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In vivo spectroscopy and machine 
learning for the early detection 
and classification of different 
stresses in apple trees
Ulrich E. Prechsl 1*, Abraham Mejia‑Aguilar 2 & Cameron B. Cullinan 1,3

The use of in vivo spectroscopy to detect plant stress in its early stages has the potential to enhance 
food safety and reduce the need for plant protection products. However, differentiating between 
various stress types before symptoms appear remains poorly studied. In this study, we investigated 
the potential of Vis–NIR spectroscopy to differentiate between stress types in apple trees (Malus 
x domestica Borkh.) exposed to apple scab, waterlogging, and herbicides in a greenhouse. Using 
a spectroradiometer, we collected spectral signatures of leaves still attached to the tree and 
utilized machine learning techniques to develop predictive models for detecting stress presence 
and classifying stress type as early as 1–5 days after exposure. Our findings suggest that changes 
in spectral reflectance at multiple regions accurately differentiate various types of plant stress on 
apple trees. Our models were highly accurate (accuracies between 0.94 and 1) when detecting the 
general presence of stress at an early stage. The wavelengths important for classification relate to 
photosynthesis via pigment functioning (684 nm) and leaf water (~ 1800–1900 nm), which may be 
associated with altered gas exchange as a short‑term stress response. Overall, our study demonstrates 
the potential of spectral technology and machine learning for early diagnosis of plant stress, which 
could lead to reduced environmental burden through optimizing resource utilization in agriculture.

Plant stress, i.e. “external conditions that adversely affect growth, development, or productivity”1, is a significant 
factor that limits crop yield and can have far-reaching consequences on food security and the economy. Therefore, 
understanding the underlying physiological mechanisms and developing effective stress management strategies 
are crucial for sustainable agriculture. It is estimated that abiotic stress due to harsh environmental conditions 
such as drought and salinity reduce the average productivity by more than 50%2. Similarly, biotic stresses, caused 
by organisms such as pests and pathogens, are responsible for high losses up to 40% of the main global  crops3. 
By definition “stress factors” subsequently lead to different “stress responses” of the  plant4. Plants can respond 
to biotic and abiotic stresses with different short and long-term resistance mechanisms, ranging from molecular 
physiological levels (such as the jasmonate and salicylic acid signalling, phytoalexines and heat-shock proteins) to 
the morphological level (cell structure, growth)1,5–11. Generic stress responses at an advanced stage are different 
types of chlorosis (pigment degradation) and necrosis which are typically used for visual diagnosis  purposes12,13. 
However, visible stress symptoms are typically associated with high ‘metabolic costs’, damage and reduction in 
assimilates and crop yield as a  consequence13. In order to efficiently counteract productivity loss, early detection 
of plant stresses when symptoms are often not yet visible is crucial.

The detection and quantification of emitted or reflected electromagnetic radiation, particularly that in the 
visible and infrared regions, by plant surfaces, has become an established and powerful method to analyse plant 
stress and various plant properties in a non-destructive  way14–17. One of the most prominent applications is the 
normalized difference vegetation index (NDVI). Originally developed for the remote detection of plant stress, 
particularly drought, the NDVI, has also been applied to other abiotic stresses, such as  salinity18,19. Subsequently, 
the relationship between leaf biochemistry, physiology and cellular structure and leaf optical properties, especially 
those related to full range VIS -NIR hyperspectral information, were investigated and  modelled20,21. This had 
promising implications for the use of the technology for the detection of stress in plants and indeed, spectral 
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sensing has since been applied over the last decades to detect a wide range of different biotic plant stresses: 
 viruses22,  bacteria23,  phytoplasma24,25, fungal and bacterial  diseases26,27 and insect  pests28.

For permanent crops, such as apple orchards (Malus x domestica Borkh.), early detection is especially impor-
tant because management practices can have cumulative effects on long term (~ 20 years) production and finan-
cial amortization. Furthermore, permanent crops cannot benefit from crop rotation and consequently experience 
higher pest and disease pressure.

The management of stress, especially those involving agrochemical use, can have unintended and undesirable 
consequences on the environment as well as ecosystem and human  health29–33. Early detection of stress can limit 
the consequences thereof, not only because the agrochemical requirements of plants experiencing mild stress 
are lower than those experiencing more severe stress, but also by preventing the progression of stress, especially 
in cases of infectious pests and diseases. Furthermore, because spectral sensing methods have the potential to 
detect stress at fine (in this case, individual plant) scales, spectral based methods offer a means by which manage-
ment practices can be made more site- and time-specific34. Hence, detecting plant stress at an early stage has the 
potential to (a) improve economic efficiency and (b) decrease agrochemical use thereby enhancing food safety 
while limiting negative impacts of agriculture on the environment.

