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Optimal control of quantum state 
preparation and entanglement 
creation in two‑qubit quantum 
system with bounded amplitude
Xikun Li 

We consider the optimal control problem in a two-qubit system with bounded amplitude. Two 
cases are studied: quantum state preparation and entanglement creation. Cost functions, fidelity 
and concurrence, are optimized over bang-off controls for various values of the total duration, 
respectively. For quantum state preparation problem, three critical time points are determined 
accurately, and optimal controls are estimated. A better estimation of the quantum speed limit is 
obtained, so is the time-optimal control. For entanglement creation problem, two critical time points 
are determined, one of them is the minimal time to achieve maximal entanglement (unit concurrence) 
starting from the product state. In addition, the comparisons between bang-off and chopped random 
basis (CRAB) are made.

Quantum optimal control (QOC) is crucial to quantum information processing tasks, such as quantum computa-
tion and quantum communication. In these tasks, complex quantum systems are engineered and manipulated, 
e.g. to achieve target quantum gates and target quantum states1–4. In certain cases, the adiabatic operations, which 
are generally executed very slowly, are desired in experiments, because we wish to avoid heating the sample and 
to guarantee the target gate/state is prepared with perfect fidelity5. However, in experiments the decoherence and 
noise from the environment often make such slow operations impossible. Therefore, speedup the time evolution 
by applying fast and robust controls is sensible6,7.

Quantum optimal control theory, which is proposed to solve the problems mentioned above, has been widely 
applied in various physical systems such as NMR8, Bose-Einstein condensate9, cold atoms in optical lattices10,11. 
One of the important topics in QOC theory is to search the time-optimal control with which the transitions are 
finished in the minimal time. In the context of QOC, the minimal time is generally called the quantum speed 
limit (QSL)12. And the temporal shape of the corresponding control field is called time-optimal control. Analytic 
solutions are available for several cases where the quantum systems considered are in low-dimensional13–23. For 
multiple-level quantum systems where analytical results are absent, one has to perform numerical optimization.

Roughly speaking, we rely on two classes of optimization: local optimization algorithms, like Krotov24, 
GRAPE8, CRAB25, GROUP26 and GOAT27, as well as global ones such as differential evolution (DE) and covari-
ance matrix adaptation evolution strategy (CMA-ES)10,28. Machine learning techniques, especially reinforcement 
learning is another promising method29.

The time-optimal problem of two-qubit system with unbounded amplitude is studied in Ref.30. However, 
in real experiments the range of tuning parameters of apparatus is finite, thus constraints in general exist on 
the control field, e.g., the amplitude is bounded. In such cases the appearance of local suboptimal traps in the 
quantum control landscape makes the QOC problem nontrivial31,32.

In this paper we consider the optimal problem in a two-qubit system with bounded amplitude. We study 
two problems: quantum state preparation and entanglement creation. For the first one, one wants to achieve the 
target quantum state with QSL, and to find the temporal shape of time-optimal control. For the latter, we are 
interested in the problem that for given total duration, how large the maximal entanglement can be obtained33–38.

The quantum state preparation problem in two-qubit quantum system was investigated from the viewpoint 
of quantum control phase transition in Ref.39. Numerically the bang-bang protocol is optimized using stochastic 
descent (SD) method to approximate the optimal control fields and to estimate QSL. Three critical time points 
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Tc , Tsb and TQSL are estimated by studying the behavior of several physical quantities, e.g., correlation. Moreover, 
the optimal controls in different phase regions are approximated by averaging the optimized bang-bang controls. 
However, the values of these critical time points are not accurate, and the optimal controls estimated behave like 
bang-off control, rather than bang-bang.

We wish to estimate the values of critical points and the temporal shape of optimal controls more accurately 
using the bang-off control proposed in Ref.40. Employing the same scenario, we optimize over the bang-off con-
trols to estimate the optimal control for the problem of quantum state preparation and entanglement creation. 
In addition, we compare our method with one of the state-of-the-art methods, chopped random basis (CRAB).

Model
We consider the symmetrically coupled two-qubit Hamiltonian studied in Ref.39, which is described in the 
following:

where g = hz = 1 are the interaction strength and static magnetic field along the z direction, and hx(t) is the 
time-dependent control field along the x direction. Sz1 = σz/2 is spin-1/2 Pauli operators for the first qubit. The 
bounded control field hx(t) is a real function under constraint |hx(t)| ≤ M . The dynamics of the system is gov-
erned by the Hamiltonian d|ψ(t)�/dt = −iH(t)|ψ(t)� , where we set � = 1 , starting from the initial state |ψi�.

