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Interaction between genetic 
susceptibility to obesity and food 
intake on BMI in Finnish 
school‑aged children
Heli Viljakainen 1,2*, Jose V. Sorlí 3,4, Emma Dahlström 1,5,6, Nitin Agrawal 1,2, 
Olga Portolés 3,4 & Dolores Corella 3,4

Diet modulates the genetic risk of obesity, but the modulation has been rarely studied using genetic 
risk scores (GRSs) in children. Our objectives were to identify single nucleotide polymorphisms (SNPs) 
that drive the interaction of specific foods with obesity and combine these into GRSs. Genetic and food 
frequency data from Finnish Health in Teens study was utilized. In total, 1142 11‑year‑old subjects 
were genotyped on the Metabochip array. BMI‑GRS with 30 well‑known SNPs was computed and the 
interaction of individual SNPs with food items and their summary dietary scores were examined in 
relation to age‑ and sex‑specific BMI z‑score (BMIz). The whole BMI‑GRS interacted with several foods 
on BMIz. We identified 7–11 SNPs responsible for each interaction and these were combined into 
food‑specific GRS. The most predominant interaction was witnessed for pizza (p < 0.001): the effect on 
BMIz was b − 0.130 (95% CI − 0.23; − 0.031) in those with low‑risk, and 0.153 (95% CI 0.072; 0.234) in 
high‑risk. Corresponding, but weaker interactions were verified for sweets and chocolate, sugary juice 
drink, and hamburger and hotdog. In total 5 SNPs close to genes NEGR1, SEC16B, TMEM18, GNPDA2, 
and FTO were shared between these interactions. Our results suggested that children genetically 
prone to obesity showed a stronger association of unhealthy foods with BMIz than those with lower 
genetic susceptibility. Shared SNPs of the interactions suggest common differences in metabolic 
gene‑diet interactions, which warrants further investigation.

Obesity is a complex condition resulting from the influence of several common genetic factors in conjunction 
with various environmental and social  factors1. Several candidate gene  investigations1 as well as many recent 
genome-wide association studies (GWAS) have identified hundreds of single nucleotide polymorphisms (SNPs) 
associated with the susceptibility to  obesity2–5. However, the genetic variants identified by GWAS with p <  10–8 
explain less than 10% of the variance in body mass index (BMI)2. Among the genetic factors, SNPs within 
the FTO gene have been the most associated with obesity-related phenotypes in GWAS conducted in various 
 populations3–7.

The role of diet in cardiometabolic diseases is widely  recognized8–10. More specifically, unbalanced diets 
composed of processed, energy-dense foods, can promote weight gain in all  ages11, 12. A genetic susceptibility 
to obesity appears stronger in an obesogenic environment, mainly due to an energy-dense diet, than in sparse 
 ones13–15, pointing to an interaction between a person’s genotype and diet. Several studies have analyzed the 
interaction between SNPs in the FTO gene and dietary factors in determining obesity-related  phenotypes16–19. 
However, the genetics of obesity is also  complex20. Apart from the rare cases of monogenic obesity, common obe-
sity is  polygenic21, 22. In epidemiological studies, the combined polygenic risk of obesity has been computed using 
several approaches. Thus, so-called genetic risk scores (GRS) summarizing the additive effect of multiple, com-
mon SNPs have been  proposed23, 24. An obesity-related GRS summarizes the estimated effect of common genetic 
variants on obesity  phenotype25. Several GRSs have been constructed and validated for obesity  phenotypes25–29. 
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Although these prior studies did not analyze the interaction between the GRS for obesity and diet, subsequent 
studies that investigated such interactions, have mainly focused on  macronutrients30, 31 or the overall quality of 
the  diet32–35 and food  groups36, 37.

Regarding food, the interaction between GRS for obesity and individual foods has been demonstrated previ-
ously for sugar-sweetened  beverages38, 39 and fried  foods40: these have been associated strongly with weight gain 
in those with a higher genetic predisposition to obesity. However, in most cases, GRSs were used as a total score, 
while specific SNPs that drive the interaction with foods have been poorly investigated.

Our working hypothesis is that despite diet modulating the genetic risk of obesity (assessed by a whole GRS), 
only specific SNPs in the GRS, as well as specific foods, are the main drivers of such modulation. Therefore, the 
identification of such specific interactions in specific populations will be of special relevance to provide a more 
focused recommendation to promote precision  health41.

