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A highly accurate quantum 
optimization algorithm for CT 
image reconstruction based 
on sinogram patterns
Kyungtaek Jun 

Computed tomography (CT) has been developed as a nondestructive technique for observing minute 
internal images in samples. It has been difficult to obtain photorealistic (clean or clear) CT images due 
to various unwanted artifacts generated during the CT scanning process, along with the limitations 
of back-projection algorithms. Recently, an iterative optimization algorithm has been developed 
that uses an entire sinogram to reduce errors caused by artifacts. In this paper, we introduce a new 
quantum algorithm for reconstructing CT images. This algorithm can be used with any type of light 
source as long as the projection is defined. Assuming an experimental sinogram produced by a Radon 
transform, to find the CT image of this sinogram, we express the CT image as a combination of qubits. 
After acquiring the Radon transform of the undetermined CT image, we combine the actual sinogram 
and the optimized qubits. The global energy optimization value used here can determine the value of 
qubits through a gate model quantum computer or quantum annealer. In particular, the new algorithm 
can also be used for cone-beam CT image reconstruction and for medical imaging.

Tomography is predominantly a nondestructive technology. Computed tomography (CT) is a technique that 
allows nondestructive internal observations of a given sample. CT has been widely used to observe internal 
structures in biology, archaeology, geoscience, and materials  science1–6. In particular, CT is extensively used for 
medical diagnoses. Electron tomography (ET) is another technique utilized in several fields with different uses. 
CT is mainly used for samples of a few micrometers or more in size, but ET can be used for far smaller molecular 
structures (nanometers to angstroms). ET is also widely used to study three-dimensional internal structures in 
biology and materials  science7–10.

There are three main types of tomographic systems: spiral  CT11, electron tomography (ET)12, and synchro-
tron X-ray  tomography13. Each CT system has been developed to suit the sizes and characteristics of various 
samples. The back-projection technique used in these tomographic systems can be largely attributed to three 
algorithms: the iteration  algorithm14, fast Fourier transform  algorithm15, or artificial intelligence  algorithm16. 
In 2022, an optimization algorithm for the entire sinogram was  introduced17. This algorithm iteratively uses an 
optimization method to reduce the difference between the sinogram generated by the Radon transformation 
and the sinogram obtained by the projection of the CT image. To reduce the error compared to the existing 
iterative algorithm, image preprocessing was performed to satisfy the Beer‒Lambert law as much as  possible18. 
Since this algorithm uses the optimization algorithm for the entire sinogram, it has minimal errors with respect 
to artifacts that may partially  occur19–24.

In this paper, we introduce a new quantum optimization algorithm that accurately obtains the real internal 
structure of a sample when two conditions are met: the experimental data are error-free, and the mathematical 
projection of the undetermined CT image to make a sinogram matches the X-ray projection of a real-life sample 
to an entire sinogram. The algorithm represents the pixels of a CT image in qubits. The algorithm uses projec-
tion on the undetermined CT image to create the undetermined sinogram. The original projection data used 
here use an experimentally obtained sinogram from a CT system. After that, the algorithm obtains a quadratic 
unconstrained binary optimization (QUBO) or Ising model through optimized calculations of the undetermined 
sinogram and the experimentally obtained sinogram. This model determines the value of all qubits by obtaining 
a global optimal energy from a gateway quantum computer or quantum annealer. Finally, the determined qubit 
combination related to the global optimal energy can represent the internal structure of a sample. Our quantum 
optimization algorithm for CT image reconstruction has three major advantages when certain conditions are 
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met. The first advantage is that our algorithm can be used for CT images of any light source type. One condition 
for this advantage is that the algorithm can be used if the projection method used to obtain the experimental data 
is defined. A second advantage is that it can reconstruct highly accurate CT images, assuming that the projected 
data satisfy the Beer‒Lambert law and that there are enough clean data without errors. This also assumes that 
we have a sufficient number of logical qubits available and that the projection can be calculated mathematically. 
In this ideal case, our algorithm can find an exact value for the X-ray mass attenuation of the sample. The final 
advantage is that the new algorithm is highly resistant to artifacts in the projected images. Since our quantum 
optimization algorithm calculates the difference for the whole sinogram, it can perform accurate approximations 
even if an error appears in specific parts. In addition, since motion artifacts can be corrected in CT images, the 
calculations are easier and more accurate than previous methods for modifying projection  images21–24. Histori-
cally, it has been difficult to reconstruct a clean CT image through back-projection algorithms that utilized cone-
beam CT (CBCT) systems due to the geometric limitations of the light source (X-ray) used. Our new algorithm 
does not suffer from this issue. Furthermore, our optimization algorithm can approximate a clear image even if 
the number of projected images is not  sufficient17. Therefore, we believe that our new quantum algorithm for CT 
image reconstruction will be useful in the field of medical imaging. In this paper, we use the Radon transform 
to test our new algorithm. Quantum optimization calculations are performed in D-Wave Advantage, D-Wave 
simulator, and IBM Quantum.