For the quantum state preparation problem, we set the cost function to be the fidelity F defined as follows:

where T  is the time-ordering operator. T is the total duration of time evolution, and |ψf � is the final state. The 
initial state |ψi� is prepared in the ground state of Hamiltonian (1) with hx = −2 , and the target state |ψt� is set 
to be the ground state of Hamiltonian with hx = 2.

For the entanglement creation problem, we use concurrence to measure the entanglement of two-qubit pure 
state. A general two-qubit pure state can be expressed as |ψ� = a|00� + b|01� + c|10� + d|11� , where a, b, c, d 
are complex numbers with normalization condition |a|2 + |b|2 + |c|2 + |d|2 = 1 . The concurrence of two-qubit 
pure state is defined in the following41:

Specially, the final state of the two-qubit, which follows the Schrödinger evolution with control field hx(t) , 
is denoted as |ψf (T)� = a(T)|00� + b(T)|01� + c(T)|10� + d(T)|11� . Thus the concurrence of final state is 
C(T) = 2|a(T)d(T)− b(T)c(T)|.

For quantum state preparation problem (entanglement creation problem), we want to find the control field 
hx(t) which maximizes the fidelity F(hx(t),T) ( C((hx(t),T) ) for given T. We refer to such hx(t) as the optimal 
control for T. Particularly, for quantum state preparation problem, we wish to estimate the quantum speed limit 
TQSL with which the target state is obtained with unit fidelity F = 1 . For entanglement creation problem, we want 
to calculate the minimal time τmin such that the unit concurrence C = 1 is reached. Notice that different from 
the quantum state preparation problem, the number of two-qubit pure states with unit concurrence is infinite, 
while there is, in general, only one target state for quantum state preparation problem.

Employing the same scenario in Ref.40, we optimize F and C over bang-off control. The bang-off control refers 
to a finite concatenation of bang controls P and N, and off control 0. P (N) is short for Positive (Negative) where 
hx(t) = M ( hx(t) = −M ) and 0 is hx(t) = 0 . The control field is represented by the type—a sequence of P, N 
and 0—and vector of durations t = [t1, t2, ...] . For example, the control field Pt10t2Nt3 is defined in the following

where the order of letter sequence is from left to right. For the example above, the switch number is two Ns = 2 , 
and the bang-off control is of type P0N which is switched from bang (P) to off (0), then to bang (N). The number 
of possible types Ntype is at most 3× 2Ns for a given number of switches Ns . One possible limitation of bang-off 
method is that the number of possible types grows exponentially fast as Ns increase. Thus the optimization is 
resource consuming. However, for certain initial/target quantum states, Ntype can be further reduced. Here we 
take M = 4 such that |hx(t) ≤ 4|.

For given T, we optimize F (and C) starting from Ns = 0 . For each type with given Ns we optimize the vector 
of durations t using quasi-Newton method. Quasi-Newton method is a gradient-based method. In addition, the 
Hessian matrix is estimated such that the computation is not costly. To be specific, we employ the BFGS method 
to optimize the bang-off control.

We denote Fi the maximal fidelity obtained using control fields with Ns = i , and the difference of maximal 
fidelity �Fi ≡ Fi+1 − Fi . Similar notations are defined for C. Once �F ( �C ) is zero or vanishing small as Ns 
increases, we stop the optimization and estimate the optimal control with the corresponding optimized control 
field.

(1)H(t) = −2gSz1S
z
2 − hz(S

z
1 + Sz2)− hx(t)(S

x
1 + Sx2)

(2)
F(hx(t),T) = |�ψt |T exp(−i

∫ T

0
H(t)dt|ψi�|2

= |�ψt |ψf �|2.

(3)C(|ψ�) = 2|ad − bc|.

(4)hx(t) =
{ M 0 ≤ t < t1

0 t1 ≤ t < t1 + t2
−M t1 + t2 ≤ t ≤ t1 + t2 + t3,
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Quantum state preparation
For the quantum state preparation problem of two-qubit system, it is helpful to imagine the system as an inter-
acting two spin system. These two spins are controlled via static magnetic field, and we wish to transfer from the 
ground state of system with initial value of magnetic field to the ground state of the system with another value.