Compared to adults, research on the interaction between food consumption and genetic predisposition to 
obesity in children is very scarce, although understanding it could aid  early risk detection and target  preventive 
actions  efficiently42. Therefore, we aimed at analyzing gene-diet interactions, considering not only the whole GRS 
but also identifying individual SNPs that drive the interaction of specific foods and combining these into GRSs. 
Finally, we illustrated the interactions and the shared SNP effects to gain a deeper insight into how individuals’ 
susceptibility to obesity modifies the effect of food consumption on BMI.

Results
Participants. Background characteristics of the 1142 participants are described in Table 1 by groups with 
low and high genetic risk for obesity. The grouping was based on the median number of risk alleles (n = 27). The 
number of risk alleles varied between 17 and 27 in the low-risk group and between 28 and 39 in the high-risk 
group. There was a distinctive difference in BMIz and waist-to-height-ratio (WtHr) between the groups: higher 
BMIz and waist circumference, but not height, was observed in the high -risk group in comparison to the low-
risk group. However, many demographic and lifestyle factors did not differ between the groups. Correspond-
ingly, food consumption illustrated by three summary scores and 15 individual food items were similar between 
the groups. An exception was observed with the consumption of pizza, which was somewhat higher (0.63 vs. 
0.53, p = 0.061) and had a double variation in the high compared with the low-risk group.

Foods with an interaction with the whole GRS. Interactions of dietary summary scores/individual 
food items with whole BMI-GRSs on BMIz are shown in Table 2. We witnessed interactions for five individual 
food items: dark bread, biscuits and cookies, sugary juice drink, sweets and chocolate, pizza, and milk and sour 
milk with at least one BMI-GRS p < 0.15. When using dichotomous BMI-GRS e.g., (low vs. high-risk group), an 
additional interaction was identified for hamburger and hotdog. Details of the interactions are shown in Supple-
mentary Table 1. There was no interaction between any of the dietary summary scores and BMI-GRS on BMIz.

Specific SNP × food modulation: SNPs driving the interaction. The identified seven food items 
were further explored for interactions at individual SNP levels. SNPs with the same direction and p < 0.2 were 
included in the food-specific GRS (Supplementary Table 2). In total, dark bread had 10, biscuits and cookies 7, 
sugary juice drink 7, sweets and chocolate 10, pizza 11, hamburger and hotdog 7, and milk and sour milk 12 
interacting SNPs.

Food‑specific GRS and their interactions. The associations of food-specific GRS, food intake, and their 
interaction on BMIz were tested in two models (Table 3): model 1 was adjusted only for sex, while model 2 was 
additionally adjusted for physical activity and sleep duration (fully adjusted). The fully adjusted interactions 
were further illustrated in Fig. 1. The interactions were validated for pizza, sweets and chocolate, sugary juice 
drink, and hamburger and hotdog when the adjusted mean effect sizes  differed between the low- and high-risk 
groups.

The most predominant interaction was marked for pizza: it associated inversely with b − 0.130 (95% CI − 0.23; 
− 0.031) with BMIz in those with low GRS, while positively with b 0.153 (95% CI 0.072; 0.234) with BMIz in those 
having high GRS. Sugary juice drink followed the same pattern with the exception that the association among 
the low GRS group did not reach formal significance. Significant interactions were noted for hamburger and 
hotdog (p = 0.027) and sweets and chocolate (p = 0.011): the verification followed the same pattern but without 
formal significance.

Shared SNPs. Figure 2 illustrates the shared SNPs between the four food items. In total, we identified 15 
out of 30 SNPs presenting an interaction. Interestingly, 33% of the SNPs  were shared between pizza, sweets 
and chocolate, sugary juice drink, and hamburger and hotdog. These SNPs are close to the following genes 
(expressed in high magnitudes in these tissues): NEGR1 (brain), SEC16B (liver/pancreas), TMEM18 (bone), 
GNPDA2 (non-specific), and FTO (non-specific). The description of the SNPs and genes is presented in Sup-
plementary Table 3.

Discussion
Initially, we observed  interactions between the whole BMI-GRS and certain foods on BMIz in school-aged 
children from Finland. Further investigations demonstrated that each  interaction was driven by 7–11 SNPs. 
When combining these SNPs into food-specific GRS we verified an interaction for pizza, sweets and chocolate, 
sugary juice drink, and hamburger and hotdog. Thus, children bearing more risk alleles for obesity showed a 
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Table 1.  Background characteristics of the participants in low- and high-risk groups, using the median 
number (= 27) of risk alleles as the cut-off, reported as mean (SD), if not indicated otherwise. a Chi-Square, 
Missing values in low- and high-group, respectively: bn = 55 and n = 52, cn = 42 and n = 27, dn = 4 and n = 5, 
en = 39 and n = 33, fn = 62 and n = 47, gn = 13 and n = 16, hn = 13 and n = 16, in = 9 and n = 8, jn = 10 and n = 2, 
kn = 8 and n = 2, ln = 7 and n = 4, mn = 36 and n = 18, nn = 11 and n = 8, on = 17 and n = 13, pn = 11 and n = 6, qn = 9 
and n = 5, rn = 9 and n = 3, sn = 10 and n = 7, tn = 7 and n = 6, un = 10 and n = 7, vn = 7 and n = 4, wn = 9 and n = 5, 
xn = 9 and n = 1.

