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The effective deficiency 
of biochemical networks
Damoun Langary 1,2, Anika Küken 1 & Zoran Nikoloski 1,2*

The deficiency of a (bio)chemical reaction network can be conceptually interpreted as a measure of 
its ability to support exotic dynamical behavior and/or multistationarity. The classical definition of 
deficiency relates to the capacity of a network to permit variations of the complex formation rate 
vector at steady state, irrespective of the network kinetics. However, the deficiency is by definition 
completely insensitive to the fine details of the directionality of reactions as well as bounds on 
reaction fluxes. While the classical definition of deficiency can be readily applied in the analysis of 
unconstrained, weakly reversible networks, it only provides an upper bound in the cases where 
relevant constraints on reaction fluxes are imposed. Here we propose the concept of effective 
deficiency, which provides a more accurate assessment of the network’s capacity to permit steady 
state variations at the complex level for constrained networks of any reversibility patterns. The 
effective deficiency relies on the concept of nonstoichiometric balanced complexes, which we have 
already shown to be present in real-world biochemical networks operating under flux constraints. 
Our results demonstrate that the effective deficiency of real-world biochemical networks is smaller 
than the classical deficiency, indicating the effects of reaction directionality and flux bounds on the 
variation of the complex formation rate vector at steady state.

Chemical reaction network theory (CRNT) has made seminal contributions to establishing necessary and/or 
sufficient conditions that a (bio)chemical network exhibits particular properties, such as: presence/absence of 
multiple steady state, stability of steady states, and robustness of steady-state concentrations1. The deficiency of 
a network is of central importance in this theory, and many steady-state concentration properties are guaranteed 
or precluded for networks of particular deficiency2–4. These results often hold for (bio)chemical networks whose 
reactions are endowed with (generalized) mass action kinetics. However, a notable feature of this theory is that 
it does not impose any physico-chemical constraints that real-world networks obey. As a result, the notion of 
deficiency is not concerned with the (ir)reversibility of the considered biochemical reactions that may arise in 
practice, and the extent to which this may affect the properties of the corresponding steady states the network 
supports.

In contrast to CRNT, which almost exclusively deals with concentration-based properties, the constraint-
based modeling framework5,6, imposes physico-chemical constraints as lower and/or upper bounds on reaction 
rates (i.e. fluxes) in making predictions about macro-level phenotypes, such as growth or yield of a chemical 
product of interest. The constraint-based modeling framework has found numerous applications, largely due to 
its capacity to model large-scale networks by building on approaches for convex optimization.

A natural question then arises of how to integrate any imposed constraints on reaction fluxes into the notion 
of deficiency, and if the consideration of such constraints leads to smaller values such that one may expand the 
usability of the classical results from CRNT2,3. Here, we rely on the recently introduced classification of balanced 
complexes7, in particular the class of nonstoichiometric balanced complexes, to define the notion of effective 
deficiency of a network. Nonstoichiometric balanced complexes have been shown to arise as a combined result 
of several factors, including the algebraic and graphical structure of the network as well as operational bounds 
on reaction kinetics7. A remarkable feature of the effective deficiency is that, like that of the classical, so-called 
structural, it is defined and can be calculated for networks of arbitrary kinetics.

Our theoretical results show that decrease in the structural deficiency of a network, as quantified by the effec-
tive deficiency, is due to the presence of reactions whose fluxes are fixated at their lower bounds—i.e. they are 
robust irrespective of the environment. In other words, given the irreversibility and flux bound constraints, if the 
network contains nonstoichiometric balanced complexes, some reactions are guaranteed to exhibit absolute flux 
robustness. It is then not surprising that the effective deficiency captures the reduced capacity for variation of the 
complex formation rate at steady state. We conjecture that the effective deficiency, like the structural deficiency, 
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can provide rich information about the properties of the steady states the network supports – a direction for 
future research in this area.

The paper is organized as follows: In Sect. “Background on CRNT”, we present the basics of chemical reaction 
network theory, following the terminology and notation introduced by Feinberg et al. such as linkage structure 
and deficiency, as well as notions from the constraint-based modeling literature, such as the flux space and 
its properties. Section “Mathematics of balanced complexes” builds on a previous work7, introduces balanced 
complexes, and explores the network properties that give rise to this phenomenon. Then, in Sect. “Properties of 
nonstoichiometric BCs”, we discuss an intriguing subclass of balanced complexes, the so-called nonstoichiometric 
balanced complexes, which arise as a result of constraints imposed on a network. We show that the presence of 
such complexes has some implications, not only for the structure of the network but also for its ability to admit 
steady states. In particular, by introducing the notion of phantom species, we show in Sect. “Nonstoichiometric 
BCs and the integration of phantom species” that networks with non-stoichiometric BCs are -in a sense- equiva-
lent to other -modified- networks of smaller deficiencies. This paves the way for the concept of effective deficiency 
in Sect. “Effective deficiency”, which extends the classical notion of deficiency to networks under flux constraints. 
Judging from the similarity of the underlying capacity between the original network and modified networks with 
smaller deficiencies, we conjecture that the effective deficiency of the network may determine the exclusion of 
exotic steady state behavior. The presence of nonstoichiometric BCs has been illustrated by toy examples in Sect. 
“Some examples”, as well as by analyzing several genome-scale metabolic networks. For instance, application of 
our results on twelve real-world metabolic networks of species from all three kingdoms of life show that their 
effective deficiency is decreased by 8% on average in comparison to the structural deficiency. If our conjecture 
is correct, under further restrictive conditions, the smaller effective deficiency in comparison to the structural 
deficiency could be used in understating factors that preclude exotic dynamic behavior, as alluded in Sect. 
“Conclusion”, which concludes the paper.

