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Asymmetric quantum 
decision‑making
Honoka Shiratori 1*, Hiroaki Shinkawa 1, André Röhm 1, Nicolas Chauvet 1, Etsuo Segawa 2, 
Jonathan Laurent 3, Guillaume Bachelier 3, Tomoki Yamagami 1, Ryoichi Horisaki 1 & 
Makoto Naruse 1

Collective decision-making plays a crucial role in information and communication systems. However, 
decision conflicts among agents often impede the maximization of potential utilities within the 
system. Quantum processes have shown promise in achieving conflict-free joint decisions between 
two agents through the entanglement of photons or the quantum interference of orbital angular 
momentum (OAM). Nonetheless, previous studies have shown symmetric resultant joint decisions, 
which, while preserving equality, fail to address disparities. In light of global challenges such as ethics 
and equity, it is imperative for decision-making systems to not only maintain existing equality but also 
address and resolve disparities. In this study, we investigate asymmetric collective decision-making 
theoretically and numerically using quantum interference of photons carrying OAM or entangled 
photons. We successfully demonstrate the realization of asymmetry; however, it should be noted that 
a certain degree of photon loss is inevitable in the proposed models. We also provide an analytical 
formulation for determining the available range of asymmetry and describe a method for obtaining 
the desired degree of asymmetry.

Even in situations with limited knowledge, people are required to make decisions by estimating and believing 
which choice is profitable1. The multi-armed bandit problem model depicts the decision-making process in 
uncertain environments, wherein each player is assumed to intend to maximize reward by predicting the best one 
among several slot machines, referred to as arms, whose reward probabilities are unknown2. In a multi-armed 
bandit problem, exploration is necessary to predict reward probabilities precisely; however, excessive exploration 
can diminish the sum of obtained rewards3, 4, whereas minimal explorations can result in the best arm being 
missed. Furthermore, when numerous players are engaged in the game, the problem is referred to as a competi-
tive multi-armed bandit problem5. In this case, decision conflicts are another problem because multiple players 
choosing the same arm can result in a bottleneck and consequently impede the profits of the entire group6, 7.

Quantum approaches have been extensively studied to solve uncertain problems8–13. The quantum properties 
of photons can aid in solving the problem of decision conflicts in collective decision-making5, 14, 15. Two previ-
ous studies developed quantum systems enabling conflict-free decision-making between two players. The first 
study utilized the Hong–Ou–Mandel effect of orbital angular momentum (OAM)14, 15, whereas the second one 
utilized entangled photons5.

However, these systems prohibit conducting affirmative actions16 to reduce disparities between players, pri-
marily because the decisions made are always symmetric. Namely, the probability of player X selecting arm l and 
player Y choosing arm m is inevitably the same as that of player X selecting arm m and player Y choosing arm l. 
This property is referred to as symmetry, owing to which both players are always treated evenly; essentially, equal-
ity is ensured17. We refer to the previous study utilizing the Hong–Ou–Mandel effect of OAM as the symmetric 
OAM system, and the other one utilizing entangled photons as the symmetric entangled photon decision maker. 
The symmetric property is suitable when players are equal since the beginning of the game because, on average, 
equality is ensured at all times by symmetry. However, consider if one player is in a much more advantageous 
position compared with the other prior to the game; this inequality cannot be resolved by the aforementioned 
systems owing to symmetry (Fig. 1a). Thus, these previous systems are superior in maintaining equality; however, 
they cannot reduce disparities.

To facilitate affirmative actions in resolving inequalities, decision-making must be asymmetric such that 
a disadvantaged person or entity is more likely to choose the better arm than an advantaged person or entity. 
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Asymmetry is the property that allows the probability of player X selecting arm l and player Y choosing arm m to 
differ from that of the opposite case. Previously established systems enabled only symmetric treatments, whereas 
the decision-making systems proposed in this study can control asymmetry by enabling asymmetric treatments, 
thus being able to facilitate advantageous outcomes for underprivileged agents (Fig. 1b). Note that the initial 
aforementioned disparities are recognized in various serious social issues ranging from earning differentials, 
gender gaps, and educational inequalities18–21. In addition, the importance of focusing on the wider context 
of global challenges, such as ethics and fairness, is recognized in the field of responsible artificial intelligence 
(AI) as responsible research and innovation paradigm (RRI)22, 23. Thus, considering the social context and RRI, 
ensuring existing equality may be insufficient, and affirmative actions must be enabled to diminish disparities. 
Another context is setting priority in information and communication services. Prioritized agents or entities 
should receive higher rewards than others while avoiding decision conflicts.