Apple trees have been the focus of several studies utilizing spectral sensing methods to detect various plant 
 diseases26,35,36. Most of these studies have focused on the detection of single diseases. However, the differentia-
tion by means of spectral sensing among apple trees experiencing different stress types in the pre-symptomatic 
phases has been little investigated. This is important regarding the development of future field application tools, 
as in real orchard settings, various types of stress can occur simultaneously, often with different stresses causing 
similar symptoms. The aim of this study was, therefore, to examine the potential of in vivo leaf spectroscopy to 
distinguish different types of stress. Our research questions were as follows:

1. Is it possible to distinguish different types of stresses in the pre-symptomatic stage by means of spectrum 
analysis?

2. Is there a consistent (spectral) stress signal of apple trees, independent of the stress type?
3. Which are the key spectral regions for differentiation and are they physiologically plausible?

To address these questions, we conducted a greenhouse experiment in which we exposed small apple trees 
to different types of stress with subsequent measurement with a field spectroradiometer. The generated spectral 
data was analysed through the use of machine learning techniques.

Results
Mean spectral signature of apple leaves
The spectra obtained in our study revealed the characteristic broadband peaks and valleys of the spectral signa-
ture (reflectance) due to absorption by chlorophyll and water. The reflectance was found to be low in the visible 
range (300–700 nm), at 1400 nm and at 1900 nm. The coefficient of variation (CV) for the measured replicates 
ranged between 7.1 and 8.7, depending on the treatment. (see supplementary Fig. S1). The differences between 
the mean spectra of each of the four treatment groups were found to be slight (Fig. 1A). The only exception was 
the “Scab” treatment, which showed a higher reflectance at ~ 550 nm.

Upon analysing the transformed data (1st derivative; Fig. 1B), we observed very subtle differences, which 
became more distinct in the delta plot (Fig. 1C; treatment-control). The most pronounced visible differences 
were observed at around 500 nm, 700 nm, 1400 nm and 1900 nm. The region to the left of the spectrum (starting 
at 365 nm) exhibited relatively high noise.

Principal component analysis
PCA (Principal Component Analysis) is a widely used technique in spectral analysis to identify patterns, trends 
and separate signals from different physical processes. We considered the first five components, explaining 
46.08% of the variance (Table 1, Fig. 2). The first four dimensions of the PCA did not show good clustering of 
the classes, suggesting that the class separation is not strongly reflected in these components. This may indicate 
that factors other than stress are driving the variance in the data and obscuring the class distinctions. The fifth 
dimension (1.9% of the variance), when combined with the second dimension (6.9%), showed acceptable clus-
tering of the classes, for both the specific (treatments) and the general (status) differentiation. This suggests that 
the class separation is better captured by these components. When looking at the loadings of the components, 
the spectral regions around 660 nm and 1880 nm were found to be strongly correlated with the second PC and 
those around 1810 nm with the fifth PC. This indicates that these regions may be significant factors in the class 
separation captured by these components (see Table1). The first dimension, which explained 30.4% of the vari-
ance, was found to be strongly correlated with the region around 1300 nm, but it showed insufficient separation of 
the classes. The region around 1300 nm in the leaf reflectance spectrum is strongly influenced by the absorption 
of water in the leaf, which leads to a decrease in reflectance in this region and one of the typical “valleys”. Our 
delta-plot reveals slight but distinct differences between the treatments in this region.

Training and evaluating different diagnosis models
We tested different supervised machine learning approaches: a Support Vector Machine (SVM), a Random Forest, 
and a Partial Least Squares-Discriminant Analysis (PLS-DA) model for multi-class classification to distinguish, 
by means of their spectral signatures, the different types of stresses (treatments) in the pre-symptomatic stage. We 
assessed the performance of the models by means of the overall accuracy and Kappa metrics using the test data 
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Figure 1.  Spectral response (reflectance) of 3-year-old ‘Golden Delicious’ apple trees that were exposed to 
different types of stress (herbicide Metamitron, apple scab and waterlogging, n = 5). Panel (A) shows the mean 
spectral signature for each stress treatment (n = 50) and the control. Panel (B) presents the means for each 
treatment of the first derivative of the spectra. Panel (C) displays the delta plot highlighting the differences in 
the first derivatives between the stress treatments and the control. Panel (D) shows the variable importance 
(determined by ROC curve analysis) in the Random Forest model trained on the first derivative for classifying 
the four treatments.

Table 1.  Important wavelengths for the classification of different stresses and stress in general. Presented are 
the overall top 10 important variables for the classification of specific stresses as well as stresses in general by 
random forest models, calculated as the impurity-corrected Gini importance, the variables with the top 10 
highest correlation loadings with the first, second and fifth PCs (PCA) and the top 10 important variables 
specific to each of the treatments calculated by ROC curve analysis using the random forest model. Numbers 
refer to wavelengths of each variable in nm which are sorted in decreasing order of importance.