Background on CRNT
Problem setup.  A chemical reaction network (CRN) is defined by a set of m species/metabolites,S = {Si}

m
i=1 , 

a set of n complexes,C =
{

Cj

}n

j=1
 , each of which is a multiset of species Cj ∈ N

S , and a set of r reac-
tions,R =

{

Rq
}r

q=1
⊂ C × C , which symbolize the potential conversion of complexes into each other in the 

network2,3,8,9.
We denote the standard basis in Rn by 

{

ej
}n

j=1
 , where

is an n− vector with a unit value at the jth entry and zero entries elsewhere. Let us next assume some arbitrary 
ordering on the sets of species (S1, · · · , Sm) , complexes (C1, · · · ,Cn) , and reactions (R1, · · ·Rr) . Given this order-
ing, any complex Cj ∈ C can be associated with a vector ej ∈ R

n indexing its position in the ordered set, and at the 
same time with a unique vector yj ∈ R

m , which represents its species content. This defines the following mapping

Consequently, any given CRN is associated with a stoichiometric map, defined by the matrix 
Y = [y1 · · · yn] ∈ R

m×n . Similarly, the ordering associates each reaction Rq : Cp′ ⇀ Cp , converting complex 
Cp′ to Cp , with a vector aq = ep − ep′ ∈ R

n that represents this conversion in the complex space, and a vec-
tor nq = yp − yp′ ∈ R

m , which represents this conversion in the species space. Thus, the CRN is at the same 
time associated with the complex—reaction incidence matrix A = [a1 · · · ar] ∈ R

n×r and a species conversion 
matrix N = [n1 · · ·nr] ∈ R

m×r , known as stoichiometry matrix. It follows immediately from the definition of 
the stoichiometric map that N = YA. The column span of N is called the stoichiometric subspace, the dimension 
of which,s , is termed rank of the CRN, that is,s = rank(N).

Assuming the reaction network is endowed with some kinetics, at any state of the system, denoted by the 
vector of concentrations x ∈ R

m
≥0 , the dynamics is governed by the following ODE

where v(x) ∈ R
r returns the reaction rates determined by system kinetics as a generally nonlinear function of 

the state vector x.

Blocked reactions and the steady state flux space.  The vector v ∈ R
r , referred to as a flux distribu-

tion for the network G = (S , C,R) , is said to be at steady state, if

In addition, the flux vector v is often assumed to be bounded by box constraints as follows

where ≤ operates element-wise, and vl, vu ∈ R
r specify the individual lower- and upper bounds on flux through 

reactions, respectively. By convention,vu is strictly positive for all reactions , vu > 0 . Going forward, we assume 
a network denoted G also encodes information about upper and lower bounds on reaction fluxes.

ej = [0 · · · 010 · · · 0]T,

(1)ej  → yj ∈ R
m, 1 ≤ j ≤ n.

(2)
d

dt
x = Nv(x) = YAv(x),

(3)Nv = YAv = 0.

(4)vl ≤ v ≤ vu.
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When no additional restriction is imposed on the network, a flux distribution v is called feasible, if it 
satisfies both constraints (3) and (4). The set of all feasible flux distributions is an intercept of some hyper-
planes and halfspaces, which defines a convex polyhedron, referred to as the steady state flux space, denoted 
F(G) = {v ∈ R

r |YAv = 0, vl � v � vu}.
The set of reversible reactions Rrev ⊆ R is defined by negative entries of vl , that is

where vl,R denotes the entry of vl corresponding to reaction R . The set of irreversible reactions Rirr ⊆ R is then 
defined as the complement of Rrev , that is,Rirr = R \Rrev . Hence, irreversible reactions are associated with 
vl,R ≥ 0 . By contrast to irreversible reactions, a reversible reaction Rq : Cp′ ⇋ Cp portrays the mutual conversion 
of complexes Cp′ and Cp.

Similarly, let Rzl and Rnl denote the sets of reactions with zero and nonzero lower bounds, respectively. It fol-
lows from the definition that,Rzl ∩Rnl = ∅;Rzl ∪Rnl = R; and Rzl ⊆ Rirr . Given the arbitrariness of index-
ing, one can always order the reactions in R such that elements of Rzl and Rirr precede those of Rnl and Rrev , 
respectively. As a result, the incidence matrix A can be block-partitioned as either A =

[

AirrArev
]

 or A =
[

AzlAnl
]

.
The network is said to be operating under a canonical flux regime, if Rzl = Rirr . It is said to be operating 

under an unbounded flux regime, if vu = ∞ and vl,R = −∞, ∀R ∈ Rrev . Under a canonical and unbounded flux 
regime, the set of feasible flux distributions forms a polyhedral convex cone, referred to as the steady state flux 
cone. The flux regime is called bounded, if it is not unbounded.

For any reaction R ∈ R , we say R is a blocked reaction in G , if for all flux distributions v ∈ F(G) , the flux 
through R is zero, namely , vR ≡ 0 . This is a recurring phenomenon in metabolic networks, in particular when 
restrictive flux bounds and/or optimization of particular objectives are imposed. As long as we only concern 
ourselves with steady state analysis, all blocked reactions can be safely removed from the network.

More generally, we say a reaction R ∈ R is fixated (at some flux value f  ), if for all flux distributions v ∈ F(G) , 
the flux going through R is unchanged, namely, vR = f , ∀v ∈ F(G) . Obviously, the set of blocked reactions is 
contained in the set of fixated reactions.

