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A mathematical investigation 
of polyaneuploid cancer cell 
memory and cross‑resistance 
in state‑structured cancer 
populations
Anuraag Bukkuri 1*, Kenneth J. Pienta 2, Robert H. Austin 3, Emma U. Hammarlund 4, 
Sarah R. Amend 2 & Joel S. Brown 1

The polyaneuploid cancer cell (PACC) state promotes cancer lethality by contributing to survival 
in extreme conditions and metastasis. Recent experimental evidence suggests that post‑therapy 
PACC‑derived recurrent populations display cross‑resistance to classes of therapies with independent 
mechanisms of action. We hypothesize that this can occur through PACC memory, whereby cancer 
cells that have undergone a polyaneuploid transition (PAT) reenter the PACC state more quickly or 
have higher levels of innate resistance. In this paper, we build on our prior mathematical models 
of the eco‑evolutionary dynamics of cells in the 2N+ and PACC states to investigate these two 
hypotheses. We show that although an increase in innate resistance is more effective at promoting 
cross‑resistance, this trend can also be produced via PACC memory. We also find that resensitization 
of cells that acquire increased innate resistance through the PAT have a considerable impact on eco‑
evolutionary dynamics and extinction probabilities. This study, though theoretical in nature, can 
help inspire future experimentation to tease apart hypotheses surrounding how cross‑resistance in 
structured cancer populations arises.

Author summary
Therapeutic resistance remains one of the major contributors to treatment failure in cancer patients. Studies 
show that a poly-aneuploid cancer cell (PACC) state may promote resistance by providing a refuge from therapy 
and increasing the generation of heritable variation, upon which evolution acts. Furthermore, recent evidence 
suggests that post-therapy PACC derived recurrent population display high levels of cross-resistance to different 
classes of therapies.

In this paper, we construct a mathematical model, inspired by life history theory, to examine how this may 
occur. We show how this cross-resistance may be the result of a PACC memory, wherein cancer cells that have 
entered the PACC state can re-enter it more quickly upon subsequent insult, or an innate resistance, in which 
cancer cells that have undergone a poly-aneuploid transition have a higher innate resistance to other therapies. 
We also show how resensitization dampens the effectiveness of innate resistance to produce cross-resistance. This 
work will guide future experimental research to elucidate mechanisms of cross-resistance and may also inform 
drug development studies to target aspects of PACC biology.
Cancer research and clinical oncology have made great strides in the last several decades, from advances in the 
basic science of cancer biology to revolutions in genomics and personalized medicine to the development of 
cutting-edge  therapies1–11. However, despite this progress, therapeutic resistance remains a major contributor to 
treatment failure in cancer  patients12–19. Therapeutic resistance arises through a process of Darwinian evolution: 
Therapy is applied to a population of cancer cells and some of these cells harbor or develop mutations that afford 
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them some level of resistance to the  stressor20. This resistance provides the cells with a higher fitness (defined 
here as per capita growth rate)21. In a process of creative destruction, cells with higher fitness proliferate at the 
expense of less fit cells. In this way, resistance evolves and eventually the cancer therapy becomes  ineffective22.