By observing the behavior of �Fi we estimate the values of three critical time points. The values of critical 
time points obtained here are more accurate than those obtained in Ref.39. They are Tc = 0.37037 , Tsb = π/2 , 
and TQSL ≈ 2.775 ; cf. Fig. 1. For T ∈ (0,Tc] , the system is in the overconstrained phase. In this region, the con-
trol landscape is very easy, i.e., there is only one minimum, which is global, such that it is very easy to find the 
optimal control. For the correlated and glassy phase ( T ∈ (Tc ,Tsb] ), the optimal control is still symmetric, i.e., 
hx(t) = −hx(T − t) . For the symmetry-broken phase ( T > Tsb ), the optimal control fields are not symmetric 
anymore. Refer to Ref.39 more for details.

In addition, we conjecture that the optimal controls in overconstrained phase ( T ∈ (0,Tc] ) and correlated and 
glassy phase ( T ∈ (Tc ,Tsb] ) are bang-off controls. This might suggest that for T ≤ Tsb the optimal control over 
the singular regions (where control does not take value of M or −M ) takes zero value, i.e., the singular control 
is the off control hx(t) = 0 . For the symmetry-broken phase ( T ∈ (Tsb,TQSL) ), however, the numerical results 
suggest that the singular control is not off control anymore, but takes certain non-zero value which is between 
the upper and lower boundary. It means that the optimal control field is not bang-off anymore.

We find that the optimal types found with different Ns is of type P...N. This results from the fact that the initial 
state is the ground state of Hamiltonian with negative value hx = −2 , while the target state is that of positive 
value hx = +2 . The details are in the following.

Optimal control for T ∈ (0,T
c
].  For T ∈ (0,Tc] , the optimal control protocol is PT/2NT/2 in the overcon-

strained region. The best fidelity obtained with Ns > 1 is equal to that with PT/2NT/2 for T ∈ (0,Tc] . In addition, 
the optimal control fields obtained with Ns > 1 is PT/2NT/2.

In Fig. 2a we show �F = F2 − F1 , which is the difference between the best fidelity obtained with Ns = 2 and 
that with Ns = 1 . It is observed that �F = 0 for T ≤ 0.37037 , whereas �F > 0 for T > 0.37037 . The same result 
holds for Ns ≥ 3 . In such way we locate the value of Tc = 0.37037 which is more accurate than the one obtained 
in39 where Tc is approximately equal to 0.38.

In Fig. 2b we show the quantum control landscape over the control field of type P0N with T = 0.3 . The maxi-
mal fidelity is obtained with control PT/200NT/2 , which is in fact PT/2NT/2 with Ns = 1 . The same conclusion is 
true for all T ∈ (0,Tc] . In Fig. 2c we further demonstrate the optimized control field using CRAB method. We 
observe that the temporal shape of the optimized control field using CRAB method deviates vanishingly small 
from that of bang-bang control, so does the fidelity obtained using two methods.

Optimal control for T ∈ (T
c
,T

sb
].  For T ∈ (Tc ,Tsb] , the optimal control protocol is of Ns = 2 type 

Pt10t2Nt1 with 2t1 + t2 = T . In addition, the optimal control fields obtained with Ns ≥ 3 reduce to the control 
of type Pt10t2Nt1.