Linkage structure and deficiency.  Two complexes C,C′ ∈ C are said to be directly linked, if (C,C′) ∈ R 
or (C′,C) ∈ R . Two complexes C,C′ ∈ C are linked, denoted C ∼ C′ , if there exist a sequence of complexes 
(C = Cj0 ,Cj1 , · · · ,Cjκ = C′) , each of which is directly linked to the immediate preceding and succeeding ele-
ments. The equivalence relation ∼ partitions C into a family of ℓ equivalence classes {Ll}ℓl=1 , called the linkage 
classes of the network.

For any two complexes C,C′ ∈ C , we say C directly converts to C′ , denoted C → C′ , if (C,C′) ∈ R 
or (C′,C) ∈ Rrev . We say C converts to C′ , denoted C ⇒ C′ , if there exist a sequence of complexes 
(C = Cj0 → Cj1 → · · · → Cjκ = C′).C and C′ are strongly linked, denoted C ≈ C′ , if C ⇒ C′ and C′ ⇒ C . The 
equivalence relation ≈ partitions C into a family of ℓs equivalence classes {�l}

ℓs
l=1 , called the strong linkage classes 

of the network.
A terminal strong linkage class is a strong linkage class � , no complex of which converts to any complex in C\� . 

We denote the number of terminal strong linkage classes by ⊔ . It is trivial to show that, in general,ℓs ≥ ⊔ ≥ ℓ . 
A reaction network is said to be weakly reversible, If C ∼ C′ implies C ≈ C′ , that is, any two linked complexes 
convert to each other. In graph-theoretic terms, it means each component of the CRN graph—defined by com-
plexes as vertices and reactions as directed edges – is strongly connected. For weakly reversible networks, every 
linkage class is a terminal strong linkage class, hence ℓs = ⊔ = ℓ.

The deficiency of a reaction network is the nonnegative integer, denoted δ , defined by2

Alternatively, it can be defined as10,11

As Eq. (6) demonstrates, the deficiency of a network has to do with the image of stoichiometric flux modes 
under linear mapping A . In this light, for any network G , we define the deficiency space D(G) as the set of all 
feasible complex formation rate vectors, given as follows

Any nonzero vector a ∈ D(G) points at a nonzero complex conversion, i.e. net production or consumption 
of some complexes at steady state, which is unobserved on the species level, because all species concentrations 
are constant. Thus, one may interpret the dimension of the deficiency space as a measure of the capacity of the 
network to permit unobserved complex conversions at steady state. This is why the notion of deficiency stands at 
the center of several seminal results in CRNT, which determine whether special classes of networks may exhibit 
multistationarity and/or exotic dynamical behavior3.

Given the definition of A , it is not surprising that the linkage structure of the network is closely interlinked 
with the left nullspace of A . Let G be a closed network comprising ℓ linkage classes {Ll}ℓl=1 . An obvious choice of 
a basis for the left nullspace of A , namely kerAT , is the set 

{

u(l)
}ℓ

l=1
 , where u(l) =

∑

j:Cj∈Ll
ej , 1 ≤ l ≤ ℓ . Therefore, 

the column span of the complex – linkage class incidence matrix

Rrev =
{

R ∈ R|vl,R < 0
}

,

(5)δ = n− ℓ− s.

(6)δ = dim(ker(Y) ∩ im(A)).

D(G) =
{

a ∈ R
n|a = Av, v ∈ F(G)

}

.
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coincides with the left nullspace of A . In a similar fashion, we can define the complex – strong linkage class inci-
dence matrix as follows

Since every linkage class is a disjoint union of some strong linkage classes, it follows that for any arbitrary 
network, im(U) ⊆ im(Us) , with equality holding only for weakly reversible networks.

Mathematics of balanced complexes
Let us next give a formal definition of a balanced complex. For a given matrix X , let X:i and Xj: denote the ith 
column and jth row of X , respectively. A complex Cj ∈ C is referred to as a balanced complex (BC) for network 
G , if Aj:v ≡ 0 for all v ∈ F(G) . Given the properties of the incidence matrix A , this definition complies with the 
notion that the algebraic sum of fluxes entering complex Cj must be equal to the sum of fluxes leaving it for all 
feasible distributions v ∈ F(G) , which means this complex has a zero complex formation rate at all steady states.

The contents of this section build heavily upon earlier works in12 and7. We refer the readers interested in a 
more detailed discussion to these studies for more information.

Factorizations of balanced complexes.  As was shown in7, a complex Cj ∈ C is a BC, if and only if

where variables ζ1, ζ2 ∈ R
m, ξ1, ξ2 ∈ R

ℓ are free parameters, while the parameters θ1, θ2 ∈ R
n satisfy

for some nonnegative dual variables �l1, �u1, �l2, �u2 ∈ R
r
≥0

7.
The set of all balanced complexes in G , denoted B = B(G) , can then be defined as

A large subset of these balanced complexes can be characterized as follows

In a canonical flux regime, the above two sets coincide7, i.e. B = B1. Note that in that case,Anl = Arev and 
Azl = Airr.

Furthermore, in a canonical flux regime, if the network is void of any blocked reactions, the set of balanced 
complexes reduces to

a particular subset of which is given as follows

The equalities in Eqs. (10), (11), (12) and (13), referred to as factorizations, explain the formation of a balanced 
complex Cj ∈ C as a combined effect of a number of underlying factors, namely, the stoichiometry ( Y ), linkage 
structure ( U ), irreversibility patters ( Rzl ⊆ Rirr ) and flux bounds ( vl, vu).

Nonstoichiometric balanced complexes.  It is worth noting that

A complex Cj ∈ C is called a strictly stoichiometric BC, if Cj ∈ B3 ; the equality in (13) is referred to as a strictly 
stoichiometric factorization for complex Cj . A complex Cj ∈ C is called a stoichiometric BC, if Cj ∈ B2 ; the equality 

(7)U =

[

u(1) · · · u(ℓ)
]

∈ R
n×ℓ,

(8)
Us =

[

u(1)s · · · u(ℓs)s

]

∈ R
n×ℓs ,

u(l)s =
∑

j:Cj∈�l
ej , 1 ≤ l ≤ ℓs.