Method

Random forest (Gini) Random forest (Gini) PCA ROC-curve class specific variable importance

Specific model General stress model

Dimension
(variance explained)

Control Metamitron Scab Waterlogging1 (30.40%) 2 (6.50%) 5 (1.90%)

Important variables (decreasing; 
wavelength [nm])

1811 1900 1391 1881 1813 684 684 1811 1811

1817 1899 1390 1879 1814 536 536 684 1810

1814 940 1389 1880 1812 596 679 1810 1817

1900 894 1387 1882 1815 537 677 1817 1808

684 663 1392 1884 1811 1900 596 536 1814

1810 832 1388 662 1817 683 537 596 832

1813 662 1386 665 1816 615 1900 537 1812

1816 881 1385 661 1808 645 683 1808 1809

919 2055 1383 660 1810 1899 615 1900 2055

1899 944 1384 663 1818 612 1813 1814 892
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(see Table 2). The SVM model achieved an overall accuracy of 1, while the Random Forest model had an overall 
accuracy of 0.84 (Table 2). The PLS model also had an overall accuracy of 1, with the number of components 
(latent variables) determined via the validation process to be 11. The general differentiation between “healthy” 
(control) and “stressed” plants (independent of the type of stress) performed even better (where possible; Table 3). 
The overall accuracies were 1, 0.94 and 1 for the SVM, Random Forest and PLS, respectively.

Overfitting of our models was assessed by inspection of learning curves of the random forest and SVM models 
and of the calibration curves of the PLS-DA models (Supplementary Figs. S2 and S3). Its absence was further 
confirmed by high cross-validation (tenfold cross-validation with 3 repeats) overall accuracy which was largely 
insensitive to changes in hyperparameters in the cross-validation results, indicating the models generalize well 
to unseen data.

In summary, all models were able to identify and distinguish the stresses with high accuracy.

Reduced models based on important variables
The identification of key features is integral to gaining insights into the underlying physiological mechanisms, 
as these features are likely to be closely associated with the relevant physiological processes. These features 
can subsequently be used to simplify the model, by removing irrelevant or redundant features. Moreover, due 
to reduced complexity, a simpler model is easier to understand, has faster computation, and the likelihood of 
overfitting is reduced.

Figure 2.  Principal component analysis (PCA) of spectral signatures of four treatments. The PCA is based on 
the first derivative (as seen in Fig. 1B) and displays the first, second, and fifth dimensions. Panels (A) and (C) 
and panels (B) and (D), display the same data and dimensions but with different labels, indicating the specific 
and general models. In the upper panels, the treatments of “Metamitron” (orange rectangles), “Scab” (brown 
triangles), and “Waterlogging” (light blue dots) have been grouped together as “stressed” (pink triangles). The 
“healthy” corresponds to “control” and is given by the black dots.
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Stress‑specific models
For the multi-class classification, the Random Forest method identified wavelengths around 1800 nm and 
1900 nm, as well around 684 nm as the most important wavelengths (see Table 1). The reduced models, based 
on the top 10 wavelength yielding accuracies of 0.72, 0.78, and 0.75 for the SVM, Random Forest, and PLS 
models, respectively (Table 4).

To uncover the mechanisms behind the differentiation between our treatments, we also analysed class-
specific variable importance using the ROC analysis and the full Random Forest model (see Table 1). The heat 
map in Fig. 1D displays the variable importance for all treatments and wavelengths. Generally, the region in the 
visible range (~ 500–750 nm) showed high importance for the control group as well as the scab and herbicide 
treatments. For all treatments the region between 1800 and 2000 nm seems highly important. Interestingly, the 
region < 500 nm shows almost no importance.

The wavelengths 1899 nm and 1900 nm were deemed important for all treatments except waterlogging. For 
the control treatment, wavelengths in the range of 536 nm to 684 nm were significant. The scab treatment had 
536 nm, 595 nm, 684 nm and wavelengths between 1808 and 1817 nm as important. The herbicide treatment was 
found to have wavelengths between 537 and 684 nm as important. The waterlogging treatment was influenced 
by wavelengths ranging from 1808 to 1817 nm and 840 nm, as well as 832 nm, 892 nm and 2055 nm. To visu-
ally highlight the distinctions between treatments in specific areas, we plotted key wavelengths for regions that 
were identified as important (Fig. 3). It illustrates the presence of distinct differences across multiple regions.

Table 2.  Overall and class-specific test set metrics for SVM, PLS-DA and random forest models trained to 
predict individual stresses using the full derivative spectra.