Method
A quantum optimization model for linear systems was developed and  implemented25. In this paper, we have 
applied this optimization model algorithm for application to CT image  reconstruction2. A sinogram is an image 
created by accumulating projected images of an object according to the projection angle. We introduce QUBO 
and Ising models that can represent the entire sinogram. These models can reconstruct CT images with the lowest 
energy in quantum annealing. Additionally, this approach can be implemented through the quantum approxi-
mate optimization algorithm (QAOA)26 in a gate model quantum computer. The new optimization model can 
reconstruct a CT image utilizing a quantum computer, assuming that there are enough qubits. The new algorithm 
should use sinograms for the entire projected image in the CBCT system and use sinograms according to each 
axial level in the parallel-beam CT system. In this paper, we introduce a reconstruction method for one axial 
level to simplify the explanation. Additionally, we use a Radon transform for projection.

Energy optimization algorithm for the Radon transform. Consider a space of size n× n that includes 
the cross section of a Shepp–Logan phantom. Let αij = µ

ρ
(i, j) be the X-ray mass attenuation  coefficient27 and 

a natural number. We can assume this value as the number at the (i, j) position of the sample (see Fig. 1a). Fig-
ure 1b shows a sinogram produced by the projections of this sample. The value of each pixel in the sinogram can 
be expressed as P(θ , s) . Now, we consider a reconstructed image I of size n× n consisting of qubits that can be 
represented in Fig. 1a (see Fig. 1c). If the maximum of integer-valued pixels is less than 2m+1 , then each pixel in 
the reconstructed image is represented by one of the combinations of qubits and binary numbers in Eq. 1.

Here, qijk is 0 or 1 , and Iij represents any integer from 0 to 2m+1
− 1.

To apply the optimization algorithm to the experimental sinogram, we use a Radon transform on the unde-
termined CT image. Let IP be the undetermined sinogram transformed by the CT image I . For the projection 
angle θ , the s-th position of IP is calculated as in Eq. 2.

where Iij′ denotes the pixel that affects IP(θ , s) when the CT image is projected and cij is the overlapping area 
when Iij′ is projected (see Fig. 2). Using the square of the difference between P(θ , s) and IP(θ , s) (see Fig. 1b, d), 
the optimization model is calculated as follows:

In Eq. 5, the second term is a linear term in the QUBO model, and the third term represents a part of the 
optimization value. The first term without c2ij is calculated as follows:
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To derive Eq. 7 from Eq. 6, we can convert the square terms by using 
(

q
ij
k

)2

= q
ij
k because qijk is 0 or 1 . In the 

second term of Eq. 7, i, j , and k cannot be equal to i′, j′ and k′ at the same time. We can calculate the first term in 
Eq. 5 as the sum of linear and quadratic terms as in Eq. 7.