n

Low risk High risk

p value

603 539

Mean SD Mean SD

Number of risk alleles < 0.001

Sex, n (%) 24.8 (2.1) 30.3 (2.1) 0.947a

 Girl 302 (50.1%) 271 (50.3%)

 Boy 301 (49.9%) 268 (49.7%)

Puberty phase, n (%)b 0.591

 Prepubertal 249 (45.4%) 232 (47.6%) 0.500a

 Pubertal 296 (54.0%) 250 (51.3%)

 Postpubertal 3 (0.5%) 5 (1.0%)

Age, y 11.30 (0.2) 11.30 (0.2) 0.712

BMI z-score 0.21 (1.0) 0.47 (1.0) < 0.001

Waist-to-height ratio 0.44 (0.04) 0.45 (0.05) 0.001

Maternal SES, n (%)c 0.161a

 Upper-level 175 (29.0%) 154 (28.8%)

 Lower-level 261 (43.3%) 213 (39.5%)

 Manual workers 59 (9.8%) 62 (11.5%)

 Self-employed 7 (1.2%) 7 (1.2%)

 Students 43 (7.1%) 52 (9.6%)

 Housewife 16 (2.7%) 21 (3.9%)

 Other 0 (0.0%) 3 (0.3%)

Leisure-time physical activity, h/weekd 6.8 (2.7) 6.6 (2.6) 0.315

Mean sleep duration for week, h/nighte 9.8 (0.7) 9.8 (0.6) 0.940

Eating habit group, n (%)f 0.591a

 Healthy 69 (12.8%) 70 (14.2%)

 Fruit and vegetable avoider 233 (43.1%) 219 (44.5%)

 Unhealthy 239 (44.2%) 203 (41.3%)

Plant consumption index, times/weekg 12.0 (7.9) 11.9 (8.0) 0.308

Sweet treat consumption index, times/weekh 9.9 (7.4) 9.9 (8.1) 0.882

Individual food items, times/week

 Dark  breadi 4.7 (4.0) 4.9 (4.1) 0.484

 Sweet  pastryj 1.2 (1.4) 1.1 (1.5) 0.691

 Biscuits and  cookiesk 1.8 (2.2) 1.8 (2.4) 0.921

 Ice  creaml 2.0 (2.1) 2.0 (2.2) 0.852

 Sugary juice  drinkm 2.2 (2.8) 2.3 (3.3) 0.549

 Sugary soft  drinkn 1.4 (2.0) 1.4 (2.0) 0.631

 Sweets and  chocolateo 1.4 (1.4) 1.4 (1.4) 0.946

  Pizzap 0.5 (0.7) 0.6 (1.2) 0.061

 Hamburger and  hotdogq 0.6 (0.8) 0.6 (1.3) 0.148

 Milk and  sourmilkr 10.5 (5.0) 10.5 (5.0) 0.985

 Cooked  vegetabless 1.6 (2.4) 1.8 (2.6) 0.471

 Fresh and grated  vegetablest 5.7 (4.3) 5.6 (4.2) 0.701

 Fruit and  berriesu 4.6 (3.8) 4.5 (3.7) 0.660

  Juicev 3.5 (3.8) 3.5 (3.7) 0.980

 Salty  snacksw 1.0 (1.4) 1.0 (1.1) 0.764

  Waterx 9.7 (4.9) 9.9 (5.0) 0.495
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stronger association of weight-promoting foods on BMI than those with fewer obesity-risk alleles. Importantly, 
there were no differences in the consumption frequency of these foods between the groups with varying genetic 
susceptibility, suggesting that the effect originates from a different kind of response to food than from a difference 
in consumption pattern. No interactions were observed for dietary summary scores describing overall eating 
habits or summary food scores for sugary foods or fruits and vegetables.