This study proposed improvements in quantum models and incorporated the potential to address disparities 
by realizing asymmetric decision-making and enabling control of asymmetry in the competitive multi-armed 
bandit problem. First, a quantum model was proposed by applying the Hong–Ou–Mandel effect with polarization 
dependencies, which is referred to as the asymmetric OAM system. This corresponded to an enhanced version of 
the symmetric OAM system proposed by Amakasu et al.14 by further incorporating the polarization-dependent 
effects. Next, the achievable asymmetric decision-making range was clarified analytically. Furthermore, two 
models to be compared with the asymmetric OAM system were investigated. One was the extension of the sym-
metric entangled photon decision-maker5, whereas the other was an extension of the symmetric OAM system14. 
The proposed asymmetric OAM system can provide asymmetric decision-making with negligible photon loss, 
provided the intended asymmetry is significant, whereas the entangled-photon approach suffers from signifi-
cant photon loss. Conversely, the proposed asymmetric OAM system must accompany photon loss or decision 
conflicts when the decision is required to be symmetric, whereas the entangled photon approach accomplishes 
negligible photon loss in the corresponding situation. Thus, a trade-off exists between the proposed asymmetric 
OAM system and the entangled photon system.

Asymmetric decision‑making by OAM
This section proposes the manner in which asymmetric decision-making can be realized by the decision-making 
system utilizing OAM. Figure 2a shows the construction of the system for the two-player-K-armed bandit prob-
lem. The OAM detected at X corresponds to the arm selected by player X, whereas that detected at Y corresponds 
to the arm selected by player Y. Two inputs, � and � , are represented by two bases: OAM and polarization. This 
system differs from that in the previous study14 in that one polarization beam splitter (PBS) is added to it, and 
photons have polarizations. The polarization of photons is represented by α and β , i.e., the probability amplitudes 
of photons having horizontal and vertical polarizations are α and β , respectively, and the relation |α|2 + |β|2 = 1 
holds. Note that α, β ∈ R are represented by cos θ and sin θ respectively, later in this study.

Figure 1.   (a) The necessity of asymmetric treatments. The symmetric OAM system in the previous study can 
maintain the existing equality but cannot solve inequality. (b) Stochastic detection of OAM corresponds to a 
probabilistic selection of a player. Polarization enables us to diminish inequalities between players.
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Formulation.  This section provides a mathematical derivation of the probabilities corresponding to pairs of 
decisions based on the system presented in Fig. 2a for the case involving K choices, that is, K OAMs.

First, we give the space to treat polarization and OAMs. Let us denote the horizontal and vertical polariza-
tion states by

respectively. Then the Hilbert space corresponding to polarization states is described as

OAM states are represented by integers; their signs and absolute values denote directions (right (+) - or left (−)

-handed) and numbers of intertwined helices, respectively24. Especially, the numbers of intertwined helices are 
utilized to identify the selected arms; for example, OAM ±k corresponds to arm k. Thus, we limit the possible 
values of OAMs to ±1, ±2, · · · ± K  . Here, for k ∈ [K] := {1, 2, . . . , K} , we define vector |±k� ∈ C

2K corre-
sponding to OAM ±k as follows:

where superscript ⊤ on a matrix represents the transpose of the matrix. Then the Hilbert space corresponding 
to OAM states is described as

where ±[K] = {±1, ±2, · · · , ±K} . As polarization states and OAM states are independent, the hybrid states 
are in the composite Hilbert space defined as

as in25.
The hybrid states of OAM and polarization can be generated using spatial light modulators (SLMs). The first 

input is represented as:

where ak ∈ R and φk ∈ [0, 2π) for all k ∈ [K] . The coefficient ak represents the probability amplitude of the 
superposed OAM with index +k , and due to probability conservation the equation 

∑K
k=1 a

2
k = 1 holds. The ele-

ments α and β , which represent a vector in Hp , are the probability amplitudes of photon � with horizontal and 
vertical polarizations, respectively. The elements in the latter half of �̃ were all zero because � was designed to 
have only positive OAM. In the previous research, one player manipulated �̃ according to his or her preference. 

(1)|H� =
[
1
0

]

, |V� =
[
0
1

]

,

(2)Hp := span {|H�, |V�} ≃ C
2.

(3)|+k� = [ 0, . . . ,
k

1̆, . . . , 0 ]⊤, |−k� = [ 0, . . . ,
k+K

1̆ , . . . , 0 ]⊤,

(4)Ho := span {|ℓ� | ℓ ∈ ±[K]} ≃ C
2K ,

(5)Hs = Hp ⊗Ho = span {|P� ⊗ |ℓ� | P ∈ {H , V}, ℓ ∈ ±[K]} ≃ C
4K ,

(6)� =
[
α

β

]

⊗ �̃, �̃ :=
K∑

k=1

ake
iφk |+k� = [ a1eiφ1 , . . . , ake

iφk , . . . , aKe
iφK ,

k elements
︷ ︸︸ ︷

0, . . . , 0 ]⊤ ∈ Ho,

Figure 2.   (a) System architecture for the asymmetric OAM decision making. It differs from the symmetric 
OAM system in that a PBS is added, and the basis of polarization is added to the photon state. PBS polarization 
beam splitter, BS beam splitter, SLM spatial light modulator, HW half wave plate. The zeroth-order extraction 
enables successful modulation with the SLM by extracting only the zeroth-order OAM from the initially 
generated light in a superposition of various OAMs. (b) Schematic illustration of the paths of photons.
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� is a 4K dimensional vector because of the tensor product. The first 2K elements of � correspond to the prob-
ability amplitudes of horizontal polarization, consisting of the OAMs. Essentially, the squared sum of the first 
2K elements of � , [ α, 0 ]⊤ ⊗ �̃ , is |α|2 , which is the probability that a photon � exhibits horizontal polariza-
tion. In addition, the latter 2K elements, [ 0, β ]⊤ ⊗ �̃ , are the probability amplitudes of vertical polarization.