Sensitivity/recall Specificity Precision F1 Balanced accuracy

SVM

Accuracy (overall) = 1.0000 Kappa (overall) = 1.0000

 Control 1.0000 1.0000 1.0000 1.0000 1.0000

 Scab 1.0000 1.0000 1.0000 1.0000 1.0000

 Metamitron 1.0000 1.0000 1.0000 1.0000 1.0000

 Water logging 1.0000 1.0000 1.0000 1.0000 1.0000

PLS-DA

LV = 11 Accuracy (overall) = 1.0000 Kappa (overall) = 1.0000

 Control 1.0000 1.0000 1.0000 1.0000 1.0000

 Scab 1.0000 1.0000 1.0000 1.0000 1.0000

 Metamitron 1.0000 1.0000 1.0000 1.0000 1.0000

 Water logging 1.0000 1.0000 1.0000 1.0000 1.0000

 Random forest

Accuracy (overall) = 0.8438 Kappa (overall) = 0.7849

 Control 1.0000 0.8571 0.7857 0.8800 0.9286

 Scab 0.7143 0.9200 0.7143 0.7143 0.8171

 Metamitron 0.7143 1.0000 1.0000 0.8333 0.8571

 Water logging 0.8571 1.0000 1.0000 0.9231 0.9286

Table 3.  Test set metrics for SVM, PLS-DA and random forest models trained to predict stress in general 
using full spectra and the top 10 most important wavelengths of first derivative spectra identified by the full 
random forest model.

Accuracy (overall) Kappa (overall) Sensitivity/recall Specificity Precision F1 Balanced accuracy

Full spectra

 SVM 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 PLS-DA
(LV = 4) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 Random forest 0.939 0.836 1.000 0.923 0.778 0.875 0.962

Selected wavelengths

 SVM 0.970 0.921 0.889 1.000 1.000 0.941 0.944

 PLS-DA
(LV = 1) 0.939 0.847 0.889 0.958 0.889 0.889 0.924

 Random forest 0.939 0.836 0.778 1.000 1.000 0.875 0.889
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General stress signal
To address the question of whether there is a general stress signal, regardless of the type of stress (treatment), we 
used variable importance of our Random Forest trained as a two-class model to distinguish between “healthy” 
and “stressed” samples. The top 10 most important wavelengths, other than for 1899 nm and 1900 nm, varied 
from the stress-specific model (Table 1). The other wavelengths were primarily around the border between 
near-infrared (NIR) and short-wave infrared (SWIR): 832 nm, 881 nm, 894 nm, 940 nm and 944 nm. Only two 
wavelengths in the visible region, 662 nm and 663 nm, were in the top 10 most important wavelengths.

Discussion
Models predict stresses with high accuracy
In this study, we aimed to assess the ability to detect and differentiate various types of stress in the pre-symp-
tomatic stage through analysis of their spectral signatures. Early detection of plant stress is critical as it enables 
timely interventions to mitigate the impact and prevent further stress, ensuring plant health and productivity.

Our trained “stress signal” models displayed a high level of overall accuracy (full models between 0.94 and1, 
Table 3) and thus it was feasible (a) to detect the general presence of stress at a very early stage (1–5 days) and 
(b) that the models could also distinguish and classify the type of stress through spectral signatures very accu-
rately (average overall accuracy: 0.95). The overall accuracy of the results was all the more remarkable given the 
absence of visible symptoms. Figure 3 and Fig. 1 D demonstrate that differentiation between the stress types is 
a result of the combined variations across multiple wavelengths in different regions, rather than in any single 
spectral region alone.

With the full dataset, the Partial Least Squares (PLS, 1) and Support Vector Machine (SVM, 1) models per-
formed best, for both the specific and the general models. Both of these methods are particularly well suited 
to high dimensional data and have been used frequently in the past for the analysis of spectroscopic data on 
plant  material25,37–42. This is because the internal regularization of SVMs and the reduction of the full data set 
into fewer variables done by PLS makes these models resilient to overfitting, as is demonstrated here by their 
high performance on the full data  set43,44. Random forests, however, are not so implicitly regularized. As such, 
models built on datasets with a large number of features incur steep costs for variables with little explanatory 
power (as is often the case with spectroscopic data in which there is a high degree of correlation between each 
of the features). Utilizing PCA, as an alternative approach to PLS, can also help overcome issues of multicol-
linearity and reduce the dimensionality of the data and provide a means by which complex data can be more 
readily visualised. Upon conducting PCA analysis, we found that the first dimension did not exhibit strong 
clustering. Combining the second and fifth components resulted in notable clustering of the treatments (Fig. 2), 
with important wavelengths, according to the correlation loadings with these components, being similar to 
those determined by other methods. PCA, being an unsupervised method without any pre-defined labels, may 
be sensitive to variances that are not directly associated with the classes (stress types). As such, a minor compo-
nent can explain a considerable amount of variation in the response variable, leading to weak clustering results. 
Therefore, it is important to consider multiple dimensions and to interpret the results in conjunction with other 

Table 4.  Overall and class-specific test set metrics for SVM, PLS-DA and random forest models trained to 
predict individual stresses using the top 10 most important wavelengths of first derivative spectra identified by 
the full random forest model.