The health profile of the interacting foods was considered weight-promoting based on earlier studies due to 
their energy-dense-nutrient-poor  characteristics43. The most predominant interaction was observed with pizza 
on BMIz, e.g., a positive association with BMIz in the high-risk group while opposite in the low-risk group. 
Pizza consumption is the top contributor for intakes of total energy, saturated fat and sodium in US children 
and teens, with a daily consumption frequency of 20%44. In our study, once a week/in two weeks were the most 
common consumption patterns of pizza (> 70%). In a systematic  review45, TMEM18 and FTO were linked with 
total energy and fat intakes, thus partly supporting our findings.

In total, we identified 15 out of 30 SNPs as being responsible for the observed interactions for pizza, sweets 
and chocolate, sugary juice drink, and hamburger and hotdog. Interestingly, 33% of the interacting SNPs were 
shared between the foods. These included SNPs in or near genes NEGR1 (rs2815752), SEC16B (rs543874), 
TMEM18 (rs2867125), GNPDA2 (rs10938397) and FTO (rs1421085). Except for TMEM18, the other SNPs 
were previously shown to drive the interaction of fried foods, e.g., any deep-fried foods enjoyed at home or 
away from home on BMI in three US  cohorts40, while an independent effect was noted only for FTO. The FTO 
(rs1421085) gene has been associated repeatedly with various obesity phenotypes in different study designs and 
 populations46 (Supplementary Table 3), and its expression is aggregated in primary  adipocytes47. The variant 
rs1421085 in the first intron of the FTO gene regulates the adipocyte-thermogenesis pathway by interacting 
with other genes (ARID5B, IRX3, and IRX5)47. Previous reports have witnessed multiple interactions of FTO 
variant rs1421085 with the intake of  fiber48, dietary variation, alcohol consumption, and sedentary behaviors 
on BMI among  adults49.

Our unique finding concerned TMEM18 (rs2867125), which has been associated with pediatric  BMI50, 51, but 
here it presented an interaction with several foods. The contribution of any GRS or SNP may vary with age and 
in different stages of  life13. The total BMI-GRS used here was significantly associated with BMIz and explained 
3.7% of the variance in  children52, which is somewhat higher than reported in  adults22. Studies looking at genetic 
interaction with diet on BMI in pediatric cohorts are  scarce51 but informative, since food consumption is more 
naïve and less affected by social acceptance in children than in older age groups. Thus, our results on TMEM18 
may imply that the BMI trajectory in childhood is modified by the food intake, e.g., most likely energy-rich 
foods provide more support for growth.

Although the weight and waist differed by the genetic susceptibility to obesity; other lifestyle factors includ-
ing sleep duration, and leisure-time physical activity (LTPA)  were similar between the groups. Furthermore, 

Table 2.  P value for interaction between BMI-GRSs and food items regarding BMIz. The analyses were 
adjusted for sex, leisure-time physical activity, sleep duration and 1st and 2nd principal coordinates (PC) for 
population structure. a Sum of risk alleles. b Effect sizes from Speliotes et al.21. c Effect sizes from Fin-HIT52. 
d Effect size is the ratio between Fin-HIT and Speliotes. e Dicotomized BMI-GRS. Significant values are in 
[bold].

Unweighted BMI-GRSa BMI-GRSSpeliotes
b BMI-GRSFin-HIT

c BMI-GRSratio
d

Summary indexes

 Eating habit group 0.783 0.703 0.919 0.207

 Plant consumption index, times/week 0.840 0.648 0.993 0.604

 Sweet treat consumption index, times/week 0.603 0.537 0.753 0.347

Individual food items, times/week

 Dark bread 0.099 0.200 0.240 0.813

 Sweet pastry 0.972 0.772 0.541 0.273

 Biscuits and cookies 0.411 0.277 0.149/0.112e 0.449

 Ice cream 0.311 0.389 0.233 0.263

 Sugary juice drink 0.190 0.131 0.621 0.451

 Sugary soft drink 0.669 0.691 0.558 0.342

 Sweets and chocolate 0.080 0.060 0.575 0.386

 Pizza 0.017 0.078 0.058 0.309

Hamburger and hotdog 0.756 0.878 0.203 0.153/0.079e

 Milk and sourmilk 0.567 0.210 0.017 0.040

 Cooked vegetables 0.276 0.612 0.152/0.186e 0.165

 Fresh and grated vegetables 0.637 0.770 0.733 0.637

 Fruit and berries 0.447 0.367 0.612 0.501

 Juice 0.434 0.393 0.987 0.171

 Salty snacks 0.669 0.659 0.963 0.562

 Water 0.771 0.744 0.978 0.637
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Table 3.  The associations of food-specific GRS, food intake and their interaction with BMIz in two models. 
Model 1: adjusted for sex, 2: additionally adjusted for leisure-time physical activity and sleep duration.