Now, we can compare two sinograms P and IP . To compute the energy minimization model, we subtract the 
values for each pixel in the two sinograms and square them.

where θ is the projection angle, s is the position of the sensor, and dθ is the amount of change in the projection 
angle. Now, F(θ , s) is expressed in linear terms and quadratic terms excluding constant terms. In the QUBO 
model, constant terms are excluded. The minimum value of the QUBO model is the opposite sign of the sum-
mation of constant terms.
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Figure 1.  A sample, a CT image, and their two sinograms to illustrate the optimization algorithm. (a) This 
sample is a 30× 30 Shepp–Logan phantom image. In the case of a general three-dimensional sample, it 
represents a cross section of the sample corresponding to its axial level. (b) This sinogram was obtained by 
using the Radon transform with the number of pixels equal to the size of the sample in (a). When using the 
data obtained from the CT system, it corresponds to the sinogram of the X-ray image. (c) An undetermined CT 
image composed of combinations of logical qubits. (d) The sinogram obtained by applying the projection to (c) 
in the same way as to obtain the sinogram in (b). In this figure, the Radon transform was applied to (c).
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Energy optimization algorithm for the real X-ray data. Figure 3 shows a flowchart for reconstruct-
ing a CT image from X-ray data. To obtain a CT image optimized for the internal structure of a real sample, we 
calibrate the X-ray image. The mathematical projection including the Radon transform is directly proportional 
to the thickness of the sample’s mass attenuation coefficient for each projected location. When the projection 
does not penetrate the sample, the value of the transmitted position appears as zero. On the other hand, the 
X-ray projection image has some differences from the projection due to various errors. We need mathematical 
adjustments to the X-ray image to reduce these errors. First, to represent the empty space, the average value of 
the empty space is subtracted from the entire X-ray image. The processed X-ray image shows the X-ray density. 
If the X-ray image has a positive or negative deviation, the overall image is modified to satisfy the Beer‒Lambert 
law to be effective in applying the new algorithm. Because the X-ray coherent effect is system-dependent, it helps 
to incorporate this effect into a mathematical projection. If the X-ray image contains high-density areas such as 
metal or pixels that create ring artifacts, it is recommended to remove these areas as well. From now on, the CT 
image can be reconstructed in a similar way to the one calculated above. First, we create an undetermined CT 
image in logical qubits. A mathematical projection, such as the X-rays used in the experiment, is applied to this 
CT image. We compute the quantum optimization model of the sinogram obtained from the experiment and the 
undetermined sinogram. As introduced in Fig. 3, the values of logical qubits are determined through the QAOA 
algorithm or quantum annealing. Finally, we can reconstruct an accurate CT image.

Figure 2.  Illustration of the projection of a CT image with respect to the projection angle θ . The 
(

i, j
)

 pixel of 
the CT image is denoted by Iij . Pixels Iij that affect IP(θ , s) when projected with respect to the projection angle 
are referred to as Iij′.

Figure 3.  Flowchart of the process of obtaining a CT image. To reconstruct a CBCT image, the entire 3D 
sinogram is needed. To reconstruct a parallel-beam CT image, a sinogram along one axial level is needed. In this 
case, optimization must be applied to all axial levels to obtain 3D CT images.
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Result and implementation
In this paper, we use the Radon transform for projection to show the results of the new algorithm. We use a 2× 2 
image sample to formulate the QUBO model. Suppose we have an image sample as shown in Fig. 4a. To obtain 
an exact solution for a 2× 2 reconstruction image, a sinogram consisting of two projections is required (see 
Fig. 4). We use two qubits for each position. Therefore, Iij can be expressed as 

∑1
k=0 2

kq
ij
k . A sinogram consists 

of projections with projection angles of 0 and 90 degrees. Now, let us formulate the QUBO model.