For Ns = 2 , we have numerically checked that the optimal control is of type P0N within all 12 types when 
T ∈ (Tc ,Tsb] . Moreover, the best fidelity is obtained with a special control field Pt10T−2t1Nt1 , i.e., the first dura-
tion being equal to the last one t3 = t1 . In Fig. 3a it is shown that the quantum control landscape of control 
field Pt10T−t1−t3Nt3 with T = 0.8 . The maximal fidelity is obtained with t1 = t3 = 0.1648 . Similar results hold 
for T ∈ (Tc ,Tsb] . Therefore, the optimal duration vector is [t1,T − 2t1, t1] . The value of t1 , shown in Fig. 3b, is 
determined numerically. Notice that t1 = 0 when T = Tsb , thus the optimal control field reduces to 0π/2.
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Figure 1.   Maximal fidelity F as a function of the total duration T obtained with different number of switches 
from Ns = 0 to Ns = 5 . Three critical time points are Tc = 0.37037 , Tsb = π/2 , TQSL ≈ 2.775 . For T ∈ [0,Tc] , 
the optimal control field is PT/2NT/2 . For T ∈ (Tc ,Tsb) , the optimal control field is Pt10T−2t1Nt1 . For T = Tsb , 
the optimal control is 0π/2 . For T ∈ (Tsb,TQSL] , the best F increases as Ns increases. When Ns ≥ 6 , however, the 
increment of F is too little, thus are not shown in this figure.
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In Fig. 3c we demonstrate the optimized control field obtained using bang-off control and the one using CRAB 
method for T = 0.8 . The fidelity obtained with latter is a little smaller than the former. For the optimized control 
using CRAB, the oscillation around hx(t) = 0 serves as a reasonable approximation to the off control. In addition, 
in Ref.39 the temporal shape of optimal control for T ≤ Tsb is obtained by averaging the optimized bang-bang 
controls, which turns out to be approximately bang-off. It is also worth noting that in a two-level system with 
bounded amplitude, the time-optimal control for certain target states is indeed bang-off type18. Considering the 
above results, we conjecture that the optimal controls for T ∈ (0,Tsb] are bang-off controls.

Optimal control for T ∈ (T
sb
,TQSL].  In the symmetry-broken phase region T ∈ (Tsb,TQSL) , the 

double degeneracy of optimal control field is displayed by two optimal control fields with the relation 
h
opt
1 (t) = −h

opt
2 (T − t)39. Here we show the results for one of the optimal controls.

Different from the case T < Tsb , the optimal control with T ∈ (Tsb,TQSL) is not bang-off anymore. The first 
evidence is the behavior of FNs as Ns increases. For the case T ≤ Tsb , the maximal fidelity FNs stops increasing for 
small Ns ( Ns = 1 for T ≤ Tc and Ns = 2 for Tc ≤ T ≤ Tsb ). In contrast, FNs grows as Ns increases when T > Tsb ; 
cf. Figs. 1 and 5a. Such a large number of switches might approximate a smooth function over the singular region.

The second evidence is that the best fidelity obtained using bang-control field with Ns ≤ 8 is smaller than 
the one with CRAB; cf. Fig. 4. It is interesting to note that the optimized control using CRAB and the one with 
Ns = 3 bang-off control approximate to each other very well. Given the fact that the bang-off control with small 
Ns in general performs worse than CRAB, it might suggest that the optimal control field over the singular region 
takes a smooth structure (not necessarily to be CRAB), rather than bang-off which is piece-wise constant. In 
addition, in Fig. 4 all three optimized control field has bang control at the beginning and end. A similar result is 
reported in Ref.42. Thus, the optimal control might has a structure of “bang-annealing-bang”42.

We emphasize that even if the optimal control for T ∈ (Tsb,TQSL] might have a bang-annealing-bang struc-
ture, we can still approximate the optimal control with the bang-off control whose temporal shape is simple. 
In the following,we estimate the quantum speed limit and the time-optimal control using the bang-off control.
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Figure 2.   The optimal control is PT/2NT/2 for T ∈ [0,Tc] . (a) �F = F2 − F1 versus the total duration T. FNs
 

is the best fidelity obtained with number of switch Ns . �F = 0 when T ≤ Tc . However, �F > 0 when T > Tc . 
Tc = 0.37037 is indicated by an arrow. (b) The quantum control landscape of fidelity as a function of [t1, t3] for 
Ns = 2 control Pt10t2Nt3 with t1 + t2 + t3 = 0.3 . The maximal fidelity is indicated by a blue pentagram whose 
location is [t1, t3] = [0.15, 0.15] , which means t2 = 0 and the Ns = 2 control is reduced to Ns = 1 control 
P0.15N0.15 . (c) The optimal control (blue dashed), which is bang-bang, and the optimized control with best 
fidelity found by CRAB (red solid) for T = 0.3.