Food Model b SEM Beta t p value 95% CI for b

Dark bread

1

Risk allele score (rs1514175, rs543874, rs2867125, rs13107325, 
rs206936, rs7127684, rs7138803, rs1421085, rs571312 and rs3810291) 0.038 0.024 0.072 1.565 0.118 − 0.01 0.085

Dark bread − 0.088 0.032 − 0.366 − 2.785 0.005 − 0.15 − 0.026

Interaction 0.011 0.004 0.388 2.86 0.004 0.004 0.019

2

Risk allele score (rs1514175, rs543874, rs2867125, rs13107325, 
rs206936, rs7127684, rs7138803, rs1421085, rs571312 and rs3810291) 0.036 0.024 0.068 1.489 0.137 − 0.011 0.083

Dark bread − 0.086 0.031 − 0.357 − 2.742 0.006 − 0.147 − 0.024

Interaction 0.011 0.004 0.398 2.957 0.003 0.004 0.019

Biscuits and cookies

1

Risk allele score (rs543874, rs11676272, rs3817334, rs7138803, 
rs10134820, rs2241423 and rs571312) 0.051 0.026 0.079 1.975 0.049 0 0.102

Biscuits and cookies − 0.094 0.05 − 0.22 − 1.877 0.061 − 0.192 0.004

Interaction 0.018 0.01 0.208 1.741 0.082 − 0.002 0.038

2

Risk allele score (rs543874, rs11676272, rs3817334, rs7138803, 
rs10134820, rs2241423 and rs571312) 0.047 0.026 0.072 1.822 0.069 − 0.004 0.097

Biscuits and cookies − 0.101 0.05 − 0.237 − 2.042 0.041 − 0.198 − 0.004

Interaction 0.018 0.01 0.215 1.82 0.069 − 0.001 0.038

Sugary juice drink

1

Risk allele score (rs2815752, rs1514175, rs543874, rs2867125, 
rs10938397, rs7138803 and rs1421085) 0.073 0.021 0.13 3.423 0.001 0.031 0.114

Sugary juice drink − 0.059 0.041 − 0.181 − 1.443 0.149 − 0.14 0.021

Interaction 0.011 0.006 0.231 1.819 0.069 − 0.001 0.022

2

Risk allele score (rs2815752, rs1514175, rs543874, rs2867125, 
rs10938397, rs7138803 and rs1421085) 0.069 0.021 0.123 3.268 0.001 0.027 0.11

Sugary juice drink − 0.068 0.041 − 0.208 − 1.671 0.095 − 0.148 0.012

Interaction 0.012 0.006 0.263 2.089 0.037 0.001 0.023

Sweets and chocolate

1

Risk allele score (rs2815752, rs543874, rs2867125, rs11676272, 
rs10938397, rs2112347, rs10134820, rs1421085, rs571312 and 
rs2287019)

0.04 0.023 0.078 1.726 0.085 − 0.005 0.086

Sweets and chocolate − 0.285 0.122 − 0.416 − 2.345 0.019 − 0.523 − 0.046

Interaction 0.032 0.013 0.442 2.457 0.014 0.007 0.058

2

Risk allele score (rs2815752, rs543874, rs2867125, rs11676272, 
rs10938397, rs2112347, rs10134820, rs1421085, rs571312 and 
rs2287019)

0.039 0.023 0.075 1.689 0.091 − 0.006 0.084

Sweets and chocolate − 0.302 0.12 − 0.441 − 2.506 0.012 − 0.538 − 0.065

Interaction 0.033 0.013 0.452 2.539 0.011 0.008 0.059

Pizza

1

Risk allele score (rs2815752, rs543874, rs2867125, rs11676272, 
rs887912, rs10938397, rs2112347, rs7127684, rs7138803, rs1421085 and 
rs3810291)

0.031 0.017 0.069 1.814 0.07 − 0.002 0.063

Pizza − 0.865 0.225 − 0.816 − 3.849 < 0.001 − 1.307 − 0.424

Interaction 0.08 0.019 0.89 4.154 < 0.001 0.042 0.117

2

Risk allele score (rs2815752, rs543874, rs2867125, rs11676272, 
rs887912, rs10938397, rs2112347, rs7127684, rs7138803, rs1421085 and 
rs3810291)