When Eq.  10 is calculated from Eq.  9, 
(

q
ij
k

)2

= q
ij
k  is used. ((IP − P)(0, 2))2 , ((IP − P)(90, 1))2 , and 

((IP − P)(90, 2))2 can be calculated in a similar way. The QUBO matrix QM is obtained in Eq. 11.
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Figure 4.  Example used in the QUBO model. (a) 2× 2 image sample with given mass attenuation coefficients. 
(b) A sinogram coming from the image sample in (a). (c) An undetermined CT image with qubit variables. 
(d) An undetermined sinogram with two projection angles of 0 and 90° by the Radon transform of the 
undetermined CT image in (c).
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The condition F(θ , s) ≥ 0 produces the lowest energy −(α11 + α21)
2
− (α12 + α22)

2
− (α21 + α22)

2

−(α11 + α12)
2
= −46 for the QUBO model. The minimum energy in quantum annealing is -46 and is obtained 

by the following qubit vector:

In the D-Wave Advantage system, the occurrence having the lowest energy is 515 from 1000 annealings. 
As a result of quantum annealing, the reconstructed image composed of qubit variables in Fig. 4c has the same 
values as the sample in Fig. 4a.

The QUBO model and Ising model are mathematically equivalent. To convert the QUBO model to the Ising 
model for the minimum energy model, the following transformation is needed.

For the QUBO matrix QM in Eq. 11, the Ising matrix IM in Eq. 14 is calculated by applying the transforma-
tion in Eq. 13. We obtained the Ising matrix using the ‘dimod.qubo_to_ising’ function provided by D-wave 
Ocean software.

The D-Wave quantum annealer can calculate the lowest energy for the QUBO model or Ising model directly. 
In the IBM quantum computer using the gate model, two models obtain the maximum energy value through 
QAOA provided by Qiskit. When converting from a QUBO matrix QM to an Ising matrix IM , a constant term 
corresponding to a 1/4 * coefficient appears in each quadratic term. Therefore, the global minimum energy of 
IM is − 20, and the global maximum energy of −IM is 20. For the first sample in Fig. 4a, two optimal energies, 
− 20 and 20, were obtained with the simulators provided by the D-Wave system and IBM Quantum, respectively.

Our second test sample for a D-Wave hybrid solver is a 2D Shepp–Logan 30× 30 phantom. We used the 
binary Shepp–Logan phantom, as shown in Fig. 5a, to test the QUBO model for CT image reconstruction. The 
size and pixel values of the image used here are chosen so that the hybrid solver can find the overall minimum 
energy for the QUBO model at one iteration. We apply a Radon transform to this image to obtain projection 
data, which is an original sinogram. Since binary numbers can be represented by one qubit, each pixel of an 
undetermined CT image consists of one qubit. A Radon transform is applied to this CT image to create an unde-
termined sinogram. We calculate the QUBO model required for CT image reconstruction using the difference 
between the original sinogram and the undetermined sinogram. The CT image of Fig. 5b was reconstructed 
using the hybrid solver of the D-Wave system. To reconstruct a CT image that is identical to the original image, 
the minimum value for the QUBO model is −

∑180−dθ
θ=0

∑n
s=1 (P(θ , s)

2) . The global minimum energy for this 
test in the quantum annealer is − 225, 518.918231688 . We obtained the minimum energy of − 225, 518.910675 
using the hybrid solver of the D-Wave system. The CT image reconstructed with the value of qubits determined 
as the minimum energy is shown in Fig. 5b and is exactly the same as the original image. The Shepp–Logan 
phantom in Fig. 5c is a sample rounded up so that each pixel value is an integer from 0 to 1023. In this case, 10 
qubits are required to represent each pixel. Similar to the above, if the minimum energy for this QUBO model 
is obtained using the hybrid solver, the CT image as shown in Fig. 5d can be reconstructed. The global lowest 
energy of the QUBO model we are targeting is − 33656657418.458885 , but in the quantum annealer, we obtain 
− 33653444028.65625 as the minimum energy. Although the relative error of energy was less than 0.01%, there 
was a difference between the reconstructed CT image and the original image, as shown in Fig. 5c. Figure 5e shows 
the difference between the sample and the reconstructed CT image.