Experimental evidence indicates that a polyaneuploid cancer cell (PACC) state plays a key role in this process. 
Cells in the 2N+ state (aneuploid cancer cells with abnormal numbers of chromosomes or chromosomal frag-
ments that display structural rearrangements, amplifications, and  deletions23–25) can enter the PACC  state24,26–28 
(undergoing what we term a polyaneuploid transition or PAT) by undergoing  endocycling29, thereby accruing 
greater than G2 genomic  material24,26,30. At the cost of being non-proliferative, this state allows cells to persist 
under stressful  conditions31 and to increase their capacity to generate heritable variation (evolvability)32–36 due to 
the higher amount of genomic material that precipitates from the polyploidization  program37–40. In other words, 
unlike traditional polyploid cells and cell fusions that can divide within the polyploid  state41, the PACC state is 
a state in the life history of a cancer cell. Cells cannot divide within this state, but must enter the 2N+ state via 
depolyploidization to divide. In prior work, we used a modeling framework we  developed42 to understand how 
therapy affects the dynamics of the 2N+ and PACC populations (ecology) and resistance strategies (evolution)43,44. 
However, one aspect lacking in this modeling is a careful consideration of how cancer cell populations respond 
to subsequent therapeutic insults with the same or different classes of therapy. In an ongoing study by Amend 
and Pienta, prostate cancer cell lines were exposed to docetaxel therapy for 72 hours. After confirming that the 
surviving population was primarily composed of PACCs, the cells were isolated and allowed to transition to a 
primarily non-polyploid state. These progeny were then rechallenged with another therapy (cisplatin, radiation, 
or docetaxel). In each case, the population displayed higher levels of resistance to the second stressor than would 
be expected in control cancer cell populations that had not been exposed to the first round of therapy (Amend 
& Pienta, pers comm). However, the mechanisms by which this cross-resistance occurs remain opaque.

In this paper, we build on previously created mathematical models of 2N+ and PACC eco-evolutionary 
 dynamics43,44 to investigate two hypotheses for how this cross-resistance occurs. Our first hypothesis is called 
“PACC memory”. This hypothesis posits that cancer cells that have entered the PACC state retain a “memory” 
of the PAT, which they can access to rapidly transition to the PACC state upon subsequent insult. In this way, 
PACC memory affords the cancer cell population a stress-agnostic mechanism of multi-drug resistance. Our 
second hypothesis is called “innate resistance”. This hypothesis contends that cancer cells that have undergone 
a PAT have a higher innate resistance to other therapies. We also allow for the possibility that this innate resist-
ance is transient. We explore how key parameters (transition rate to the PACC state, innate resistance levels, 
and resensitization rates) impact extinction probabilities. We show how PACC memory and innate resistance 
can both lead to high levels of cross resistance and that resensitization of 2N+ cells has a considerable impact 
on extinction probabilities. In addition to the basic science value of this study to mathematical modeling and 
cancer biology, understanding the causes of cross-resistance in cancer cell populations can help effectively guide 
future drug discovery and therapeutic strategies.

Models
ODE model: capturing ecology. To construct our eco-evolutionary model, we begin by building an ODE 
model that captures key ecological dynamics of cells in the 2N+ state, cells in the PACC state (PACC), and 2N+ 
cells that have previously undergone a PAT (2N+(R)). This model, shown in Equation 1, builds on prior  work43,44 
by incorporating a 2N+(R) state and allowing for resensitization.

In this model, N, P, and R represent the population sizes of cells in the 2N+, PACC, and 2N+(R) states and 
v = [v1, v2] is the vector of drug resistance strategies where vi represents the resistance strategies of the cells 
to drug i. Note that the resistance levels, vi , are population-level traits that capture the susceptibility of cells in 
the 2N+ and 2N+(R) states to therapy. Although the trait is impacted by transitions into and from the PACC 
state, it does not consider the temporary resistance cells obtain in the PACC state as part of the evolving resist-
ance. In other words, vi isolates the genetic evolution of cells to therapy and avoids confounding this with the 
plastic transitions to the PACC state. Although most theoretical models only allow for either genetic evolution 
or plastic state-switching21,45–47, our model is able to incorporate both mechanisms of adaptation and evolution 
to the therapeutic stressor.
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We assume that cells in the 2N+ and 2N+(R) state grow in a logistic manner, equally inhibited by cells in the 
2N+, PACC, and 2N+(R) states, with intrinsic growth rate r until they reach their carrying capacity, K. We allow 
for an obligate transition rate to the PACC state ( γ ), an assumption supported by experimental literature that 
shows a baseline level of cells in the PACC state in non-treated  populations26,48–56. We incorporate death due to 
therapy in a Michaelis-Menten fashion for cells in the 2N+ and 2N+(R) states. Under this formulation, death 
depends on drug dosage (m), innate resistance ( �N ,R ), the evolving resistance trait ( vi ), and a scaling term to 
capture the impact of evolving higher resistance levels ( β)21,57–59.