0.03 0.017 0.067 1.776 0.076 − 0.003 0.062

Pizza − 0.908 0.223 − 0.856 − 4.073 < 0.001 − 1.345 − 0.47

Interaction 0.082 0.019 0.919 4.323 < 0.001 0.045 0.12

Hamburger and hotdog

1

Risk allele score (rs2815752, rs543874, rs2867125, rs11676272, 
rs10938397, rs10134820 and rs1421085) 0.068 0.023 0.108 2.988 0.003 0.023 0.113

Hamburger and hotdog − 0.308 0.155 − 0.327 − 1.986 0.047 − 0.613 − 0.004

Interaction 0.05 0.024 0.349 2.107 0.035 0.003 0.097

2

Risk allele score (rs2815752, rs543874, rs2867125, rs11676272, 
rs10938397, rs10134820 and rs1421085) 0.07 0.023 0.111 3.085 0.002 0.025 0.114

Hamburger and hotdog − 0.335 0.154 − 0.356 − 2.181 0.029 − 0.636 − 0.034

Interaction 0.052 0.024 0.363 2.215 0.027 0.006 0.099

Milk and sourmilk

1

Risk allele score (rs1514175, rs543874, rs11676272, rs10938397, 
rs206936, rs2030323, rs3817334, rs7138803, rs2241423, rs12444979, 
rs1421085 and rs571312)

0.1 0.034 0.209 2.941 0.003 0.033 0.166

Milk and sourmilk 0.023 0.034 0.115 0.674 0.501 − 0.043 0.089

Interaction − 0.002 0.003 − 0.126 − 0.7 0.484 − 0.008 0.004

2

Risk allele score (rs1514175, rs543874, rs11676272, rs10938397, 
rs206936, rs2030323, rs3817334, rs7138803, rs2241423, rs12444979, 
rs1421085 and rs571312)

0.109 0.034 0.229 3.249 0.001 0.043 0.175

Milk and sourmilk 0.038 0.034 0.191 1.129 0.259 − 0.028 0.104

Interaction − 0.003 0.003 − 0.188 − 1.052 0.293 − 0.009 0.003
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sleep duration and LTPA only marginally affected the results, suggesting that the interaction was independent of 
these factors. Certain risk variants of FTO (rs9939609), TMEM18 (rs4854344), and NRXN3 (rs10146997) have 
been reported to increase the vulnerability to metabolic conditions in children under sleep  deprivation53, thus 
interacting with lifestyle factors, but that was not observed here.

Sugary juice drinks are widely consumed among young Finnish children and enjoyed with a snack, instead 
of milk or juice at  meals54, 55. The healthiness of sugary juice drinks is frequently discussed as the dilute berry-
derived squash contains mainly sugar and provides energy, but barely nutrients. Frequent sugary juice drinkers 
will likely evolve with time into consumers of carbonated sugary-sweated beverages (SSB), which are deemed as 
weight-promoting  foods56. Additionally, two earlier studies have demonstrated SSB to interact with the obesity-
prone  genotype38, 39. Similar to our finding on sugary juice drink, the reported magnitude of association between 
SSB and BMI was greater among those genetically prone to obesity, implying that the downstream effects after 
consuming SSB differ between the individual, making obese-prone more vulnerable to weight gain. Furthermore, 
Brunkwall’s  study39 highlighted that the SSB-BMI interaction was mainly driven by one SNP – rs1555543, close 
to gene PTBP2, among middle-aged Swedish individuals. The same SNP has demonstrated an interaction with 
smoking on BMI in the Pakistani  population57. However, we did not observe any interaction of rs1555543 in our 
sample, possibly due to the young age of the participants.

The ultimate strength of the study is that we used a cohort of school-aged children whose food consumption 
is likely less affected by social acceptance. Although mis- and underreporting are common challenges in dietary 
assessment, it is shown that amongst 11–12-year-old children that the FFQ is a valid method and independent 
of BMI, implying that social acceptance and desirability are less common in children than in older age  groups58. 
Thus, we observed no differences in food consumption frequencies. However, we did not address portion sizes, 
which may differ by  BMI59. The study was facilitated by a previously reported association of BMI-GRS and 
 BMIz52, relying on 30 well-characterized SNPs. Our results may be generalized to a comparable European popu-
lation with a  similar socioeconomic background. Based on our earlier  work52, using a GRS with more SNPs 
would most likely result in similar outcomes, as the GRSs present with corresponding associations with BMIz.