0.5 1 1.5

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8

-4

-2

0

2

4

Figure 3.   The optimal control is of type Pt10T−2t1Nt1 for T ∈ (Tc ,Tsb] . (a) The quantum control landscape 
of fidelity as a function of [t1, t3] for Ns = 2 control Pt10t2Nt3 with t1 + t2 + t3 = 0.8 . The maximal fidelity 
is indicated by a red pentagram whose location is [t1, t3] = [0.1648, 0.1648] . (b) t1 as a function of the total 
duration T for the optimal control Pt10T−2t1Nt1 . t1 = 0 when T = π/2 , thus the optimal control is 0π/2 . (c) The 
optimal control Pt10T−2t1Nt1 with t1 = 0.1648 (blue danshed), which is bang-off, and the optimized control with 
best fidelity found by CRAB (red solid) for T = 0.8.
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In Ref.39 the quantum speed limit is estimated using GRAPE TGRAPE ≈ 2.775 , and by optimizing the three-
pulse symmetric anstaz, which is in fact Ns = 6 bang-off control of one special type hx(t) = Pt10t2Pt30t4Nt30t2Nt1 
with hx(t) = −hx(T − t) . The estimation of quantum speed limit obtained using this anstaz is T ≈ 2.907 . In fact, 
the estimation of TQSL can be better using the generic unsymmetrical bang-off control. From Fig. 5b we observe 
that the estimation of TQSL using Ns = 4 bang-off controls is better than the anstaz.

In Fig. 5b we show the infidelity 1− F as a function of T obtained using the bang-off control. The optimal 
control protocol with Ns = 9 is of type P0N0NP0P0N. The unit fidelity is reached F = 1−O(10−15) with two 
optimal duration vectors: t∗ = [0.232, 0.244, 0.561, 0.317, 0.017, 0.093, 0.858, 0.044, 0.241, 0.173] , and another one 
which is the flipped vector of t∗ . The estimation of QSL is TQSL ≈ 2.775 by using bang-off control with Ns = 9 . 
This is approximately equal to the one obtained with GRAPE, and less than T = 2.907 which is obtained in Ref.39. 
See Fig. 5b for illustration. While the control fields obtained using GRAPE are continuous, the temporal shape 
of bang-off control is simpler than the former.

Entanglement creation
In this section we estimate the optimal control for the problem of entanglement creation. The system is driven 
by the Hamiltonian (1) with the initial state |00� . For given T, we wish to maximize C over the bang-off control 
field, and obtain the optimal control field. Same as the quantum state preparation problem, the quantum sys-
tem describe with Eq. 1 can be considered as the interacting two spin system. The entanglement is created by 
the interacting between two spins. We start from a separable state with no entanglement, and wish to find the 
minimal time to reach unit concurrence and the corresponding time-optimal control, by optimizing the static 
magnetic field. Similar to the quantum state preparation problem, two critical time points are found: τc ≈ 0.380 , 
and τmin ≈ 1.779 . See Fig. 6 for illustration.

Optimal control for T ∈ [0, τ
c
].  For T ∈ [0, τc] the optimal control is PT and NT . This is numerically con-

firmed by two steps. First, we calculate �Ci ≡ Ci+1 − Ci , where Ci is the maximal concurrence obtained with 
Ns = i , for various values of switch number. All these �Ci are zero when T ≤ 0.380181 . However, C1 > C0 when 
T > 0.380181 . Second, when T ∈ [0, τc] , we find that C0 is obtained with the control field PT and NT , and same 
for Ci ( i ≥ 1 ). Therefore, the first critical time point is τc = 0.380181 , and the optimal control with T ∈ [0, τc] is 
PT (and NT ) .

In Fig. 7 we show �C0 as a function of T for example. Following the terminology in Ref.39, we call the region 
with T ∈ [0, τc] the overconstrained phase, because the search for global minimum is easy.
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Figure 4.   The optimized control fields found with different types for T = 2 ∈ (Tsb,TTQSL ) . (a) The optimized 
control field found using CRAB with the best fidelity obtained. (b) One of the optimized control fields found 
with Ns = 3 bang-off control, and the best fidelity obtained is smaller than the value obtained using CRAB. (c) 
One of the optimized control fields found with Ns = 9 bang-off control, and the best fidelity obtained is larger 
than the value obtained using CRAB.
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Figure 5.   (a) The differences of best fidelity �F obtained with switch number from Ns = 6 to Ns = 9 as a 
function of total duration T, where �F6 = F7 − F6 and so on. (b) The infidelity 1− F as a function of total 
duration T over control with Ns = 9 (blue dashed line). The estimation of quantum speed limit is marked by 
a vertical asymptotic line, where two vertical lines indicate the estimation of quantum speed limit obtained by 
GRAPE T ≈ 2.775 (red solid line) and by symmetric ansatz T ≈ 2.907 obtained in Ref.39, respectively.
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Optimal control for T ∈ (τ
c
, τ

min
].  We have numerically calculate the concurrence C with different val-

ues of Ns for T > τc . For given T, the best value of C stops increasing when Ns is larger than three. In addition, 
the control fields optimized with Ns = 4 are reduced to the ones with Ns = 3 . Therefore, we conjecture that the 
optimal control is of type Ns = 3 for T > τc.