Furthermore, we include a condition-dependent transition ( cN ,R ) to the PACC state: The higher the death 
due to therapy, the higher the transition rate will be. Such facultative transitions are noticed in experimental 
studies where PACC frequency and number increase upon the initial administration of a variety of therapies, 
including hypoxia, chemotherapy, and radiation  therapy26,48–51,54,55,60–64. For each transition into the PACC state, 
we include a probability of successful PAT ( ζ ) since unsuccessful PAT due to mitotic catastrophe and subsequent 
cell death is possible. The 2N+(R) state also receives cells from the PACC state in an obligate manner (a) and 
we allow resensitization ( µ ) of 2N+(R) cells into 2N+ cells under our temporary innate resistance hypothesis.

Cells in the PACC state are assumed to be non-proliferative and fully resistant to  therapy24,26,54, so their 
dynamics are simply given by transitions from the 2N+ and 2N+(R) states, transitions back to the latter, and a 
background death rate (b). We let �R(v) = �R

1+exp(−2
∑

i vi)
 and cR(v) = cR

1+exp(−2
∑

i vi)
 increase as a function of 

drug resistance in a logistic manner. Note that this model does not include a cost of resistance and assumes 
infinite improvement in which the fitness gradient with respect to drug resistance is always positive. The transi-
tions between cell states in this model can be seen in Figure 1. The interpretations of all parameter values and 
baseline levels used in our simulations can be found in Table 1.

The parameter values were replicated from our prior  work43,44 and chosen to be biologically plausible and 
numerically convenient to show clear differences between the control, PACC memory, and innate resistance 
hypotheses. The results of sensitivity analyses for key parameters of the model can be seen in the supplemental 
material  in44. Broadly, we find that for low growth rates, the cancer cell population cannot divide fast enough 
to avoid therapy-induced extinction. Conversely, high growth rates allow the cancer cell population to evolve 
resistance fast enough and undergo evolutionary rescue to avoid extinction. We find that a higher obligate tran-
sition rate reduces the probability of extinction by maintaining a higher frequency of cells in the PACC state at 
baseline. Similarly, higher facultative transitions to the PACC state promote survival under therapy as cells are 
more quickly able to shift into the PACC state and avoid the effects of therapy. Intuitively, as the efficacy of the 
resistance strategy is increased, extinction probability decreases since the effects of therapy are more rapidly 
minimized due to the evolution of resistance. Finally, we discovered that mutation rate displays a “Goldilock’s 
effect”, wherein low and high mutation rates lead to extinction since cells cannot evolve resistance fast enough 
or undergo mutational meltdown, respectively. A medium mutational burden balances these aspects, providing 
enough fuel for genetic evolution while preventing too many failed divisions from occurring. Although results 
quantitatively vary with different parameter values, we find that the same qualitative trends hold.

Stochastic implementation: incorporating evolution. To simulate the dynamics of our cancer cell 
population from our ODE system in Equation 1 and incorporate evolutionary processes, we use a birth-death-
switching process introduced in earlier  work44 that is largely based on the Gillespie algorithm. This approach 
is similar to Dieckmann’s directed random walks in adaptive  dynamics65–67 whereby evolution proceeds as a 
sequence of trait substitutions with each selected mutation conferring a positive invasion fitness in the resident 
 population68. It is critical to note that our simulation is not an agent-based model, but rather implements the 

Figure 1.  Life Cycle Graph for 2N+, PACC, and 2N+(R) Transitions. Cells in the 2N+ and 2N+(R) states can 
self-replicate or undergo a PAT into to the PACC state. Cells in the PACC state can depolyploidize into the 
2N+(R) state. Under the PACC memory hypothesis, 2N+ cells that have undergone PATs due to therapy can 
transition into the PACC state more quickly (green arrow). Under the innate resistance hypothesis, these cells 
instead display higher rates of innate resistance to therapeutic stressors (red inhibitory line). If innate resistance 
in the 2N+(R) state is transient, cells in the 2N+(R) state can be re-sensitized to the 2N+ state (red dashed 
arrow). Created with BioRender.com.
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stochastic aspect at the population level. Thus, homogeneity within states is assumed and cells are not endowed 
with individual properties.