Due to the limited sample size and using the tailor-made Metabochip array only obesity SNPs were con-
sidered. Future studies with larger sample size and genome-wide coverage of SNPs are warranted for broader 

A

B

Figure 1.  Food-specific GRS and their confirmed interactions. The results are divided into two panels for 
clarity and  based on the food-specific GRS presented with b-coefficients with 95% CI. The most predominant 
interaction was marked for pizza. Other notable interactions were sugary juice drink, hamburger and hotdog, 
and sweets and chocolate but without formal significance. The figure was made with PRISM version 9.5.0 
(https:// www. graph pad. com/).

https://www.graphpad.com/
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investigations of the interactions between genes and diet. The food frequency questionnaire (FFQ) covered 16 
food items and was considered suitable for 11-year-old children to  comprehend60, 61. However, it might have been 
too narrow to distinguish between foods with varying health profiles, e.g., all dairy products were considered 
together without considering differences in the nutrient content. Thus, we might have lost some of the informa-
tion. Because power for detecting interactions is typically much lower than power for main effects, we raised the 
Type I error rate to 20% when assessing interactions as  suggested62, 63. On the other hand, this might increase the 
chance of false positive results. However, we illustrated the association in subgroups as well.

In conclusion, the interacting foods with the genetic risk of obesity were mainly weight-promoting in Finn-
ish children. Our results point out that children genetically prone to obesity showed a stronger association of 
unhealthy foods with BMIz than those with lower genetic susceptibility. Since a part of the SNPs driving the 
interactions were shared between the weight-promoting foods, this implies metabolic differences among geneti-
cally prone individuals, which warrants further studies in this and other geographically diverse populations.

Methods
We have conducted a cross-sectional analysis of 1142 Finnish children. For this study, we utilized the background 
characteristics, genotype data, and anthropometric measurements from the Finnish Health in Teens cohort 
(Fin-HIT), launched in 2011 as a school-based cohort study, initially comprising 11,407 Finnish children aged 
between 9 and 12 years. The details of the Fin-HIT cohort are described  elsewhere64. The Coordinating Ethics 
Committee of the Hospital District of Helsinki and Uusimaa has approved the study protocol (169/13/03/00/10) 
and written informed consent was obtained from all participants and their parents. All study procedures adhered 
to the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

DNA extraction, genotyping, quality control, and generation of genetic risk score. The par-
ticipants provided saliva samples by using the Oragene® DNA (OG-500) Self-Collection Kit (DNA Genotek Inc., 
Ottawa, Ontario, Canada). DNA was extracted using an automated protocol with the chemagic DNA Saliva 
Kit (PerkinElmer, Wellesley, Massachusetts). DNA samples (n = 1368) were randomly selected from the Fin-
HIT cohort and subjected to genotyping with the Cardio-Metabochip (Illumina, Inc., San Diego, California) at 
the Finnish Institute for Molecular Medicine Technology Centre (Helsinki, Finland) as explained  elsewhere52. 
The number of individuals and SNPs included in the final analysis after QC was 1142 and 125,187 with a total 

Figure 2.  Venn diagram of shared SNPs by food items. Five (33%) SNPs interactions (in red intersection) were 
shared between pizza, sweets and chocolate, sugary juice drink, and hamburger and hotdog. The figure was 
made through R version 4.2.2 (https:// posit. co/ produ cts/ open- source/ rstud io/).

https://posit.co/products/open-source/rstudio/
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genotyping rate of 99.9%. BMI-based genetic risk  score25 was based on the results of Speliotes et  al.  201021 
but comprised 30 SNPs as rs4771122 and rs4836133 were not available and had no good proxies. Thus, within 
our BMI-GRS; PTBP2 rs11165643, TNNI3K rs1514175, NEGR1 rs2815752, SEC16B rs543874, RBJ rs11676272, 
LRP1B rs2121279, TMEM18 rs2867125, FANCL rs887912, CADM2 rs13078807, ETV5 rs7647305, GNPDA2 
rs10938397, SLC39A8 rs13107325, FLJ35779 rs2112347, NUDT3 rs206936, TFAP2B rs987237, LRRN6C 
rs10968576, BDNF rs2030323, MTCH2 rs3817334, RPL27A rs7127684, FAIM2 rs7138803, PRKD1 rs10134820, 
NRXN3 rs17109256, MAP2K5 rs2241423, GPRC5B rs12444979, FTO rs1421085, SH2B1 rs7359397, MC4R 
rs571312, QPCTL rs2287019, KCTD15 rs29941, and TMEM160 rs3810291 were considered and each increased 
the risk of obesity.

We summarized the number of risk alleles (unweighted) and created a weighted genetic risk score (BMI-GRS) 
using the score function in Plink version 1.09, which calculates an average score per non-missing  SNP52. Besides 
using effect sizes of Speliotes et al.  201021 (BMI-GRSSpeliotes), also Fin-HIT effect sizes were used (BMI-GRSFin-HIT), 
and their ratio, e.g., Fin-HIT/Speliotes (BMI-GRSratio). Additionally, interactions between certain foods and 
individual SNPs were tested. The SNPs with the same direction of effect and p < 0.200 were incorporated into 
food-specific GRS.