Sensitivity/recall Specificity Precision F1 Balanced accuracy

SVM

Accuracy (overall) = 0.7188 Kappa (overall) = 0.6211

 Control 0.7273 0.9048 0.8000 0.7619 0.8160

 Scab 1.0000 0.8000 0.5833 0.7368 0.9000

 Metamitron 0.2857 0.9600 0.6667 0.4000 0.6229

 Water logging 0.8571 0.9600 0.8571 0.8571 0.9086

PLS-DA

LV = 3 Accuracy (overall) = 0.7500 Kappa (overall) = 0.6614

 Control 0.8182 0.9048 0.8182 0.8182 0.8615

 Scab 1.0000 0.9200 0.7778 0.8750 0.9600

 Metamitron 0.2857 0.9600 0.6667 0.4000 0.6229

 Water logging 0.8571 0.8800 0.6667 0.7500 0.8686

Random forest

Accuracy (overall) = 0.7813 Kappa (overall) = 0.7068

 Control 0.7273 0.9524 0.8889 0.8000 0.8398

 Scab 1.0000 0.8800 0.7000 0.8235 0.9400

 Metamitron 0.5714 0.9200 0.6667 0.6154 0.7457

 Water logging 0.8571 0.9600 0.8571 0.8571 0.9086
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methods. Indeed, the theoretical advantage of PLS models over PCA, is that the first component automatically 
explains the most variance in the response variable and consequently fewer components are often required to 
yield satisfactory  results45.

Key wavelengths and possible underlying physiological bases thereof
The significance of the wavelengths around 1800 nm (1811 nm) and those around 1900 nm in particular, was 
highlighted in both the specific and general models (Fig. 3, Table 1), indicating that water absorption-related 
bands (such as 1900 nm) have a critical role in detecting and distinguishing stresses. The absorption at 1900 nm 
clearly distinguishes the healthy from the stressed plants. This could be attributed to stomatal regulation and 
photosynthesis alteration—two known general short-term responses to stress. The activation of ABA-dependent 
signaling pathways by oxidative stress induced by stressors such as drought, cold, salinity, and heat, regulate 
responses to various abiotic stresses via abscisic acid  signaling46–48. As such, a general early response to abiotic 
stresses is often stomatal closure which is likely reflected in our measured changes in the “water valley”49.

The wavelengths, 677 nm, 679 nm and 684 nm are significant in the class-specific importances (Table 1). 
They fall within the red visible light spectrum and correspond to the peak of chlorophyll a  absorption50. This 
implies that these stress treatments have the potential to impact the absorption related to chlorophyll a, the light 
reactions, and subsequently the functioning of photosynthesis. Notably, this effect appears to be particularly sig-
nificant for the herbicide treatment, for which these wavelengths were among the most important (see Table 1). 
The herbicide Metamitron, a photosystem II inhibitor, induces oxidative stress inducing the excessive production 
of reactive oxygen  species51. Plants respond to this type of oxidative stress, also caused by excess light stress, by 

Figure 3.  Selected wavelengths from various regions identified by random forest for differentiating treatments. 
The wavelengths were determined by class-specific variable importance, as shown in Table 4 and are based on 
the 1st derivative of the reflectance (see Fig. 1). Redundancies were removed considering wavelengths within 
a 10 nm range of the representative wavelength. The boxes display the distribution of spectral values at each 
wavelength, based on five replicates with 10 technical replicates each.
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activating various defence mechanisms, including dissipation of excess light energy through the Xanthophyll 
cycle. Interestingly, the classification of Metamitron-treated plants was influenced by the reflectance at 536 nm 
and 537 nm, wavelengths within the range used to develop the physiological reflectance (531 nm) index by 
Gamon et al.52, for the estimation of xanthophyll epoxidation states. This suggests that the Xanthophyll cycle 
may be involved in the response to Metamitron treatment.

Like the response to abiotic stress, the pathogen Venturia inaequalis, responsible for apple scab, induced 
a shift in the wavelength of the water valley (1900 nm) and wavelengths associated with pigment functioning 
(684 nm, 536 nm, 537 nm). The wavelength range of 510–550 nm was found to be positively correlated with the 
total pigment content of various tree species, especially  carotenoids53. Carotenoids are part of the light harvest-
ing complex and play a significant role in the quenching process, also to protect against oxidative  stress54. While 
Venturia inaequalis is not known to directly affect stomatal aperture, it has been shown to secrete metabolites 
that attract water and solutes to the site of the  lesions55. Previous research has demonstrated that infected apple 
trees have reduced leaf water potentials and higher water content, which could potentially explain the findings 
of our study (see Fig. 3: 1900 nm)55,56.

Delalieux et al. (2007) investigated the ability to differentiate between apple leaves infected with V. inaequalis 
(apple scab) and non-infected leaves via spectral methods. They found that good predictability could be achieved 
using supervised classification  techniques26. They identified the spectral domains between 1350–1750 nm and 
2200–2500 nm as the most important regions for distinguishing between infected and non-infected leaves. 
Furthermore, visible wavelengths around 650–700 nm were found to increase in importance three weeks after 
infection at a well-developed infection stage.