Our simulation procedure (identical to the one outlined  in44) for ecological dynamics follows the Gillespie 
algorithm. Within this framework, we added a mutational component to incorporate evolutionary dynamics. 
Namely, we initialize the population with 50 cells in the 2N+ state and with v1 = v2 = 0 . For each event, we 
directly read off the birth, death, and switching rates from Equation 1. This gives us nine different rates: birth 
in the 2N+ state, birth in the 2N+(R) state, death in 2N+ state, death in the PACC state, death in the 2N+(R) 
state, switching from 2N+ to PACC, from PACC to 2N+(R), from 2N+(R) to PACC, and from 2N+(R) to 2N+. 
We then sum these rates to obtain a total event rate. From this, the time to next event is determined by sampling 
from an exponential probability distribution with a mean of the total event rate. The greater the number of 
potential events (e.g., due to a higher population size) or the higher chance of events happening (e.g., due to a 
higher intrinsic growth rate), the shorter the time to next event will be. Based on the contributions of each type 
of event, an event is chosen and carried out. If the event is death, one cell of the corresponding cell type will be 
eliminated. If the event is birth, one cell of the corresponding cell type will be added to the population. Events 
will continue to be executed until the time elapsed for the simulation reaches 900.

During cell division, we allow for a chance of mutation with rate φ . Specifically, we sample the additive value 
of the mutation from a Gaussian distribution with mean 0 and breadth σ1 . If the resulting mutant has a lower 
fitness than those of the residents, it is purged from the population. However, if the mutant has a higher fitness, it 
remains in the population and, invoking the invasion implies substitution theorem from adaptive  dynamics69,70, 
its trait value replaces the resident trait value. Through this process, evolution is introduced into our model. 
This update is done immediately, implying that fixation of a mutant occurs instantaneously, whereas a mutant 
is generated once every 20 cell divisions, on average. Under this formulation, the drug resistance trait can only 
change during times of therapy–it is fixed (i.e. does not drift) during drug holidays. Our simplistic mean-field 
approximation of the evolutionary process implies that, in the absence of exogenous factors, fitness is non-
decreasing. In reality, however, genetic drift may reduce the fitness of populations at steady-state, a consideration 
we ignore here for simplicity. Furthermore, each cell may be endowed with a different fitness, a consideration that 
may influence the trajectory of the ecological and evolutionary dynamics of interacting cells in the population. 
We ignore the effects of such heterogeneity in this model for simplicity.

If the event is switching from the 2N+ or 2N+(R) state to the PACC state, one cell of the former will be 
replaced by one cell of the latter. Similarly, if the switching event occurs from the 2N+(R) to the 2N+ state, we 
replace one 2N+(R) cell with one 2N+ cell. If the event is switching from the PACC to 2N+(R) state, we replace 
one cell in the PACC state with two cells in the 2N+(R) state. During this depolyploidization event, we also allow 
for the possibility of a mutation to arise. To implement this, we follow the same process as for birth events, but we 
use σ2 instead of σ1 for the breadth of the mutation. This larger mutational breadth is presumed to be the result 
of the higher genomic material characteristic of cells in the PACC state. Thus, there are two pathways by which 
cells can gain resistance. Cells in the 2N+ and 2N+(R) state can directly mutate upon division and give rise to 
resistance or they can enter the PACC state and mutate upon depolyploidization. The only difference between 
these two pathways is that cells in the PACC state do not die from therapy and have the potential to acquire more 
extreme mutations when they depolyploidize due to the higher mutational breadth.

Table 1.  Parameter definitions and values used in simulations.