After passing the first beam splitter, � is transformed to:

where A corresponds to the effect of a beamsplitter in the 2K-dimensional Hilbert space of OAM, Ho . Here, for 
N ∈ N , IN indicates a N by N identity matrix. Essentially, OAM did not change if a photon transmits through 
a beam splitter, whereas the sign of OAM reversed, and the probability amplitude was multiplied by i if it was 
reflected. However, because both the OAM and polarization were considered herein, the effect of a beam splitter 
on photon states was I2 ⊗ A , which performs a unitary transformation on Hs . BS plays a crucial role in inducing 
quantum interference. The probabilistic nature of transmission and reflection of light at the BS makes it impos-
sible to distinguish whether the photon after passing through the BS came from � or � , which is the essence of 
quantum interference. Note that we consider the two inputs, � and � , separately first at this stage of the calcula-
tion. The interference effect does not appear in Eq. (7). The effect appears later in Eq. (14). Subsequently, based 
on the reflection at mirrors after the beam splitter, �′ is transformed to:

wherein R corresponds to the effect of the reflection by a mirror in the 2K-dimensional Hilbert space of OAM, 
and ON implies a N by N zero matrix. R implies that the reflection reverses the signs of OAMs, and probability 
amplitudes are multiplied by i. However, because the polarization must be considered in addition to OAM, the 
effect of reflections on photon states should be I2 ⊗ R , which performs a unitary transformation on Hs.

At a polarization beam splitter, OAM with horizontal polarization is transmitted, whereas OAM with vertical 
polarization is reflected and multiplied by i. Therefore, the effect of a polarization beam splitter, which acts on 
Hs = Hp ⊗Ho , can be represented by the following 4K by 4K matrix C:

The operator C performs a unitary transformation on Hs . Because detectors are sensitive only to OAMs, herein, 
we should consider the corresponding map Hs → Ho which is represented by a 2K by 4K matrix 

[

I2K

∣
∣
∣ I2K

]

 . 
The probability amplitude of OAM k and horizontal polarization and that of OAM k and vertical polarization 
were added. Therefore, the effect of the asymmetric OAM system on one input is expressed as:

Hence, the observed output of input � is:

Note that 0N indicates a zero vector with N elements.
Similarly, by considering the second input having the same polarization and OAMs with only negative signs:
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Herein, the coefficient bk ∈ R represents the probability amplitude of the superposed OAM −k , and the equa-
tion 

∑K
k=1 b

2
k = 1 holds. The sign of OAM of the two inputs � and � was fixed such that quantum interference 

could occur at the first beam splitter (see Fig. 2b). While the sign of � only contains positive OAM, those of � 
were all negative. Thus, �̃ is a 2K dimensional vector, whose ith element is the probability amplitude OAM +i 
when i ≤ K and that of OAM −i otherwise. The elements in the first half of �̃ were all zero because � contained 
only minus OAM.

The output of the total system is �out ⊗�out , as shown in Fig. 2b. The j-th element of �out or �out is the 
probability amplitude of a photon � or � having OAM j being detected at detector X when j ≤ K . Further, it 
is the probability amplitude of a photon � or � having OAM j being detected at detector Y when j ≥ K + 1 . 
Herein, the focus was placed on the cases where the two photons were detected by two different detectors. Such 
probability amplitudes can be obtained by the tensor product of the latter half of �out and the first part of �out 
by Eqs. (11) and (13):

and by the tensor product of the latter half of �out and the first half of �out:

Therefore, by Eqs. (14) and (15), the probability amplitude of OAM k1 is detected at X, and OAM k2 is detected 
at Y, that is, the probability amplitude of player X choosing option k1 and player Y selecting option k2 , is:

Hence, by considering the squared absolute values, the probability of player X choosing option k1 and player 
Y selecting option k2 is:

with θk := (φk − ψk)/2 for k ∈ [K] . Therefore, the difference between the probability of player X choosing arm 
k1 and player Y selecting arm k2 and that of player X choosing arm k2 and player Y selecting arm k1 is expressed as

Hence, if the following condition holds true,

the difference expressed as Eq. (18) is non-zero. Thus, P(X : k1,Y : k2) �= P(X : k2,Y : k1) is achieved; i.e., asym-
metry in decision-making is realized, which is the purpose of adding the PBS in Fig. 2.