Finally, reflectance in the region between 800 and 990 nm is influenced by leaf properties such as thickness, 
density, and cellular structure, rather than plant  pigments21. This region is often used as a normalization factor 
to improve correlations between wavelengths and biological  constituents53,57,58. The importance of these NIR 
wavelengths as features may be related to their ability to correct for these effects, or to differences in cellular 
structure caused by stresses themselves, which alter water status and affect intercellular spaces.

In summary, as they appear to be associated with established physiological stress responses, the wavelengths 
identified to be important here appear to be plausible. Further work should look into the application of these 
wavelengths within practical settings in the field, ideally using cheaper and more easily implemented technol-
ogy. Combinations of these wavelengths as is commonly done through the use of spectral indices is particularly 
promising. A preliminary screen of already existing indices yielded unsatisfactory results (data not shown), 
probably because the conditions under which these indices were developed (crop, age, environment etc.) differ 
substantially to those of our own experiment. The development of indices that are more specific to the crop and 
conditions employed here therefore serves as a promising future endeavor.

Spectral technology for detecting multiple stresses in agriculture
Real world application of spectral technology will undoubtedly involve the detection of not one but several 
stresses at a time. Here, we have demonstrated that spectral technology does indeed possess the potential to detect 
and distinguish between multiple stresses, even at pre-symptomatic stages. Similarly, Mahlein et al.59 found that 
while the wavelengths that correlate with disease severity vary among different diseases of sugar beet, reflectance 
at around 700 nm is strongly correlated to all of the three fungal leaf diseases they investigated.They also found 
significant spectral differences between healthy and infected plants from the early symptomatic stages onwards. 
Cotrozzi &  Couture60 examined the use of hyperspectral spectroscopy for the detection of multiple stresses alone 
and in combination in lettuce. They found good predictive accuracy while predicting multiple stresses individu-
ally but found that as stresses were combined the predictive accuracy was reduced.

Indeed, the detection of multiple stresses using spectral technology is complicated by the fact that several 
stresses can result in overlapping symptoms and one stress can often be a consequence of another. The stresses 
applied in our study are relatively varied in their mechanisms in which they negatively affect the plant. Even 
so, the trees subjected to waterlogging and Metamitron treatment, while often both separable from the control 
group, did not show distinctly different behaviours from each other in terms of their spectral responses in all 
but one (2055 nm) of the top 10 most important wavelengths (see Fig. 3).

Using remote sensing technology and looking at more closely related stresses, Zarco-Tejada et al. (2021), 
nevertheless, did successfully use aircraft-mounted hyperspectral and thermal cameras to distinguish between 
water deficit stress and two bacterial pathogens (Xylella fastidiosa, Verticillium dahliae) that affect the tree-water 
dynamics in Olive and Almond. Ortiz et al.61 reported achieving accuracies of up to 70% in detecting Fusarium 
oxysporum infection and water deficit stress in pre-symptomatic stages on tomatoes (Solanum lycopersicum L.) 
using VIS–NIR spectroscopy from three days after infection. The study showed that reflectance in the range of 
510–520 nm and 650–660 nm played a crucial role in detecting F. oxysporum stress, especially in the initial stages, 
while wavelengths of 750 nm and 900 nm were significant for identifying water deficit stress.

Taken all together, the results from this study as well as those already reported in other studies suggest the use 
of spectral based detection methods does indeed have the potential to be used for the detection multiple stresses 
in plants, possibly even in the early or, indeed, pre-symptomatic stages. It is important to address the practical 
application and analysis of stress techniques in real-world settings, considering the challenges of multiple stress 
occurrences and the need for user-friendly tools. While spectroradiometers may not be farmer-friendly, they 
serve as a robust choice for initial research. Future research should focus on developing accessible tools for 
practical and commercial use in agriculture.

Our analysis relies on the first derivative of the reflectance, which may not always have an intuitive interpreta-
tion of the results and necessarily requires the data to be continuous (i.e. hyperspectral). This poses significant 
limitations on the methods by which this data could be generated in the field. Furthermore, it is worth noting that 
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our study was carried out under controlled conditions with a relatively small sample size, using uniform plant 
material experiencing similar intensities of each stress—somewhat of a simplification of true field conditions. In 
the field, there would be significantly more environmental variation and interference, and as already mentioned, 
various stresses often occur simultaneously and at varying intensities. Future studies should explore the effective-
ness of spectroscopy for detecting and distinguishing various types of plant stress across diverse plant species 
and environmental conditions. These studies should consider site variations, including crop variety, soil type, 
and plant age, and conduct field trials to test and improve the application of early stress diagnosis. Ultimately, 
this will lead to optimized resource utilization in agriculture.