Parameter Interpretation Value

r Intrinsic growth rate 0.6 day−1

K Carrying capacity 100*107 cells

γ Obligate transition rate 0.02 day−1

m Drug Dosage 0.7 day−1

�N Innate resistance: 2N+ 1

�R Innate resistance: 2N+(R) 2

β Efficacy of evolving a resistance strategy 1

cN Facultative transition scaling rate: 2N+ 0.4 day−1

cR Facultative transition scaling rate: 2N+(R) 0.8 day−1

a PACC to 2N+(R) transition rate 0.2 day−1

b Background PACC death rate 0.01 day−1

µ Resensitization rate 0.2 day−1

ζ Successful polyaneuploid transition rate 0.7 day−1

φ Mutation rate 0.05 division−1

σ1 Breadth of mutation: 2N+ & 2N+(R) Division 0.01

σ2 Breadth of mutation: PACC Depolyploidization 0.05

vi Evolving trait: resistance to drug i [0,∞)



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15027  | https://doi.org/10.1038/s41598-023-42368-8

www.nature.com/scientificreports/

Results
With this algorithm for stochastically simulating the eco-evolutionary dynamics of our cancer cell population, we 
examined questions surrounding the response of these populations to repeated therapeutic insults. We simulated 
several hypotheses on how cross-resistance may emerge in cancer cell populations. In each case, for 10 sets of 100 
trials, we ran the simulation until time 900: no therapy until time 100, drug 1 until time 400, no therapy until time 
500, drug 1 or 2 until time 800, and no therapy until time 900. One set of these simulations was plotted to visual-
ize eco-evolutionary dynamics over time and mean and standard deviation extinction probabilities were reported 
across these sets. We investigated effects of drug dosage and key parameters such as transition to the PACC state, 
level of innate resistance, and resensitization rate that are central to the formulation of each hypothesis. In each 
of the following simulations, the top panel captures the population dynamics and the bottom panel captures 
the resistance strategy dynamics. Red, blue, and green curves represent cells in the 2N+, PACC, and 2N+(R) 
states respectively. Black and magenta curves depict the resistance strategies to drug 1 and drug 2 respectively. 
Backgrounds shaded in yellow and pink represent when drug 1 or drug 2 are being administered respectively.

Control. Before exploring mechanisms of cross resistance, we simulate various control cases. First, we con-
sider the single-state case in which the cancer cell population lacks a PACC state entirely: the population exists 
in a single 2N+ state. To do this, we removed the PACC and 2N+(R) states and simulated eco-evolutionary 
dynamics under the same and different classes of drugs with low ( m = 0.5 ) and high ( m = 0.7 ) doses (Figure 2).

First, consider the low dose simulation results in Figure 2a. As expected, the cancer cell population was 
significantly more effective at avoiding extinction when exposed to repeated application of the same drug than 
when exposed to different drugs (the population went extinct in 40± 7.0% and 66.1± 5.8% of trials for same and 
different therapies, respectively: p < 0.0001 ). This is because when the same therapy is administered twice, the 
second application of therapy is less effective as the cancer cell population has already gained resistance from the 
first therapeutic cycle. Thus, all extinctions come during the first administration of therapy. On the other hand, 
since drug 1 and drug 2 act independently (i.e., resistance to drug 1 does not affect resistance to drug 2) and are 
given at the same dose, the second administration of therapy has similar effects as the first one and is equally 
effective at decimating the population. We see the evolution of resistance to drugs 1 and 2 in the bottom panels, as 
the resistance strategy gradually increases during times of therapy and remains static during times of no therapy.

Now, consider the high dose case. Regardless of whether the same or different therapies were administered, 
the cancer cell populations were not able to evolve resistance fast enough to remain extant, going extinct in all 
sets of trials during the first application of therapy (Fig. 2b). Cancer cell populations existing in a single 2N+ state 
could not evolve resistance fast enough to avoid extinction in the face of high initial therapy efficacy.