(9)
{

ej = YTζ1 + Uξ1 + θ1
ej = YTζ2 + Uξ2 − θ2

,

{

ATθt = �lt − �ut

vl
T
�lt − vu

T
�ut = 0

, t = 1, 2 ,

(10)B =















Cj ∈ C

�

�

�

�

�

�

�

�

∃ζ1, ζ2 ∈ R
m, �l1, �u1, �l2, �u2 ∈ R

r
�0 :







ATej = ATYTζ1 + �l1 − �u1

ATej = ATYTζ2 + �u2 − �l2

vl
T
�lt − vu

T
�ut = 0, t = 1, 2















.

(11)B1 =



























Cj ∈ C

�

�

�

�

�

�

�

�

�

�

�

∃ζ1, ζ2 ∈ R
m, ξ1, ξ2 ∈ R

ℓ, θ1, θ2 ∈ R
n :



















ej = YTζ1 + Uξ1 + θ1
ej = YTζ2 + Uξ2 − θ2

AnlT[θ1θ2] = 0

AzlT[θ1θ2] � 0



























.

(12)B2 =

{

Cj ∈ C
∣

∣

∣
∃ζ ∈ R

m, ξ ∈ R
ℓ : ej = YTζ+ Uξ

}

,

(13)B3 =

{

Cj ∈ C
∣

∣

∣
∃ζ ∈ R

m : ej = YTζ
}

.

(14)B3 ⊆ B2 ⊆ B1 ⊆ B.
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in (12) is a stoichiometric factorization for complex Cj . By contrast, a complex Cj ∈ C is called a nonstoichiometric 
BC, if Cj ∈ B\B2.

The notion stoichiometric arises from the fact that due to the factorizations given in (12) and (13), the balanc-
ing property for such complexes relies heavily on the stoichiometric structure of the network, and not on other 
imposed constraints, such as: irreversibility and flux bounds. The notions are borrowed from7, to which we refer 
the interested reader for more details.

While all nonstoichiometric BCs have an implicit factorization of the form (10), we make a distinction 
between those which also have an explicit factorization of the form (11), and those which do not. A complex 
Cj ∈ C is called a type-I nonstoichiometric BC, if Cj ∈ B1\B2 , that is, it has a factorization of the form (11), but 
no stoichiometric factorization. A complex Cj ∈ C is called a type-II nonstoichiometric BC, if Cj ∈ B\B1 , that 
is, it has a factorization of the form (10), but none of the form (11). A complex Cj ∈ C is unbalanced, if it has no 
factorization of the form (10), that is ,Cj ∈ C\B.

The emergence of nonstoichiometric BCs is an intriguing phenomenon in (bio)chemical reaction networks. 
As will become clear in the next section, it reflects on some key structural properties of the reaction network. 
Furthermore, it also reflects on the reduced capacity of a network to permit variations of the complex formation 
rate vector at steady state.

Properties of nonstoichiometric BCs
We hereby aim to seek conditions under which nonstoichiometric BCs may emerge in a network, and to see 
what implications their existence may have on structural properties of a reaction network. We begin by analyzing 
type-I nonstoichiometric BCs, which is the only viable type in canonical flux regimes. However, it shall be noted 
that they may also emerge in non-canonical flux regimes. The following statement was proven in7.

Proposition 4.1  Given a network G , if the set B1 \ B2 is nonempty, then G contains at least two irreversible reac-
tions which are blocked at steady state.

The proof follows from the fact that nonzero (positive) entries in vectors AzlTθ1 and AzlTθ2 must correspond to 
blocked reactions in Rzl . Existence of Cj ∈ B1 \ B2 requires that the vectors AzlTθ1 and AzlTθ2 are both nonzero 
and also not collinear. Proposition 4.1 shows how the presence of a nonstoichiometric BC reflects qualitatively on the 
steady state properties. In fact, the following statements show that it also contains information about the graphical 
structure of the CRN.

Proposition 4.2  Let the complex Cj ∈ B1 have an explicit factorization of the form (11) with parameters θ1, θ2 ∈ R
n . 

Then , θ1, θ2 ∈ im(Us).

For weakly reversible networks, Us = U, and hence , im(Us) = im(U) . Therefore, the parameter θt can be removed 
by merging its value with the term Uξt , which yields a stoichiometric factorization for each Cj ∈ B1 . As a result, 
type-I nonstoichiometric BCs do not emerge in weakly reversible reaction networks.

Proposition 4.3  Given a network G , if the set B1 \ B2 is nonempty, then G is not weakly reversible and ℓs ≥ ℓ+ 2.

In particular, it can be shown that blocked irreversible reactions indexed by strictly positive entries of AzlTθt , t = 1, 2 
are “bridge reactions” that connect distinct strong linkage classes of the network. In fact, removal of all such blocked 
reactions increases the number of linkage classes by at least two. Proposition 4.3 shows an interesting contrast to 
a well-established result in chemical reaction network theory, which states that (full) complex balancing can be 
obtained at a positive steady state, only if the network is weakly reversible [Proposition 16.5.7 in1].

Interestingly, once the blocked reactions predicted by Proposition 4.1 are removed, a number of strong linkage classes 
will be detached from the rest of the network and form separate linkage classes.

Proposition 4.4  For a network G , let Cj ∈ B1 . Let G be the network obtained by removing all blocked reactions in 
G . Then Cj ∈ B2

_
 , that is ,Cj is a stoichiometric BC in G . Furthermore , ℓ

_
≥ ℓ+ 2.