Conclusion
In conclusion, our study highlights the effectiveness of using hyperspectral in vivo spectroscopy and machine 
learning techniques to identify and distinguish between different types of stresses (treatments) in apple trees at 
the pre-symptomatic stage with high overall accuracy. The reduced models, based on the top 10 wavelengths, 
provided good prediction performance and yielded insights into potential underlying physiological mechanisms. 
Our findings suggest that wavelengths related to photosynthesis via pigment functioning (684 nm) or the leaf 
water (~ 1800–1900 nm) of the plant are important for the correct classification of stresses. Based on our find-
ings, the identified wavelengths hold great potential for the development of accurate and efficient diagnostic 
tools for the early detection and differentiation of plant stresses, which could ultimately lead to more effective 
disease management and sustainable agriculture practices.

Material and methods
Samples and treatments
To ensure homogeneity among the plants, we utilized 3-year-old, bench-grafted potted apple trees (Malus x 
domestica Borkh.) of the `Golden Delicious´ variety, with a height of approximately 70 cm. The rootstock was M9 
and the trees were fertilized once a year (spring) with NPK fertilizer (Nitrophoska Special 12–12–17 (+ 2 + 20). 
Only healthy plants without any symptoms were selected for use. The plants were acclimatized by transferring 
them into a greenhouse 14 days prior to the start of the treatments, where the temperature was maintained at 
25 °C with 60% relative humidity. To evaluate the effects of both biotic and abiotic stress, three different treat-
ments were conducted: scab (Venturia inequalis), waterlogging, and herbicide (Metamitron,  Brevis®, Adama Italia 
S.r.l), as well as a control group. Each treatment was replicated 5 times.

Scab was selected as the biotic stress in our experiment as it is the most significant fungal disease in temper-
ate  regions62. We selected waterlogging as a stress type in our study due to its relevance in flood-prone regions, 
particularly in the valley bottoms of our study area, where apple orchards are susceptible to submerged condi-
tions caused by frequent floods in spring. This choice allows us to investigate the physiological responses of apple 
trees to this specific environmental challenge. Given the predicted increase in waterlogging events due to climate 
change, waterlogging stress becomes increasingly important for orchard management. The anoxic conditions in 
the root zone are known to significantly impact root metabolism due to anoxia. Metamitron  (Brevis®) is com-
monly used in agriculture as both a herbicide (in sugar and fodder beet) and for fruit thinning of apple trees. As 
a photosynthetic electron transport chain inhibitor, Metamitron reduces photosynthesis and induces stress by 
disrupting energy  metabolism63. Due to the specific requirements regarding the onset of stress for each stress 
type, different exposure times were carefully selected for each treatment.

Scab treatment
For the inoculation with apple scab, 5 days before our spectroscopic data collection, we obtained scab-infected 
leaves from a nearby orchard displaying strong symptoms. The collected leaves were placed in transparent plastic 
bags, six leaves per bag, and immediately transported to the greenhouse. A branch from our experimental potted 
trees was sprayed with water until dripping wet. The inside of the plastic bags was also sprayed with approximately 
20 mL of water. The bags with the collected leaves were then secured around the wet branch using a wire. After 
96 h, the bags with the inoculum were removed. Based on the Mills table and the temperature conditions in the 
greenhouse, the onset of infection was predicted to happen within 10  h64. Successful infection was confirmed by 
observing dull spots on the leaves of the trees 14-days after the inoculation process (9 days after the spectroscopic 
measurements were taken).

Waterlogging treatment
To expose the plants to waterlogging, each plant was placed in a bucket filled with water until the entire pot 
and substrate were submerged. This treatment was started 4 days prior to the hyperspectral measurements. We 
selected a 4-day duration for the waterlogging treatment based on previous studies demonstrating significant 
physiological responses within a few days of  exposure65.

Herbicide (Metamitron)
For the herbicide treatment, plants were treated with  Brevis® (Adama Italia S.r.l.; active agent: Metamitron) 24 h 
before the hyperspectral measurements. A spray bottle was used to apply 20 mL of the Metamitron solution, to 
each tree (replicate). The solution had a concentration of 0.93 g/L, which is the recommended concentration for 
fruit thinning of apple trees. Taking into account previous research indicating substantial physiological responses, 
such as photosynthesis inhibition, within a 24-h timeframe of herbicide exposure, we selected a 24-h interval 
for the application of Metamitron in the herbicide  treatment66.
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Hyperspectral measurements
We used a portable spectroradiometer (HR1024i, Spectra Vista 126 Corporation, Poughkeepsie, NY, USA) to 
measure the hyperspectral reflectance of the leaves with an external fibre-optic and leaf clip assembly (LC-127 RP 
PRO, Spectra Vista Corporation). The device possessed a wavelength range from 350 to 2500 nm with a sampling 
interval of 1 nm. From each plant, 10 technical replicates were taken, which makes a total of 50 measurements 
per treatment. The measurements were taken on June 1st, 2021, after the onset of full sunlight (9:00 am) to ensure 
the occurrence of photosynthesis and physiological activity in the plants.