However, conflicts can arise with a certain probability at the same time. By substituting k1 and k2 of k, the 
probability of the conflict occurring with arm k is expressed as:

Results.  Next, the two-players (players X and Y), two-arms (arms 1 and 2; i.e., K = 2 ) situation was exam-
ined in detail. Table 1 summarizes the probabilities of each pair of decisions, where pk1k2 with k1, k2 ∈ {1, 2} 
implies that player X chooses arm k1 and player Y chooses arm k2 . Figure 3a demonstrates the feasible pairs of p12 
and p21 by blue-colored region on a plane, with the horizontal and vertical axes being p12 and p21 , respectively. 
The line of p12 = p21 implies the symmetric decision-making. As evident, the blue-colored region exists outside 
the p12 = p21 line, thus validating the feasibility of asymmetric decision-making.
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However, the asymmetric OAM system cannot realize all combinations of (p12, p21) . For example, 
(p12, p21) = (0.5, 0.5) is outside the feasible zone. Indeed, the red curve in Fig. 3a shows the boundary between 
the feasible and infeasible zones of (p12, p21) . The first right side of the boundary belongs to the impossible zone, 
whereas the lower left side belongs to the possible zone. This boundary also corresponds to the cases without 
loss. The formula of this boundary is expressed as:

See the Supplementary Information for the derivation of Eq. (21).
Thus, the conflict probability, the probability of both players choosing the same arm, is defined as 

p12 + p21 , the asymmetry ratio of the decision-making as p21/p12 , and the loss probability of photons as 
1− (p11 + p12 + p21 + p22) . Figure 4a shows the relationship between the conflict probability plus loss prob-
ability and symmetry ratio. The red-colored boundary in Fig. 4a denotes the minimum-loss-plus-conflict bound-
ary. By defining the conflict probability plus loss probability as x and the asymmetry ratio as y, the formula is 
expressed as:

The detailed derivation of Eq. (22) is presented in Supplementary Information.
In the entangled photon decision maker, described later, 50% loss or conflict is inevitable in obtaining any 

asymmetry ratio. This rate is smaller than the smallest percentage necessary to realize all asymmetry ratios in 
the OAM attenuation. For situations when a lower rate of loss or conflict is appealing, an extreme asymmetry 
ratio, such as more than 100 or smaller than 0.01, is obtained by the asymmetry OAM system. Therefore, the 
decision-making system using OAM is more suitable when inequality between players is serious such that more 
powerful affirmative actions are necessary.

To obtain Figs. 3 and 4, first the parameters a1, a2, b1, b2,α, and β are varied with a step size of π/200 as 
follows:

(21)2(p12 + p21) = 1+ (p12 − p21)
2.

(22)y =







(1+
√
1− 2x)2

(1−
√
1− 2x)2

when y ≥ 1,

(1−
√
1− 2x)2

(1+
√
1− 2x)2

when y ≤ 1.

(23)a1 = cos x, a2 = sin x, x = 0,
π

200
,
2π

200
, . . . , π ,

Table 1.   Probabilities of pairs of decisions made by the asymmetric OAM system.

Pair of decisions   Probability

X: 1,   Y: 1 p11 = α2β2a21b
2
1

X: 1,   Y: 2 p12 = 1
4
a21b

2
2(α − β)4 + 1

4
a22b

2
1(α + β)4 − 1

2
a1a2b1b2(α + β)2(α − β)2 cos(θ1 − θ2)

X: 2,   Y: 1 p21 = 1
4
a22b

2
1(α − β)4 + 1

4
a21b

2
2(α + β)4 − 1

2
a1a2b1b2(α + β)2(α − β)2 cos(θ2 − θ1)

X: 2,   Y: 2 p22 = α2β2a22b
2
2

Two photons go to the same branch loss = 1− α2β2 + (1− 4α2β2)a1a2b1b2 − 1
2
(1+ 2α2β2)(a21b

2
2 + a22b

2
1)

Figure 3.   Pairs of (p12, p21) each system is able to realize. Blue dots are the results obtained by numerical 
experiments. Because blue dots exist outside the p12 = p21 line, asymmetric decision-making is possible by all 
systems. (a) Asymmetric OAM system. (b) Entangled photon decision maker. (c) OAM attenuation.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14636  | https://doi.org/10.1038/s41598-023-41715-z

www.nature.com/scientificreports/

Next, p12 and p21 are calculated, and data points, which are represented by blue dots in the figures, are 
obtained.

Obtaining a specific asymmetry ratio.  In terms of application, the method to obtain the intended asym-
metry ratio must be determined. First, any asymmetry ratio is possible while avoiding decision conflicts. Based 
on the results presented in Table 1, the conflict probability becomes zero when a2 = b1 = 0 or a1 = b2 = 0 . Note 
that the loss probability is not zero.

Let r be the desired asymmetry ratio. When a2 = b1 = 0 , the asymmetry ratio is expressed as:

By introducing θ such that α = cos θ ,β = sin θ , Eq. (26) becomes

Organizing Eq. (27) about θ , we obtain

By solving Eq. (28), we obtain α and β to realize r without conflicts. Figure 5a shows the relationship between 
θ and r based on Eq. (27), showing that r can take every value with θ from −π/4 to π/4 . The realization of any 

(24)b1 = cos y, b2 = sin y, y = 0,
π

200
,
2π

200
, . . . , π ,

(25)α = cos θ , β = sin θ , θ = 0,
π

200
,
2π

200
, . . . ,

π

4
.