The following corollary follows immediately from Proposition 4.1.

Corollary 4.5  Let G be a network with all its blocked reactions have been removed; then we have B1 = B2 and 
B \ B1 = B \ B2; that is, all nonstoichiometric BCs are of type II.

By contrast to type-I nonstoichiometric BCs, the type-II BCs do not necessarily require the network to contain blocked 
reactions at steady state; hence, they do not automatically follow from modified topological features of the network 
at steady state. However, a rather similar trend could be observed: For a type-II nonstoichiometric BC to exist, a 
number of reactions must be fixated at nonzero lower- or upper bounds.

Proposition 4.6  Let G be a network, all blocked reactions of which have been removed. Suppose B \ B1 is nonempty. 
Then G contains at least three reactions fixated at a corresponding nonzero lower- or upper bound, for all v ∈ F(G).



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14589  | https://doi.org/10.1038/s41598-023-41767-1

www.nature.com/scientificreports/

One can actually come up with a slightly more informative statement.

Proposition 4.7  For a network G , suppose B \ B1 is nonempty. Then G contains a reaction R ∈ Rirr \Rzl fixated 
at a positive lower bound. Moreover, there exists another reaction R′ ∈ R fixated at a positive upper bound, or a 
reaction R′ ∈ Rrev fixated at a negative lower bound.

Note that none of these results imposes any specific restrictions on the graphical structure of the network, unlike 
the type-I case. For type-II nonstoichiometric BCs, it is not the topological feature but the imposed flux constraints 
that set the stage for the emergence of additional balanced complexes. The next result follows immediately from 
Proposition 4.7.

Corollary 4.8  Given a network G , for the set B \ B1 to be nonempty,G must operate in a bounded and non-canonical 
flux regime.

Conversely, suppose G is a network operating under an unbounded and/or canonical flux regime, and it contains 
no blocked reactions. Then, B = B1 = B2.

Nonstoichiometric BCs and the integration of phantom species
Balanced complexes have been shown to play a key role in the reduction of large-scale metabolic networks [see12 
and references therein]. They shall be viewed as intrinsic properties of the network that shed light on its steady 
state characteristics regardless of the underlying kinetics governing the conversion of species. The nonstoichio-
metric BCs have an additional interesting facet to themselves: They carry extra information about the network 
structure, which is not contained in the steady state Eq. (3) or in the linkage closedness condition UTAv = 0 , but 
emerges as a joint product of the stoichiometry, graphical structure, and flux constraints.

In what follows, we introduce transformations on a given reaction network G , which encodes these extra 
pieces of information into the steady state equation of a modified network G∗ , which has the same graphical 
but a different algebraic structure. This will enable us to exploit G∗ to make observations about steady-state 
characteristics of the original CRN G . Even though only nonstoichiometric BCs carry extra pieces of informa-
tion to encode, we shall next begin by introducing these transformations in the more general case, i.e. for any 
arbitrary BC Cb ∈ C.

Insertion of phantom species.  Let G be a CRN and Cb ∈ B(G) be any balanced complex in G , i.e. 
eb

TAv = 0,∀v ∈ F(G) . Suppose we ‘amend’G by inserting one molecule of some phantom species σ into complex Cb . 
This yields the modified network G∗ = (S∗, C∗,R∗) , where S∗ = S ∪ {σ }, C∗ =

{

yb ⊕ σ
}

∪ C \
{

yb
}

,R∗ = R . 
Accordingly, the stoichiometric map and incidence matrix for G∗ are given by

We refer to this transformation as injection of vector eb into network G . As this procedure is only applied to 
some balanced complex Cb and it involves insertion of some new species (not already in the network), the fol-
lowing result is trivially obtained.

Lemma 5.1  Let G be a network,Cb ∈ B(G) and G∗ the modified network obtained by injection of eb into G . Then G 
and G∗ have identical steady state flux distributions, that is, F(G) = F(G∗) . In particular, any balanced complex 
of one is a balanced complex of the other, B = B∗ . Moreover, we have the inclusion B2 ⊆ B∗

2 , which turns to a 
strict inclusion, if Cb ∈ B \ B2.

While G and G∗ have identical balanced complexes, the stoichiometric nature of BCs may differ across the two 
networks. In particular, for the modified complex, we have Cb ∈ B∗

3 , regardless of its original categorization in G . 
For any chosen Cb ∈ B , this transformation preserves the steady state flux space, and the information carried by 
any such BC is hereby encoded into the steady state equation. Clearly, the number of nonstoichiometric BCs strictly 
decreases in this process, in case of Cb ∈ B \ B2.

Characteristics of the modified network.  The next question to address is how the stoichiometric sub-
space develops under the introduced transformation.

Proposition 5.2  Let G be a network,Cb ∈ B(G) and G∗ the modified network obtained by injection of eb into G . Let 
us denote the stoichiometry matrices of G and G∗ by N and N∗ , respectively. Then,

 if and only if Cb ∈ B\B2 . Moreover, rank(N∗) = rank(N), if and only if Cb ∈ B2.

Y∗ =

[

Y

eb
T

]

,A∗ = A.

(15)rank
(

N∗
)

= rank(N)+ 1,
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It is only the injection of nonstoichiometric BCs that increases the rank of the stoichiometric subspace. This yields 
the following corollary.

Corollary 5.3  Let G,G∗ be as defined in Proposition 5.2, and Cb ∈ B\B2(G) . Then, dimker(N∗) = dimker(N)− 1.