Figure 2.  Single state: effects of dosage and therapy type. Red, black, and magenta lines depict 2N+ population 
dynamics, drug 1 resistance dynamics, and drug 2 resistance dynamics, respectively. Areas shaded in yellow and 
pink capture periods when drug 1 and drug 2 are administered, respectively. Higher extinction probabilities 
were observed for higher doses and different therapies.
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This leads to the question of how the PACC state, which provides a refuge from extreme environmental condi-
tions and may increase heritable variation in the population, can help promote therapeutic resistance? To address 
this question, we ran another set of simulations, this time allowing for transitions into and from the PACC state. 
We did not allow for any mechanisms of cross-resistance, i.e., we removed the 2N+(R) state entirely. For the same 
and different classes of therapies, we examined the impact of low ( σ2 = 0.005 < σ1 ), medium ( σ2 = 0.01 = σ1 ), 
and high ( σ2 = 0.05 > σ1 ) mutational breadths of the PACC state on eco-evolutionary dynamics (Fig. 3). To see 
the clearest difference between the single state hypothesis and the following hypotheses, we used a high dose of 
therapy for the remainder of the simulations.

The extinction probabilities in each of these simulations are shown in Table 2. With higher mutational 
breadth, there are fewer extinction events ( p < 0.0001 for each pairwise comparison). This is because, as can 
clearly be seen in the evolutionary dynamics, the cell population is able to evolve resistance at a faster rate and 
avoid extinction. Similar to our single-state case, we note that the population performed better when exposed 
to the same therapy than different therapies ( p < 0.0001 ). In accord with experimental  studies26,48–56, we notice 
a low level of cells in the PACC state pre-therapy. Upon therapeutic administration, we observe a rapid shift in 
the population from cells in the 2N+ state to cells in the PACC  state26,48–51,54,55,60–64. Gradually, the frequency 
of cells in the 2N+ state increases as resistance evolves. When therapy is removed, cells quickly return to their 
pre-treatment equilibrium, primarily existing in the 2N+ state.

PACC memory. Next, we simulated the PACC memory hypothesis. We assumed that 2N+ cells that have 
undergone PATs due to therapy have a “PACC memory” that allows them to retransition to the PACC state more 
rapidly upon subsequent therapeutic insults. We hypothesized that this rapid transition into the PACC state 
would allow the cancer cell population to effectively avoid the extreme stressor of therapy and evolve resistance 
with the help of the PACC state. To simulate this, we let �R = �N , cR(v) = cR

1+exp(−2
∑

i vi)
 , and µ = 0 . In this way, 

the rate of transition to the PACC state is an increasing function of the resistance strategies–the more resistant 
cells are, the more PATs they have likely undergone, and the faster they are able to switch into the PACC state. In 
addition to simulations under the same and different therapies, we plotted extinction probabilities over a range 
of values of cR in Fig. 4.

Under the PACC memory hypothesis, the cancer cell population went extinct in 53.3± 6.6% and 62.6± 6.2% 
of trials when exposed to two rounds of the same therapy or two different therapies, respectively ( p < 0.0001 ). To 
explore the impact of a more rapid transition to the PACC state more closely, we ran several sets of simulations 
for values of cR that range from 0.4 (the baseline cN rate) to 1.6. We note that nearly all populations remained 
extant when cR exceeds 3 times the baseline value. Thus, it is clear that a more rapid transition to the PACC state 
is a plausible explanation for the higher rates of cross-resistance observed in cancer cell populations.

Innate resistance. To simulate the innate resistance hypothesis, we assumed that 2N+ cells that have 
undergone PATs due to therapy have a higher innate resistance to future therapies. We hypothesized that this 
increased innate resistance would provide a therapy-agnostic mechanism of cross-resistance for the cancer cell 
population. To simulate this, we let �R(v) = �R

1+exp(−2
∑

i vi)
 , cR = cN , and µ = 0 . Similar to the PACC memory 

case, innate resistance was set to be an increasing function of resistance strategies. In addition to simulations 
under the same and different therapies, we plotted extinction probabilities over a range of values of �R in Fig. 5.

