranian oil samples at different 
pressures. Significant values are in bold.

Sample 1 Sample 2

P (psia) Real Bo (bbl/STB) Model Bo (bbl/STB) P (psia) Real Bo (bbl/STB) Model Bo (bbl/STB)

5058 1.264993 1.263273 5058 1.269586 1.269956

4057 1.271601 1.272116 4057 1.276778 1.277404

3054 1.278784 1.279456 3054 1.284824 1.283406

2551 1.282781 1.281855 2551 1.289471 1.287139

2148 1.286200 1.286202 2248 1.292532 1.292635

2046 1.287120 1.288550 2148 1.293607 1.292635

1942 1.288076 1.288924 2046 1.294728 1.295759

1842 1.289012 1.288924 1942 1.295899 1.298283

1743 1.289957 1.289285 1842 1.297055 1.297930

1688.769 1.290442 1.291468 1692.429 1.298694 1.302322

1348 1.266570 1.265986 1386 1.271466 1.274578

1019 1.239040 1.243145 1036 1.241328 1.243556

688 1.212583 1.215799 682 1.210465 1.211540

358 1.178781 1.182006 330 1.170797 1.167173

14.7 1.059500 1.058335 14.7 1.067100 1.065139

Sample 3 Sample 4

P (psia) Real Bo (bbl/STB) Model Bo (bbl/STB) P (psia) Real Bo (bbl/STB) Model Bo (bbl/STB)

5049 1.372511 1.376968 5557 1.310795 1.309808

4050 1.384720 1.386455 5058 1.314791 1.312617

3047 1.393742 1.396921 4057 1.323210 1.322753

2543 1.404223 1.402851 3054 1.332665 1.328542

2442 1.404594 1.404133 2248 1.341454 1.339894

2341 1.404594 1.405437 2148 1.342729 1.339894

2241 1.406945 1.406750 2046 1.344060 1.342788

2140 1.404457 1.408102 1942 1.345451 1.343368

2039 1.406495 1.409479 1842 1.346824 1.345261

1977.934 1.412340 1.410265 1743 1.348221 1.347062

1686 1.369929 1.386076 1643 1.349671 1.349845

1383 1.349317 1.357261 1568.62 1.350668 1.350203

1079 1.319025 1.328358 1236 1.316720 1.302710

774 1.292498 1.299005 935 1.287005 1.285658

368 1.245166 1.249311 632 1.254527 1.253684

14.7 1.077700 1.074200 330 1.211657 1.226408

14.7 1.074100 1.074109
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In addition, the universal application of the developed models is predicting volumetric properties of newly 
discovered reservoirs using limited wellhead and reservoir data, without the need for running routine PVT 
laboratory tests. These models can be trained using available fluid samples from pre-developed fields in a specific 
region of the world and then utilized for other fields in the same region.

One of the limitations of the conducted study is the utilization of certain hyperparameters with default values, 
which can be optimized in future studies using appropriate optimization methods.

Data availability
The data will be available upon request. The corresponding author (MRK) should be contacted for this purpose.
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