On the face of it, this seems to contradict the statement of Lemma 5.1. However, the ambiguity is easily sorted out, 
because not every vector in ker(N) lies in F(G) , simply due to irreversibility patterns and flux bounds. The appar-
ent difference is only due to the fact that the extra piece of information carried by nonstoichiometric BC Cb is now 
encoded in the steady state equation N∗v = 0.

The following result follows readily from the definition of deficiency:

Proposition 5.4  Let G be a network,Cb ∈ B(G) and G∗ the modified network obtained by injection of eb into G . Let 
us denote the deficiency of G and G∗ by δ and δ∗ , respectively. Then.

if and only if Cb ∈ B \ B2 . Moreover, δ∗ = δ, if and only if Cb ∈ B2.

The deficiency is often characterized as a measure of how tightly the complex formation rate vector, i.e. the image of 
the steady state flux space under mapping A , is constrained at steady state1, that is, the algebraic dimension of the 
deficiency space. Let us next focus on cases where Cb is a nonstoichiometric BC. Given that G and G∗ have the exact 
same flux distributions and the exact same incidence matrix, the contrast in their deficiency values is intriguing.

It is worth noting that the deficiency, as defined in (5) or (6), completely neglects of the fine details of the directional-
ity of reactions, or the active bounds on flux through reactions. The reaction arrows exert their influence only to the 
extent that they serve to partition the complexes into linkage classes1. For the rather abstract notion of unconstrained 
networks, it is trivial to show that the deficiency value coincides with the dimension of the deficiency space, that is

However, in more practical settings, e.g. the constrained framework presented in flux balance analysis of metabolic 
networks, the deficiency –as defined– should be understood only as an upper bound on the dimension of the defi-
ciency space, that is, the following more general relation holds

In the case of G and G∗ , the two networks form identical complex formation rate vectors at steady state, that is, have 
identical deficiency spaces. However, the nominal deficiency of G,δ, is larger than that of G∗ , i.e.δ∗ = δ − 1 . This sug-
gests that, due to abovementioned factors, the network G is in fact more constrained at steady state than is reflected 
by δ = ker(Y) ∩ im(A) . Those factors cause the deficiency of G to be effectively less than δ , and no larger than δ∗.

Effective deficiency

Let G be a network and B \ B2 =

{

Cbj

}|B\B2|

j=1
 be the set of nonstoichiometric BCs for G . Let G1 be the network 

obtained by injection of vector eb1 into G . Given the discussion in Section “Insertion of phantom spe-
cies”, δ1 = δ − 1 . Moreover, the equality B(G) = B(G1) and strict inclusion B2(G) ⊂ B2(G1) hold. Even though 

the remaining elements in B \ B2 , i.e. 
{

Cbj

}|B\B2|

j=2
 are balanced complexes of G1 , not all of them are necessarily 

a nonstoichiometric BC for G1 . However, any nonstoichiometric BC of G1 must lie in 
{

Cbj

}|B\B2|

j=2
.

Now suppose some member of 
{

Cbj

}|B\B2|

j=2
 is a nonstoichiometric BC for G1 . Without loss of generality, let 

it be labelled Cb2 . Let G2 be the network obtained by injection of vector eb2 into G1 . It follows that δ2 = δ1 − 1 . 

We then proceed further by searching the set 
{

Cbj

}|B\B2|

j=3
 for any complex that may lie in B \ B2(G2) . If it exists, 

we construct G3 by injection of the corresponding vector, and so on.
As long as the most recent network in the sequence G → G1 → G2 → · · · has any nonstoichiometric BC, one 

can basically repeat this process of inserting distinct phantom species and obtain the next modified network in 
the sequence. After repeating this process consecutively d times, for some d , we will obtain B2(Gd) = B ; that is, 
there remains no nonstoichiometric BC left to carry on with the process.

Our first observation is that, by virtue of Lemma 5.1, all networks G,G1, · · · ,Gd have identical steady state 
flux distributions. Since they all have the same incidence matrix, they also share the same deficiency space, i.e. 
the steady state variations of the complex formation rate vector is also identical across all such networks. How-
ever, by virtue of Proposition 5.4, δd = δd−1 − 1 = δd−2 − 2 = · · · = δ − d . It follows that, due to constraints 
on the flux space imposed by irreversibility patterns and flux bounds, the deficiency of network G is effectively 
no larger than δ − d.

(16)δ∗ = δ − 1,

dimD(G) = dim(ker(Y) ∩ im(A)) = δ.

dimD(G) ≤ dim(ker(Y) ∩ im(A)) = δ.
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In order to be able to define the notion of effective deficiency unambiguously, the question of uniqueness 
needs to be addressed: Had one chosen a different order for the sequence of nonstoichiometric BCs to inject 
and construct G → G1 → G2 → · · · , would one have still obtained the same value for d ? The next statement 
addresses this question.

Theorem 6.1  The maximum length of the sequence G → G1 → · · · → Gd , that is,d is independent of the choice 
and order of nonstoichiometric BCs used to construct it.

Theorem 6.1 paves the way for the definition of effective deficiency for networks under irreversibility constraints 
and flux bounds.

Definition  Let G be a network and B \ B2 the set of nonstoichiometric BCs for G . Let G1, · · · ,Gd be any arbi-
trary sequence of modified networks constructed iteratively by means of injecting nonstoichiometric BCs, and 
suppose B2(Gd) = B . The effective deficiency of G , denoted δeff  , is defined as follows.

Note that 0 ≤ d ≤ |B \ B2| . It follows that δ − |B \ B2| ≤ δeff ≤ δ . The following result facilitates the computa-
tion of effective deficiency, without having to explicitly construct any sequence of modified networks.