Under the innate resistance hypothesis, the population went extinct in 28.7± 3.0% and 29.2± 3.7% of tri-
als when exposed to two rounds of the same therapy or two different therapies, respectively ( p = 0.0009 ). This 
minor difference in extinction probabilities between the same and different therapy trials is because the innate 
resistance mechanism functionally increases the level of resistance in the population in a drug-agnostic way. 
Thus, although the population still performs better under the same therapy, the difference is less pronounced.

We examined this more finely by running several sets of simulations for values of �R between 1 (baseline 
�N rate) and 2.5. We observed that almost none of the trials resulted in extinction of the population when �R 
surpasses 2.25 times the baseline value. Therefore, the innate resistance mechanism can also explain the elevated 
levels of cross-resistance observed experimentally. It’s worth noting that a less extreme difference between cells 
in the 2N+ and 2N+(R) states is required for dramatic changes in extinction rate under the innate resistance 
hypothesis compared to the PACC memory hypothesis.

We next asked the question: what happens if innate resistance is transient? As the temporary innate resistance 
hypothesis, we allowed for a resensitization rate from cells in the 2N+(R) state to the 2N+ state. To simulate this, 
we let �R(v) = �R

1+exp(−2
∑

i vi)
 , cR = cN , and µ = 0.2 . We hypothesized that accounting for resensitization would 

increase extinction probabilities as it would buffer the effects of the higher innate resistance of the 2N+(R) state. 
We again simulated eco-evolutionary dynamics under the same and different therapies and explored the effect 
of the resensitization parameter on extinction probabilities. The results of these simulations can be seen in Fig. 6.

Table 2.  Effects of mutation breadths and therapy type on extinction probabilities.

Same therapy (%) Different therapies (%)

Low breadth 95.2± 2.4 99.8± 0.4

Medium breadth 91.9± 2.7 99.3± 0.7

High breadth 63.2± 5.7 87.3± 3.2
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Under the temporary innate resistance hypothesis, the population went extinct in 39.1± 5.7% and 40.1± 4.7% 
of trials when exposed to two rounds of the same therapy or two different therapies, respectively ( p < 0.0001 ). 
As expected, resensitization buffered the efficacy of the innate resistance hypothesis to promote cross-resistance. 
We looked more closely at this by plotting the number of extinction events out of the 100 trials over a range of 
resensitization rates in Fig. 6c. As we can see, these results confirmed our suspicion that resensitization buffers 
the effects of an increase in innate resistance: the resulting extinction probabilities, though all lower than the 
baseline control rates, are higher than those observed under the innate resistance hypothesis.

Discussion
A major barrier to improved outcomes in cancer treatment is the emergence of resistance. Traditionally, resist-
ance in cancer models has been captured through a single  state20–22,54,71,72. However, recent  theoretical43,44 and 
 empirical24,26–28,54 studies have demonstrated that the PACC state may play a critical role in the evolution of 
resistance by allowing cancer cells to persist under extreme stressors and to increase their evolvability. In this 
paper, we build on our previous theoretical work on modeling the eco-evolutionary dynamics of cancer cell 

Figure 3.  PACC model: effects of mutation breadth and therapy type. Red, blue, black, and magenta lines 
depict 2N+ population dynamics, PACC population dynamics, drug 1 resistance dynamics, and drug 2 
resistance dynamics, respectively. Areas shaded in yellow and pink capture periods when drug 1 and drug 2 
are administered, respectively. High mutational breadth promotes evolutionary rescue via rapid evolution. 
Population had a lower extinction probability when exposed to the same therapy than when exposed to different 
therapies.
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populations with 2N+ and PACC states under therapy by considering how such populations respond to repeated 
therapeutic insults.