We tested the reconstruction of CT images according to the number of projections with the new algorithm in 
a D-Wave hybrid solver. We used the sinogram made with the Shepp–Logan phantom in Fig. 5a as the original 
data. The minimum energy expected in a quantum annealer is the negative sign of the sum of the squares of 
each pixel value in the sinogram. We obtained the lowest energy using a hybrid solver and reconstructed the CT 
image using qubits. The number of projections used in the sinogram was tested from 30 to 18. In Table 1, we can 
confirm that the CT reconstruction image is identical to the original image.

Finally, we compared the performance of D-Wave’s hybrid solver and TABU solver using test samples. The 
sample used for testing is a binarized 2D Shepp–Logan phantom. For CT image reconstruction, the quantum 
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computing usage time used for each calculation is 3 s. When using a 50× 50  image that required 2500 qubits, 
both the TABU solver and hybrid server reconstructed the same image as the test sample. When using a 100× 100 
image that requires 10,000 qubits, as shown in Fig. 6a, the CT images obtained using the TABU solver and hybrid 
solver are shown in Fig. 6b, c, respectively. Theoretically, the global minimum energy required to reconstruct a 
CT image is − 32341735.63925959, but the TABU solver obtained an energy of − 27973314.080052175. The CT 
image reconstructed using the TABU solver had 5024 pixels with different values from the test sample. The hybrid 

Figure 5.  CT images reconstructed by applying the quantum optimization algorithm to a Shepp–Logan 
phantom. The size of the phantom used for testing is 30× 30 . (a) This image is the binary Shepp–Logan 
phantom used for testing. (b) This image is a CT image reconstructed using a hybrid solver in the D-Wave 
system for (a). (c) This image is a Shepp–Logan phantom used in the test, and each pixel is rounded to have 
integer values from 0 to 1023. (d) The CT image for the sample in (c) is reconstructed using a hybrid solver for 
3 s. (e) This image shows the difference between the original image in (c) and the CT image in (d). Each pixel 
darker than the pixels located outside the Shepp–Logan phantom is the case where the CT image has a higher 
pixel value, and the bright pixels are vice versa.

Table 1.  CT images according to the number of projections used in the new quantum-optimized 
reconstruction algorithm. In the table, the expected lowest energy represents the minimum energy that the 
QUBO model can have. The result from the hybrid solver is the lowest energy obtained by using the hybrid 
solver for the QUBO model. The relative error indicates the difference between the Shepp–Logan phantom and 
the CT reconstruction image.

Projection number Expected the lowest energy Result from hybrid solver Relative error

30 − 225518.91823 − 225518.91068 0

27 − 203026.37744 − 203026.37890 0

24 − 180491.95504 − 180491.95515 0

21 − 157920.25285 − 157920.25185 0

18 − 135340.57831 − 135340.58023 0
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solver obtained the global minimum energy, which matched the theoretical minimum energy to two decimal 
places. The reconstructed CT image was identical to the image sample and had no errors.

Discussion
The National Lung Cancer Screening Trial recently demonstrated that lung cancer mortality can be reduced using 
low-dose computed tomography (LDCT)28. In addition, LDCT has recently been used for diagnosing breast 
cancer, which accounts for a high proportion of female cancer  deaths29, 30. As the importance of LDCT systems 
increases, so does the importance of algorithms used for image reconstruction. Algorithms used for CT image 
reconstruction in the LDCT system can be largely divided into iterative-based14, 31 and AI-based  algorithms16. 
They are all based on optimization. It is very difficult to find a solution in a short timeframe for an optimization 
problem with many variables. This is because optimization problems are heavily influenced by initial values, 
and most solutions find local solutions rather than global solutions. However, since the quantum optimization 
algorithm finds the global minimum/maximum energy for the QUBO/Ising model, it can reconstruct the most 
accurate image from the given data. Additionally, if the information of the projection data is further improved by 
the existing method, the reconstructed image will also become clearer. This can promote considerable progress 
in LDCT imaging.