Theorem 6.2  Suppose B \ B2 =

{

Cbj

}|B\B2|

j=1
 is the set of nonstoichiometric BCs for G . Let us construct the matrix 

EB\B2
 as EB\B2

=

[

eb1eb2 · · · eb|B\B2|

]

 . The effective deficiency of G is equal to.

One can seamlessly replace the set B \ B2 in Proposition 6.2 with the set of all BCs B (and replace EB\B2
 by EB , 

which contains all balancing vectors as columns). Nevertheless, the exact same equality will still hold:

However, the same value of δeff  would be obtained at the expense of a higher computational effort. This is due to 
the fact that injection of stoichiometric BCs has neither an impact on the deficiency of the network nor on its flux 
distributions, simply because it incorporates no additional information into the stoichiometric structure.

We remark that, by the virtue of Eqs. (18) or (19), once the balanced complexes have been identified, obtaining the 
effective deficiency reduces to rank computation, which can be conducted by performing Gaussian elimination to 
obtain the row echelon form. Hence, the computation of effective deficiency has a time complexity of O

(

n3
)

 , at most.

In more technical terms, it can be shown that the effective deficiency has to do with the codimension of 
im

(

YT
)

+ im(U) , as stated in the following proposition.

Proposition 6.3  Suppose B =

{

Cbj

}|B|

j=1
 be the set of BCs for G , and EB defined as EB =

[

eb1eb2 · · · eb|B|

]

 . Then, 

the drop in deficiency,d , is the codimension of im
(

YT
)

+ im(U) in im
(

YT
)

+ im(U)+ im(EB) , that is.

where V/W denotes the quotient space of V  by W.

Considering that the effective deficiency reflects the true dimension of the deficiency space in a network under 
functional and operational constraints, it is conceivable that it is in fact the effective deficiency, and not the nominal 
value of (structural) deficiency, that determines the steady state characteristics of a metabolic network, e.g. allowing 
unique equilibrium and excluding exotic dynamic behavior. We present this intuition as the following conjecture.

Conjecture 6.4  Let G be a network of arbitrary deficiency, potentially larger than one. Suppose the effective defi-
ciency of G satisfies either the conditions of Deficiency Zero Theorem or those of Deficiency One Theorem. Then, the 
results of the corresponding theorem, such as uniqueness of the equilibrium also apply to G.

While we do not prove this statement here, we would like to emphasize that all the results presented here point at 
this property. In particular, we have shown that there is a one-to-one correspondence between the flux space of G 
and that of the modified networks obtained by insertion of the phantom species, which reflects itself in equivalent 
deficiency spaces. It seems only logical that if a modified network does not exhibit exotic steady state behavior, the 
same property should hold for G.

(17)δeff = δ − d.

(18)δeff = δ + rank(N)− rank

([

N

EB\B2
TA

])

.

(19)δeff = δ + rank(N)− rank

([

N

EB
TA

])

.

(20)d = dim

(

im

(

YT
)

+ im(U)+ im(EB)/im
(

YT
)

+ im(U)

)

,
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If the conjecture holds, it can have interesting implications even for large metabolic networks. Consider a metabolic 
network whose linkage classes are (i) independent subnetworks, and (ii) each of effective deficiency zero or one. Such 
a network then, by this conjecture, cannot admit more than a single steady state within any positive stoichiometric 
compatibility class, regardless of the values of the rate constants1,2.

Some examples
In Section “Effective deficiency”, we introduced the notion of effective deficiency, and established its relation to 
the existence of nonstoichiometric BCs in the network. In the following, we illustrate this phenomenon via a 
number of examples. Here, we present toy networks, the design of which does not necessarily reflect real-world 
chemical or metabolic pathways, but is actually tailored for the purpose of illustration. On that account, the 
unrealistic nature of these toy networks shall not be viewed critically, as the goal is to simply show a couple of 
nonstoichiometric BCs and their consequences within a small and representable setting.

As far as real-world applications are concerned, the presence of nonstoichiometric BCs across a wide range 
of metabolic models has already been confirmed in a recent study7, which implies the exact same consequences 
for the effective deficiency of those metabolic networks.

Toy network I: a type‑I nonstoichiometric BC.  Let us consider the toy network in Fig. 1.
The basic conversion diagram presented in Fig. 1 (including the reactions highlighted in brown) portrays 

a network operating in a canonical flux regime with n = 9 complexes,ℓ = 2 linkage classes and of rank s = 5 . 
As a result, the network is of deficiency δ = n− ℓ− s = 2 . It contains no stoichiometric BCs. However, it can 
be shown that the complex ( 2A ) has a nonstoichiometric factorization of the form Eq. (11), hence, it is a type-I 
nonstoichiometric BC. The detailed parameter values for the factorization are presented in the Supplementary.

As predicted by Proposition 4.1, the presence of a type-I nonstoichiometric BC is accompanied by having 
two irreversible reactions blocked at steady state, both of which are highlighted in brown. Moreover, (2A) is 
the only balanced complex, hence, d is bound from below and above to be exactly one. Therefore, while the 
network’s nominal deficiency is two, it follows from the above results that the network is of effective deficiency 
δeff = δ − d = 1.

Let us next consider the reduced network obtained by removing all blocked reactions, but including all reac-
tions shown in black. The reduced network will contain no nonstoichiometric BCs, since the balanced complex 
(2A) has turned into a stoichiometric BC in this network. It has n′ = 9 complexes,ℓ′ = 4 linkage classes and rank 
s′ = 4 . It follows that the reduced network is of deficiency δ′ = n′ − ℓ′ − s′ = 1 . This is in accord with the value 
calculated for the effective deficiency of the original network.

Toy network II: a type‑II nonstoichiometric BC.  Next, let us consider the conversion diagram shown 
in Fig. 2.