(26)r = p21

p12
= (α + β)4

(α − β)4
.

(27)r = (cos θ + sin θ)4

(cos θ − sin θ)4
.

(28)3− 3r − cos 4θ + r cos 4θ + 4 sin 2θ + 4r sin 2θ = 0.

Figure 4.   The relationship between the loss probability plus conflict probability and the asymmetry ratio 
of each system. Blue dots are the results obtained by numerical experiments. The light blue area is the area 
mathematical consideration can prove that each system can realize. (a) Asymmetric OAM system. (b) Entangled 
photon decision maker. (c) OAM attenuation.

Figure 5.   (a) The relationship between θ and r when a1 = b2 = 0 . (b) The relationship between θ and r when 
a2 = b1 = 0 . In both cases, any asymmetry ratio can be achieved by θ , −π/4 ≤ θ ≤ π/4.
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r is significant because the degree of asymmetry can be balanced depending on the current inequality between 
players.

Similarly, when a1 = b2 = 0 , the asymmetry ratio is:

which is reformulated using θ as

Hence, by solving the following Eq. (31), we obtain α and β to realize r without conflicts.

Figure 5b shows the relationship between θ and r based on Eq. (31), showing that r can acquire every value 
with θ from 0 to π/4.

Origin of the asymmetry.  The difference between the asymmetric and symmetric OAM system is the 
existence of the PBS in the system and the addition of polarization to the photon state. The polarization of the 
photon state is expressed by two parameters: α and β . With the probabilities of |α|2 and |β|2 , photons are detected 
as horizontal and vertical polarizations, respectively. These parameters satisfy |α|2 + |β|2 = 1 . When α = 0 or 
β = 0 , the photons simply transmit or are reflected at the PBS. Therefore, quantum interference does not occur 
at the PBS, with PBS playing no role; this situation corresponds to the symmetric OAM system14. However, 
when α  = 0 and β  = 0 , whether the photons are transmitted or reflected at the PBS is decided stochastically. 
Therefore, quantum interference can occur. Thus, the occurrence of quantum interference at the PBS renders a 
difference between the asymmetric and symmetric OAM systems.

Indeed, asymmetric decision-making is possible via the addition of both PBS and BS. Table 2 lists the prob-
abilities of pairs of decisions in the case where BS is added instead of PBS. When BS was added instead of PBS, 
fewer states could be achieved. For example, by adding PBS to the symmetric OAM system, any nonnegative 
asymmetry ratio can be achieved without conflicts. This is because parameters α and β possess the degree of 
freedom even if a1, a2, b1 b2 are set to (0,   1,   1,   0) or (1,   0,   0,   1) to render conflict probability zero. How-
ever, when attempting to render conflicts free in the system where BS is added, only two states can be realized: 
p12 = 0, p21 = 1 or p12 = 1, p21 = 0 . Therefore, the addition of PBS to the symmetric OAM system yields 
superior results.

Asymmetric decision‑making by entangled photon decision maker
This section presents the entangled photon decision-maker that can fulfill asymmetric decision-making, par-
ticularly for the two-players, two-arms bandit problem. Figure 6 shows a schematic of the entangled decision-
maker. The input to the system is two entangled photons. One photon entering PBS 1 decides player X’s choice 
while another entering PBS 2 decides player Y’s. In a previous study5, conflict-free, symmetric decision-making 
among two players was theoretically and experimentally demonstrated. The system shown in Fig. 6 realizes the 
asymmetry by discarding photons with specific probabilities at the polarizers before APDs or avalanche photo-
diodes. This system is different from that in the previous study5 owing to the presence of polarizers. Note that 
herein, a specific input is assumed:

This is a superposition of the following two states. One is the state with photons with polarizations of θ1 and 
θ2 entering the PBS 1 and 2, respectively. The other is the state with photons with polarization θ2 and θ1 entering 
the PBS 1 and 2, respectively. In particular, the latter state employs a π phase shift to consider the minus sign of 
the second term in Eq. (32), i.e. the second term is actually eiπ |θ2, θ1� . Herein, the polarizations of θ1 and θ2 are 
orthogonal to each other and satisfy the following condition.

(29)r = p21

p12
= (α − β)4

(α + β)4

(30)r = (cos θ − sin θ)4

(cos θ + sin θ)4
.

(31)3− 3r − cos 4θ + r cos 4θ − 4 sin 2θ − 4r sin 2θ = 0

(32)
1√
2

(

|θ1, θ2� − |θ2, θ1�
)

.

Table 2.   Probabilities of decisions when BS is added to symmetric OAM system instead of PBS.