Since our new algorithm uses an energy optimization model for the whole sinogram, it has two additional 
advantages over other algorithms. First, it is not significantly affected by noise and produces good results even 
if the number of X-ray images is not sufficient. A sinogram is obtained by X-ray transmissions while the sample 
is rotating. Even if a certain part of the X-ray image has errors, the new algorithm reduces the influence of those 
errors from other angles of the X-ray image. Second, our new algorithm is not confined by the number of nx 
projections of an nx × nx sample, which typically limits CT image reconstruction. When a CT image has variables 
corresponding to nx2 for an nx × nx sample, our new algorithm can reconstruct an accurate CT image with fewer 
than nx projections. To obtain an accurate CT image using previously proposed algorithms, nx X-ray images 
of different angles are needed. However, our new algorithm can overcome this limitation. Since this algorithm 
can reconstruct an accurate CT image using a small number of projections, the radiation received by the sample 
during CT scanning is reduced. This is one of the important factors for medical CT. We expect this algorithm to 
play a particularly important role in medical CT image reconstruction. We believe that quantum optimization 
algorithms will offer great advances in imaging diagnostics using CT images.

Basically, the QUBO model or Ising model can be represented by an upper triangular matrix or a symmetric 
matrix. The more nonzero numbers there are in the upper triangular matrix, the more logical qubits are used. 
In the case of the D-Wave advantage, approximately 180 fully connected logical variables are  available32. This is 
a number that the quantum annealer can calculate when using one qubit variable for each pixel in a CT image 
of 13 by 13 pixels. Since the size of a commonly used CT image is 500× 500 or more, at least 250,000 logical 
qubits are needed. The hybrid solver of the D-Wave system provides up to one million variables and 200 million 
biases. The number of logical qubits used in Fig. 5d is 9000, showing a relative error of less than 0.01%. Despite 
the small error when obtaining the minimum energy, the reconstructed CT image still has a difference from the 
original. However, we believe that if the hybrid solver can obtain a more accurate minimum energy, it will be a 
huge step forward in medical CT imaging. We believe that a hybrid solver in which a quantum computer and a 
classic computer work together will change our lives in a shorter time because of the lack of connectivity between 
qubits in quantum computers. From our results, we believe that the hybrid solver is close to being used for CT 
image reconstruction. In addition, we will continue to develop mathematical algorithms that allow the QUBO 
model for CT image reconstruction to better find the global minimum energy.

Our new QUBO model is available in both quantum annealers and gated model quantum computers. How-
ever, our new algorithm seems more suitable for quantum annealers. The reason is that the circuit depth is too 
long to obtain results for the QUBO or Ising model in a gate model quantum computer through QAOA. For 
example, the IBM quantum computer has low connectivity between qubits, and the basic gate does not include an 
RZZ gate. The possibility of scheduling annealing cycles contributes to confirming that it is a valid approach for 
solving computationally complex  problems33–35. In the results of Table 1, when 900 logical qubits are used in the 
CT image reconstruction, the theoretical minimum energy and the minimum energy of the quantum annealer 

Figure 6.  Performance comparison of the TABU solver and hybrid solver for CT image reconstruction. (a) This 
image is the 100× 100 2D binary Shepp–Logan phantom used for testing. (b) CT image reconstructed using the 
TABU solver. (c) CT image reconstructed using the hybrid solver.
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coincide by about 8 digits, and noise occur less than 0.01. The uncertainty depends on the system of the quantum 
annealer and the time used to calculate the minimum energy, and is approximately O(10−2)36.

Data availability
The Python code used in this paper is in the supplementary material. More detailed code can be found on the 
author’s GitHub site (https:// github. com/ ktfri ends/ Quant um_ CT_ recon struc tion).
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