Anthropometry measurements. Children’s anthropometry, including height, waist (centimeters, cm), 
and weight (kilograms, kg) were measured at baseline in a standardized way by trained field workers. Children’s 
body mass index (BMI) (kg/m2) was calculated, and age- and sex-specific z-scores (BMIz) were derived based 
on the International Obesity Task Force (IOTF)  guidelines65 and used as continuous variables in the analysis.

Indicatory food items and their summary scores. Consumption frequencies of 16 food items were 
evaluated with a self-administered food frequency questionnaire (FFQ)66. For the food items, participants’ rat-
ings varied from 1; not at all, to 7; several times a day, which were recoded during analysis to scale from 0 to 14 
times a week. In addition, two summary scores were created for the sweet treat index (STI) and plant consump-
tion index (PCI) to indicate the weekly consumption frequencies of sweet  treats67, and vegetables, fruits, and 
 berries68, respectively. Our FFQ was adapted from the FFQ used in the World Health Organization’s Interna-
tional Health Behaviour in School-Aged Children study, which was validated and retested among school-age 
children in  Europe60, 61.

Additionally, eating habits (healthy; fruit and vegetable avoider; unhealthy) were used to describe the whole 
diet. Those were derived with the hierarchical K-means method as explained  elsewhere66, using the five factors 
obtained through factor analysis which represented 70% of the variability of the 10 selected food items.

Other background information. Leisure-time physical activity (LTPA) and sleep habits were self-
reported in the baseline questionnaire as previously  described67, 69. LTPA duration was reported for the whole 
week (h/week), while sleep habits, e.g., waking and bedtime hours, separately for school days and days off. Sleep 
durations (with 0.5-h accuracy) were calculated, and the weighted mean for sleep duration was used in the 
analysis. These were used as covariates in the statistical analyses.

The questionnaire included an evaluation of pubertal development based on the Tanner stage with a pictorial 
assessment of breast development and pubic hair for girls and only pubic hair for boys with a scale of 1–570. Due 
to several incomplete responses, the categorization was recoded into prepuberty (T1-2), puberty (T3-4), and 
postpuberty (T5) to describe the puberty phase.

Maternal occupational information at the time of the child’s birth was obtained from the Medical Birth 
Register maintained by the Finnish Institute for Health and Welfare and was used to describe the maternal 
socioeconomic status as previously  described67. Mothers were categorized as upper-level employees, lower-level 
employees, manual workers, students, and others (including self-employed persons, stay-at-home mothers, 
unemployed persons, and pensioners). Additionally, the child’s age and sex were included.

Statistical analyses. Background characteristics and diet were compared between groups of low and high 
genetic susceptibility to obesity with independent samples t-test or Chi-Square, depending on a variable. Results 
are presented with the mean (SD) or with n and proportion (%).

Interactions between dietary factors and BMI-GRSs/individual SNPs were tested with a linear regression 
model, and p for claiming interaction was set to < 0.15 for BMI-GRSs and < 0.2 for individual  SNPs62, 63. The 
linear modeling included adjustments for covariates: sex, LTPA, mean sleep duration and 1st and 2nd principal 
coordinates (PC). In the case of borderline significance, the interaction was further investigated with dichoto-
mized BMI-GRS groups stratified by the median value.

The statistical analyses were performed with IBM SPSS Statistics version 27. A significance level with 5% 
uncertainty was adopted.

Data availability
Due to ethical restrictions from the coordinating ethics committee of the hospital district of Helsinki and Uusi-
maa (Decision Number 169/13/03/00/10) and legal GDPR restrictions, genetic data that support our findings are 
available upon request from the data access committee of the Fin-HIT study by contacting Dr. Heli Viljakainen 
(heli.viljakainen@helsinki.fi). Processed data will be available on GitHub by request: (https:// github. com/ Fin- 
HIT/ Heli- Vilja kainen- et- al- 2023- Genet ic- susce ptibi lity- to- obesi ty- and- food- intake- on- BMI- in- child ren).

https://github.com/Fin-HIT/Heli-Viljakainen-et-al-2023-Genetic-susceptibility-to-obesity-and-food-intake-on-BMI-in-children
https://github.com/Fin-HIT/Heli-Viljakainen-et-al-2023-Genetic-susceptibility-to-obesity-and-food-intake-on-BMI-in-children
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