Data processing and model training
The data processing and analysis was conducted using R statistical  language67. Raw data was screened for outliers 
through shape anomaly analysis of the spectral signature and boxplot outlier detection (points outside of the 
upper and lower whiskers). The coefficient of variation (CV = standard deviation/mean), a statistical measure 
of relative variability, was used as a metric to quantify the variations in our measured spectral data for each 
treatment.

Noise-reduction by curve smoothing as well as the first Savitsky-Golay derivative of the original spectral 
data was generated from the raw data using the hsdar package in  R68.The transformation of the data into its first 
derivative removes additive effects and often improves model performance (and as was indeed the case here)69. 
The data set was divided into a training set and a test set with a split ratio of 80:20, ensuring that the testing data 
was not used in the training process. The data consisted of 168 samples and 2036 features (variables), with a 
spectral range from 365 to 2400 nm and a sampling interval of 1 nm.

We classified our data according to two labelling systems:
Firstly, for the purpose of distinguishing and classifying specific stress types, we assigned their specific stress 

labels i.e., four distinct classes: control, scab, metamitron, and water logging. Secondly, to train models to dif-
ferentiate between “healthy” and “stressed” conditions, we employed general stress or health status labels. All 
trees experiencing any of the three of the stress treatments were assigned to a “stressed” class. While those under 
the control treatment was labelled as “healthy”, resulting in two classes.

Principal Component Analysis (PCA) is a popular unsupervised machine learning technique used to reduce 
the number of dimensions and identify features that explain most of the variance within the independent 
 variables70. The PCA was applied in this study to: (a) determine if the treatments cluster at a first glance, (b) 
identify the dimensions (PCs) that show the best clustering and separation of treatments, and (c) identify the 
important variables that contribute to the clustering and differentiation. The PCA was carried out using the 
factorminer and factoextra packages in  R71,72.

We trained three classification models: support vector machine (SVM), random forest and partial least 
squares-discriminant analysis (PLS-DA). These models were chosen for their ability to handle high dimensional 
data and their performance in previous studies. The SVM algorithm utilizes the concept of maximal margin 
classifiers and kernel functions to separate the data into different classes. When training multiclass classification 
SVMs, a ‘one-against-one’ approach was used. The Random Forest algorithm is an ensemble method that con-
structs a multitude of decision trees and outputs the class that is the mode of the classes output by individual trees. 
PLS, similar to PCA, is a data summarization technique that finds orthogonal linear combinations of variables 
(latent variables) that best describe the relationships between the predictors and response  variables63. Discri-
minant analysis is then performed on the latent variables to find linear combinations (i.e., decision boundaries) 
by maximizing the ratio of between group-variance to within group  variance73. Each model was trained and 
evaluated on the same dataset to compare their performance.

For the SVM model, a linear kernel was used by passing the ksvm (method = svmLinear) function provided 
by the R package Kernlab to the caret::train  function74,75. The training data were pre-processed by centering and 
scaling the predictors. Cross-validation was performed using tenfold with 3 repeats to tune the regularization 
hyperparameter ‘C’ (Cost of Constraints). The optimized C-value (0.001) was chosen from a range between 
0.001 and 5 and a ‘tuneLength’ of 10.

The Random Forest model used the ranger implementation with 500 trees and importance measure. Hyper-
parameters ‘mtry’ (the number of randomly selected predictors), ‘splitrule’ (the splitting rule) and ‘min.node.
size’ (the minimum node size) were tuned using a grid search—the optimized values were 225, “gini” and 1 
respectively. Tenfold cross-validation with 3 repeats was used for model validation.

In order to optimize the performance of the PLS model, we used cross-validation to tune the number of latent 
variables in the model. The number of latent variables was varied up to 12 and the optimal value was chosen 
using tenfold cross-validation, repeated 3 times.

We used the trained Random Forest model to identify important variables (wavelengths) because its archi-
tecture allows for the efficient, reliable and interpretable extraction of feature  importance76. We then trained 
“reduced” models using the subsets of variables identified by the model. The feature importance was obtained 
from the Random Forest models as the impurity corrected Gini  importance76. To obtain class-specific variable 
importance, ROC (receiver operating characteristic) curve analysis of the Random Forest model was used where 
each predictor (i.e. wavelength band) is assessed individually based how well the classes are ranked according to 
that predictor (the reflectance in that wavelength band) calculated as the area under the curve (AUC) Pairwise 
comparisons between each class are performed and the importance of a given predictor for a class is reported as 
the maximum area AUC out of each of these pairwise comparisons. To validate the importance of the selected 
features, the first derivative reflectances at each of these wavelengths were subsequently subjected to Analysis of 
Variance (ANOVA) followed by Tukey’s honest significant difference post-hoc tests.
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Statement on the collection of plant material
The plant materials used in this study were sourced from controlled cultivation and all collection were made in 
accordance with institutional, national and international guidelines for the collection of wild plants.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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