Decisions   Probability

X: 1,   Y: 1 p11 = 1
4
a21b

2
1

X: 1,   Y: 2 p12 = a22b
2
1

X: 2,   Y: 1 p21 = a21b
2
2

X: 2,   Y: 2 p22 = 1
4
a22b

2
2

Two photons go to the same branch loss = 3
4
(1− a22b

2
1 − a21b

2
2)
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Formulation.  Next, the probabilities corresponding to pairs of decisions were derived. Here, we give the 
space to represent the photon states and the corresponding decision-making. The option 1 and 2 are represented 
by vectors |1� = [ 1, 0 ]⊤, |2� = [ 0, 1 ]⊤ , respectively. By associating options with detectors, photon states can 
be described in the Hilbert space:

The first photon, present in the upper part of the system, corresponds to options 1 and 2 when detected at 
APD 1 and APD 2, respectively. Similarly, the output of the second photon, present in the lower part, corresponds 
to options 1 and 2 when detected at APD 3 and APD 4, respectively. Therefore, the output of the total system is 
in the Hilbert space H ⊗H.

First, consider the first term of Eq. (32), |θ1, θ2� . The output of the photon injected into PBS 1 is:

The first element is the probability amplitude of the photon detected at APD1 or the horizontal component, 
whereas the second one is that of the photon detected at APD2 or the vertical component. Similarly, the output 
of the photon entering PBS 2 is expressed as:

Here, αX ,αY ,βX ,βY are the orientations of the polarizers. The first element implies the probability amplitude 
of the photon detected at APD3, whereas the second one is that of the photon detected at APD4. Therefore, by 
considering the tensor of φ′

1 and φ′′
1  , the output of the first term of Eq. (32), |θ1, θ2� , is expressed as:

(33)θ2 = θ1 +
π

2
.

(34)H = span{|1�, |2�} ≃ C
2.

(35)φ′
1 =

[
cosαX cos(2θHW1 − θ1)

sin βX sin(2θHW1 − θ1)

]

.

(36)φ′′
1 =

[
cosαY cos(2θHW2 − θ2)

sin βY sin(2θHW2 − θ2)

]

.

(37)φ1 = φ′
1 ⊗ φ′′

1 =






cosαX cos(2θHW1 − θ1) cosαY cos(2θHW2 − θ2)

cosαX cos(2θHW1 − θ1) sin βY sin(2θHW2 − θ2)

sin βX sin(2θHW1 − θ1) cosαY cos(2θHW2 − θ2)

sin βX sin(2θHW1 − θ1) sin βY sin(2θHW2 − θ2)




.

Figure 6.   Experimental setup of the entangled photon decision maker. PBS polarization beam splitter, HW 
half-wave plate, APD avalanche photodiode, POLH polarizer (allowing only horizontal polarization to pass), 
POLV polarizer (allowing only vertical polarization to pass).
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The first element is the probability amplitude of two photons being detected at APD1 and APD3, whereas 
the second is that of them being detected at APD1 and APD4, the third is that of them being detected at APD2 
and APD3, and the fourth is that of them being detected at APD2 and APD4.

Next, consider the second term of Eq. (32), |θ2, θ1� . Similar to the first term, the output of the second term 
is expressed as:

Considering the superposition of φ1 and φ2 with the factor of 1/
√
2 as expressed in Eq. (32), the output prob-

ability amplitudes is expressed as:

Hence, by considering the squared absolute value of each element and the condition of Eq. (33) along with 
assuming that θHW1 is equal to θHW2 , the probabilities are expressed as:

Herein, the first element is the probability of photons detected at APD1 and APD3, essentially implying that 
both players X and Y choose arm 1. Further, the fourth element is the probability of photon detection at APD2 
and APD4, corresponding to both players X and Y selecting arm 2. Owing to the entanglements, the correspond-
ing probabilities are zero ( p11 = p22 = 0).

The second term implies that photons are received by APD1 and APD4, corresponding to player X choosing 
arm 1 and player Y choosing arm 2. Similarly, the third term implies that photons are received by APD2 and 
APD4, thus indicating that players X and Y select arms 2 and 1, respectively.

The original entangled-photon decision-maker is with αi being 0 and βi being π/2 , which results in the second 
and the third term being 1/2. Consequently, perfect equality is ensured. With the inclusion of polarizers, such 
equality can be broken, as expressed in Eq. (40).

Results. 
Table 3 summarizes the probabilities corresponding to pairs of decisions derived using Eq. (40). Note that con-
flicts never happen in this system; this implies that two players always choose different options, whereas asym-
metric decision-making ( p12  = p21 ) can be achievable by adequately setting αi and βi ( i = 1, 2 ). Nonetheless, p12 
and p21 cannot be larger than 0.5; thus, photon losses are inevitable unless αX = αY = 0 and βX = βY = π/2.

The blue-colored region in Fig. 3b presents the achievable pairs of p12 and p21 in the diagram of p12 and p21 
in the horizontal and vertical axes, respectively. This demonstrates clearly that any p12 and p21 are accepted if 
they are equal or less than 0.5; thus, the blue-colored feasible zone resulted in a square area in the lower left 
corner of the diagram.