Inspired by preliminary observations by Amend & Pienta, we created a mathematical model to investigate 
various explanations for how cross-resistance in cancer cell populations may arise. In particular, we considered 
two major hypotheses: 1) PACC memory, which contends that 2N+ cells that have undergone PATs can reenter 

Figure 4.  PACC memory: effects of therapy type and transition to PACC state. Red, blue, green, black, and 
magenta lines depict 2N+ population dynamics, PACC population dynamics, 2N(R)+ population dynamics, 
drug 1 resistance dynamics, and drug 2 resistance dynamics, respectively. Areas shaded in yellow and pink 
capture periods when drug 1 and drug 2 are administered, respectively. A rapid retransition into the PACC 
state can promote cross-resistance in cancer cell populations. The faster this retransition occurs, the lower the 
extinction probability is.

Figure 5.  Innate Resistance: Effects of Therapy Type and Level of Innate Resistance. Red, blue, green, black, and 
magenta lines depict 2N+ population dynamics, PACC population dynamics, 2N(R)+ population dynamics, 
drug 1 resistance dynamics, and drug 2 resistance dynamics, respectively. Areas shaded in yellow and pink 
capture periods when drug 1 and drug 2 are administered, respectively. A higher innate resistance in cells that 
have undergone PATs can promote cross-resistance. The higher this innate resistance is, the lower the extinction 
probability. Due to the drug-agnostic nature of the innate resistance mechanism, extinction probabilities for 
populations exposed to the same or different therapies are similar.

Figure 6.  Temporary innate resistance: effects of therapy type and resensitization rate. Red, blue, green, black, 
and magenta lines depict 2N+ population dynamics, PACC population dynamics, 2N(R)+ population dynamics, 
drug 1 resistance dynamics, and drug 2 resistance dynamics, respectively. Areas shaded in yellow and pink 
capture periods when drug 1 and drug 2 are administered, respectively. Resensitization buffers the efficacy of the 
innate resistance mechanism of cross-resistance.
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the PACC state more rapidly upon subsequent therapeutic insult, and 2) innate resistance, which holds that 2N+ 
cells that have undergone PATs directly have an increased, stress-agnostic innate resistance. We also considered 
the possibility for this innate resistance to be temporary by allowing resensitization of cancer cells that have 
undergone a PAT. We found that although the innate resistance hypothesis was most effective at generating 
cross-resistance, the PACC memory hypothesis is also a plausible pathway to cross-resistance. We also found that 
resensitization reduces the effectiveness of innate resistance to produce cross-resistance and aid in the survival 
of the population. Due to the theoretical nature of our qualitative modeling study, the results are still valid, even 
if cross-resistance occurs only in limited scenarios, and may be useful to demonstrate general aspects of cross 
resistance in cancer and medicine.

Overall, this work stresses the importance of considering state-structure in cancer therapeutic resistance 
to account for both genetic evolution and plastic adaptation. We have shown how the PACC state buffers can-
cer cells from the effects of therapy and buys them time to evolve resistance. This greatly influences the eco-
evolutionary dynamics of cancer cell populations under therapy and must be taken into consideration when 
designing therapeutic protocols. Namely, as discussed in our earlier  work43, life history enlightened therapies in 
which drugs that prevent transition into the PACC state are combined with traditional chemotherapy may be 
effective at preventing resistance and promoting cancer  eradication73. We have also demonstrated the plausibil-
ity that cancer cells that have undergone PAT may have a memory of the PACC state, allowing them to reenter 
the PACC state more rapidly when exposed to subsequent stressors. Alternatively, we have shown that cells that 
have undergone PAT may be imbued with a stress-agnostic mechanism of innate resistance. These findings have 
important implications for drug scheduling as regimens that administer drugs in quick succession be less effec-
tive than those with greater space between treatments. This work has inspired ongoing experimental studies to 
help tease apart these hypotheses by comparing the rates at which cells in the 2N+ and 2N+(R) states enter the 
PACC state upon administration of therapy.

Data availability
The datasets generated and/or analysed during the current study are available in Anuraag Bukkuri’s GitHub 
repository, at https://github.com/abukkuri/PACC-Memory.
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