Figure 1.   A type-I nonstoichiometric BC in a toy network. The basic conversion diagram depicts a network 
with m = 6 species, n = 9 complexes, and r = 8 reactions. The network does not contain any stoichiometric 
BC. However, it contains exactly one type-I nonstoichiometric BC (complex 2A ). In line with the prediction of 
Proposition 4.1, the network also contains two blocked irreversible reactions (highlighted in brown).

Figure 2.   Type-II nonstoichiometric BCs in a toy network. The conversion diagram portrays a network 
with m = 5 species, n = 6 complexes, and r = 7 reactions. The network operates in a non-canonical and 
bounded flux regime, where the fluxes of irreversible reactions R1 and R2 have strictly positive lower bounds 
( vl,1 = vl,2 = 100 ), while the fluxes of reactions R3 and R4 have finite upper bounds ( vu,3 = vu,4 = 200 ). 
The network contains three type-II nonstoichiometric BCs, highlighted in yellow. The rest of complexes are 
stoichiometric BCs.
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For the reversible reactions, the larger arrow size depict the direction of the flux associated with a positive 
sign. In line with the prediction of Propositions 4.6 and 4.7, the network contains a number of reactions fixated 
at corresponding lower- and upper bounds, shown in blue and red, respectively.

The toy example in Fig. 2 portrays a network operating in a non-canonical and bounded flux regime. The 
three complexes (A+ B) , (A+ C) and (D + E) are strictly stoichiometric BCs, due to the fact that species B,C , 
and E do not appear elsewhere in the toy network. The network has n = 6 complexes,ℓ = 1 linkage class and rank 
s = 4 . Hence, the nominal deficiency of this network is δ = n− ℓ− s = 6− 1− 4 = 1.

The other three complexes, that is,(2A), (A+ D) and (2D) are type-II nonstoichiometric BCs. One can basi-
cally associate each with a nonstoichiometric factorization of the form (10) (details are available in the Sup-
plementary). The existence of a nonstoichiometric BC implies that the effective deficiency δeff  of this network 
must be strictly smaller than its nominal deficiency. Coupled with the knowledge that the deficiency only takes 
nonnegative values, it follows that δeff = 0 . In other words, this is effectively a deficiency zero network, and 
thereby it is complex-balanced.

In line with the statements of Propositions 4.6 and 4.7, the network contains a number of reactions fixated 
at their lower- and upper bounds, shown in blue and red, respectively. It is worth noting that the formation of 
nonstoichiometric BCs in this network rely on the irreversibility of R1 and R2 , the non-canonical flux regime 
imposed by strictly positive lower bounds on fluxes of of R1 and R2 , as well as the unbounded flux regime imposed 
by finite upper bounds on fluxes of of R3 and R4 . These imposed constraints force the network to perform like a 
deficiency-zero network and hence be complex-balanced, despite the fact that its underlying structure had the 
capacity to perform like a network of higher deficiency.

Effective deficiency of large‑scale metabolic networks.  We use twelve genome-scale metabolic 
networks13–24 from all kingdoms of life obtained from Küken et al.12 to investigate deficiency in networks with 
two sets of constraints (i) imposing reaction irreversibility constraints as specified in the original model recon-
struction, and (ii) imposed optimality of specific growth rate in addition to reaction reversibility constraints. 
Note that blocked reactions are removed from the networks before BC detection and, therefore, the networks 
do not contain type-I nonstoichiometric BCs. In other words, all type-I nonstoichiometric BCs are transformed 
into stoichiometric BCs as a result of these removals (see Proposition 4.4). In this setting, we compare the struc-
tural deficiency and effective deficiencies obtained under the two different sets of constraints. The structural 
deficiency ranges from 57 for T. maritima to 1097 for S. cerevisiae (Fig. 3). We find that the effective deficiency 
obtained from scenario (i) is the same with the structural deficiency for the networks of A. thaliana, M. muscu-
lus, N. pharaonis, and P. putida. For the remaining eight networks, we find a reduction of the effective deficiency 
in comparison to the structural deficiency, ranging from 1.8% in E. coli and 35.3% in M. barkeri (Fig. 3). Con-
sidering the additional constraint on the specific growth rate, fixed at its optimum, in scenario (ii) we observe 
the effective deficiency to be smaller than the structural deficiency in all networks, with the smallest decrease in 
networks of A. thaliana (0.8%), E. coli (1.8%), M. musculus (3.6%) and A. niger (4.2%) and the largest decrease in 
the networks of M. barkeri (35.3%), M. acetivorans (11%), C. reinhardtii (9.9%) and T. maritima (9.6%).

Figure 3.   Structural and effective deficiency of real-world metabolic networks. Balanced complexes are 
identified in networks of twelve species from all kingdoms of life under two different scenarios: (i) imposing 
reaction irreversibility constraints, and (ii) considering in addition specific growth rate optimality. The effective 
deficiency is smaller than the structural deficiency when the additional constraint on optimality of specific 
growth rate is imposed for all networks.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14589  | https://doi.org/10.1038/s41598-023-41767-1

www.nature.com/scientificreports/

Conclusion
Here we introduced the notion of effective deficiency that takes into account not only the structure of the net-
work but also its operational constraints in the calculation of deficiency. The effective deficiency relies on the 
presence of nonstoichiometric balanced complexes, which we have shown to be present in large-scale metabolic 
networks across kingdoms of life. In addition, our results point at a subtle relation between effective deficiency 
and robustness of some reaction fluxes. Future work will aim at employing these findings in characterizing 
classes of networks that exhibit particular dynamical properties that can be ensured or precluded based on the 
notion of effective deficiency.

Data availability
The code, as well as all networks used in the analysis are available here.
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