Figure 4b shows the relationship between the conflict probability plus loss probability and asymmetry ratio. 
The mathematical formula of the red-lines border is expressed as:

The detailed derivation is presented in the Supplementary Information. Figure 4b shows that at most, 50% 
loss of photons must be tolerated to obtain any asymmetry ratios. The loss is minimal for the symmetric case 

(38)φ2 =






cosαX cos(2θHW1 − θ2) cosαY cos(2θHW2 − θ1)

cosαX cos(2θHW1 − θ2) sin βY sin(2θHW2 − θ1)

sin βX sin(2θHW1 − θ2) cosαY cos(2θHW2 − θ1)

sin βX sin(2θHW1 − θ2) sin βY sin(2θHW2 − θ1)




.

(39)

1√
2
(φ1 − φ2)

= 1√
2






cosαX cos(2θHW1 − θ1) cosαY cos(2θHW2 − θ2)− cosαX cos(2θHW1 − θ2) cosαY cos(2θHW2 − θ1)

cosαX cos(2θHW1 − θ1) sin βY sin(2θHW2 − θ2)− cosαX cos(2θHW1 − θ2) sin βY sin(2θHW2 − θ1)

sin βX sin(2θHW1 − θ1) cosαY cos(2θHW2 − θ2)− sin βX sin(2θHW1 − θ2) cosαY cos(2θHW2 − θ1)

sin βX sin(2θHW1 − θ1) sin βY sin(2θHW2 − θ2)− sin βX sin(2θHW1 − θ2) sin βY sin(2θHW2 − θ1)




.

(40)
�
�
�
�

1√
2
(φ1 − φ2)

�
�
�
�

2

= 1

2






0
sin2 βY cos2 αX
sin2 βX cos2 αY

0




.

(41)y =







1

1− 2x
when y ≥ 1,

1− 2x when y ≤ 1.

Table 3.   Probabilities of decisions in the entangled-photon decision maker.

Photon1 Photon2 Decisions Probability

APD1 APD3 X: 1,   Y: 1 p11 = 0

APD1 APD4 X: 1,   Y: 2 p12 = sin βY
2 cosαX

2/2

APD2 APD3 X: 2,   Y: 1 p21 = sin βX
2 cosαY

2/2

APD2 APD4 X: 2,   Y: 2 p22 = 0
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where p12 = p21 = 0.5 . This implies that the entangled photon decision maker is appropriate when maintaining 
an even treatment is ideal because the two players are almost equal.

Obtaining a specific asymmetry ratio.  The intended asymmetry ratio r must be obtained by the entan-
glement system. For this, the focus was placed on two cases: p12 = 0.5 and p21 = 0.5 , because the loss probabil-
ity is the smallest on the possible zone in Fig. 3b under the same asymmetry ratio. When p12 = 0.5,

When p21 = 0.5,

Therefore, for an asymmetry ratio greater than 1, Eq. (43) must be solved. Otherwise, Eq. (42) must be solved. 
Thus, the parameters required to achieve the intended r can be obtained. However, loss becomes great when the 
desired ratio is extreme because either p12 or p21 is fixed to 0.5.

Asymmetric decision‑making by OAM attenuation
Formulation.  This section presents decision-making by the OAM attenuation system. Figure 7 shows the 
architecture of the OAM attenuation setup. The two upper detectors, APD1 and APD2, are related to the deci-
sion-making of player X, whereas the two lower ones, APD3 and APD4, are related to the decision-making of 
player Y. The probability of each pair of decisions is the probability of the symmetric decision-making system 
multiplied by attenuation rates. Thus, the probability of player X choosing option i and player Y selecting option 
j is expressed as:

When dX1  = dX2 and dY1  = dY2 , the OAM attenuation system fulfills asymmetric decision-making.

Results

Table 4 represents the probabilities for pairs of decision-making. Figure 3c shows the available pairs of p12 and 
p21 . As evident, photon loss is inevitable in this system. Figure 4c shows the relationship between the loss prob-
ability and asymmetry ratio. If 75% of photon loss is allowed, all asymmetry ratios can be obtained. However, 
75% is the highest probability for achieving all asymmetry ratios among the three systems. Therefore, OAM 
attenuation performs less effectively compared to the other two systems. Despite its inferior performance, the 
OAM attenuation system excels in the aspect of no conflict arising, like the entangled photon decision maker, 
because it is based on the symmetric OAM system. The mathematical formula of the red-lined boundary in 
Fig. 4c is expressed as:

(42)r = p21

p12
= sin2 αX cos2 αY ≤ 1.

(43)r = p21

p12
= 1

sin2 αY cos2 αX
≥ 1.

(44)pij =
(

a2i b
2
j + a2j b

2
i − 2aiajbibj cos(θi − θj)

)

d2Xid
2
Yj , i, j ∈ {1, 2}.

Figure 7.   Decision-making system by OAM attenuation. HG hologram, ATT​ attenuator, BS beam splitter, SLM 
spatial light modulator.
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The derivation of Eq. (45) is presented in the Supplementary Information.

Obtaining a specific asymmetry ratio.  Next, we explore how an intended asymmetry ratio r can be 
obtained in the OAM attenuation setup. For this, we focus on the case p12 = 0.25 or p21 = 0.25 , because the 
loss probability is the smallest within the possible zone in Fig. 3c for this particular asymmetry ratio. When 
p12 = 0.25,

When p21 = 0.25,

If we introduce u,  v such that a1 = cos u, a2 = sin u and b1 = cos v, b2 = sin v , then Eq. (46) becomes:

and Eq. (47) becomes:

When the intended r is greater than 1, the parameters required to achieve r can be obtained by solving Eq. 
(48) about u and v. Otherwise, Eq. (49) must be solved. However, loss becomes great when the desired ratio is 
extreme because either p12 or p21 is fixed to 0.25.

Conclusion
This study analysed asymmetric collective decision-making via quantum properties, quantum interference, and 
entanglement to explore the possibility of how to implement affirmative actions to reduce disparities in the case 
of two players. Asymmetry in decision-making was successfully realized by three systems: the asymmetric OAM 
system, asymmetric entangled photon decision-maker, and OAM attenuation. The probability of players X and 
Y choosing options 1 and 2, respectively, which is denoted by p12 , can be different from the probability of play-
ers X and Y choosing options 2 and 1, respectively, which is denoted by p21 . Thus, p12  = p21 was demonstrated 
to be achievable. Previous studies were limited to symmetric collective decision-making ( p12 = p21 ). Through 
asymmetric joint decisions, the unfairness and inequalities among agents, which might be innate prior to the 
games, could be modulated.

Further, herein, several limitations in achieving the asymmetry were clarified. In all systems, some impos-
sible pairs of p12 and p21 were shown to exist. This is partly because of photon loss. The photon loss causes a 
reduction in p12 and p21 , which in turn limits the available combinations of (p12, p21) . This is because there is 
a relationship: Loss probability + p11 + p12 + p21 + p22 = 1 . Without any loss, it would be possible to obtain 
a more diverse set of (p12, p21) combinations. However, loss of photons or decision conflicts were inevitably 
presented with a certain probability. For example, only two combinations of (p12, p21) were achievable without 
any loss or conflicts in the asymmetric OAM system, whereas the asymmetric entangled photon decision maker 
could realize zero-loss decisions only in the symmetric case. However, the OAM attenuation setup could not 
realize any situation without loss or conflict. The minimum probability of loss or conflicts to achieve any ratio 
of p12 and p21 was the smallest, that is, 50%, in the asymmetric OAM system and asymmetric entangled photon 
decision maker. In the case of the OAM attenuation, 75% loss was required to be tolerated to obtain any ratio. 
This study analytically clarified the boundary between the feasible and infeasible zones of the combination of 
(p12, p21) for each of the three systems.

However, the existence of unavailable pairs of p12 and p21 may not be a serious concern because any ratio 
of p12 and p21 can be accomplished by accepting the certain probability of loss or conflicts. Further, to enable 

(45)y =







3− 4x when y ≤ 1,

1

3− 4x
when y ≥ 1.

(46)r = p21

p12
=

(
a22b

2
1 + a21b

2
2 − 2a1a2b1b2 cos(θ1 − θ2)

)
d2X2d

2
Y1 ≤ 1.

(47)r = 1
(
a22b

2
1 + a21b

2
2 − 2a1a2b1b2 cos(θ1 − θ2)

)
d2X1d

2
Y2

≥ 1.

(48)r = p21

p12
= 1

2
(1− cos 2u cos 2v − cos(θ1 − θ2) sin 2u sin 2v)d

2
X2d

2
Y1,

(49)r = 2

(1− cos 2u cos 2v − cos(θ1 − θ2) sin 2u sin 2v)d
2
X1d

2
Y2

.

Table 4.   Probabilities of decisions in the OAM attenuation.

Photon1 Photon2 Decisions Probability

APD1 APD3 X: 1,   Y: 1 p11 = 0

APD1 APD4 X: 1,   Y: 2 p12 = 1
4

(
a21b

2
2 + a22b

2
1 − 2a1a2b1b2 cos(θ1 − θ2)

)
d2X1d

2
Y2

APD2 APD3 X: 2,   Y: 1 p21 = 1
4

(
a22b

2
1 + a21b

2
2 − 2a1a2b1b2 cos(θ1 − θ2)

)
d2X2d

2
Y1

APD2 APD4 X: 2,   Y: 2 p22 = 0
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affirmative actions to tackle inequalities, all pairs were not required if an appropriate degree of asymmetry could 
be achieved. The formula for configuring the physical parameters in the quantum systems to realize a specified 
value of the ratio of p12 and p21 was analytically derived. Finally, because all systems were tuned for only two-
player situations, extensions to cases with more players are expected.

In situations when powerful affirmative action is needed as the inequality between players is serious, the 
asymmetric OAM system is best suited because it exhibits superior performance with low conflict rates and 
photon loss. Whereas the use of the asymmetric entangled photon decision maker is advisable owing to a minor 
loss of photons and lower conflict rate when the inequality is rather small and moderate affirmative action is 
sufficient. This study contributes to extending the photonic and quantum collective decision-making to asym-
metric properties, thus paving the way toward covering a broader sense of equality and social welfare based on 
quantum principles.

Data availability
The data that support the plots within this thesis are available from H.S. upon reasonable request.
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