In Fig. 8a we show the inconcurrence 1− C as a function of T for number of switches Ns = 2 and Ns = 3 . 
The unit concurrence is reached with T ≈ 1.779 . This is also indicated by a vertical asymptote in the logarith-
mic inconcurrence 1− C . See Fig. 8a for illustration. Therefore, we estimate the minimal time to reach unit 
concurrence being τmin ≈ 1.779 . One of the time-optimal control is Pt10t2Nt30t4 with the time vector being 
t = [0.4086, 0.520, 8.138× 10−3, 0.841] . As a comparison, we employ the CRAB method to optimize the control 
field with τmin , and the minimal inconcurrence obtained is of order 10−6 , which is ten orders of magnitude greater 
than the one obtained with our method; cf. Fig. 8b.

In Fig. 9a we show the trajectory of reduced density matrix on the Bloch sphere by tracing one qubit. The 
initial state is indicated by the blue square, and the final state in the centre of Bloch sphere is indicated by a 
red pentagram, which means the final state of two-qubit state is one of maximally entangled two-qubit state, 
i.e. C = 1 . In Fig. 9b we further show the Cartesian coordinate [x(t), y(t), z(t)] of the optimal trajectory on the 
Bloch sphere.

Furthermore, we investigate the optimal trajectory in the full two-qubit picture. Notice that the ini-
tial state |00� is inside the Hilbert subspace of triplet manifold, and that the Hamiltonian (1) is invariant by 
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Figure 6.   Concurrence C of the optimal control as a function of total duration T. Two critical time points are 
τc ≈ 0.380 , and τmin ≈ 1.779.
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Figure 7.   �C0 ≡ C1 − C0 versus the total duration T. The critical time point is τc = 0.380181 . �C0 = 0 when 
T ≤ τc , and �C0 > 0 when T > τc . For T ∈ [0, τc] , the optimal control field is PT and NT.
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Figure 8.   (a) Inconcurrence 1− C as a function of total duration T for Ns = 2 and Ns = 3 with the initial state 
|00� . (b) The unit concurrence is obtained by the optimal control field Pt10t2Nt30t4 . In addition, the optimized 
control is obtained using CRAB for τmin ≈ 1.779 . See main text.
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exchanging the two qubits39. Therefore, the time evolution of two-qubit system is inside the Hilbert subspace of 
triplet manifold. The time evolving state is the superposition of three Bell states, i.e., |�+� = (|00� + |11�)/

√
2

,|�−� = (|00� − |11�)/
√
2 , and |�+� = (|01� + |10�)/

√
2 . We monitor the three coefficients of three Bell states

In Fig. 9c we show the squared coefficients |Ci(t)|2 of the quantum state following the optimal trajectory. From 
Fig. 9c we show that the final state with unit concurrence is not Bell state, because all coefficients are not zero.

Conclusions
In this paper we investigate the optimal control problem in a symmetrically coupled two-qubit system with 
bounded amplitude. By optimizing over the family of bang-off controls, the problems of quantum state prepa-
ration and entanglement creation are studied. Given the initial states, the cost functions—fidelity and concur-
rence—are optimized for various duration. By studying the difference of best cost function obtained with different 
types of control field, optimal controls and critical time points are determined more accurately than the previous 
work. In addition, we employ the CRAB method as a comparison, and its performance, in general, is not as good 
as our method, concerning the best fidelity obtained.

For the quantum state preparation problem, we have shown that for duration below a threshold value, the 
optimal control fields are bang-off, whereas this is not true for duration larger than that threshold value. How-
ever, the bang-off control approximates the optimal control very well concerning the best fidelity obtained. 
Furthermore, we estimate the quantum speed limit and time-optimal control field using the bang-off control. 
The QSL obtained is equal to that obtained with GRAPE, but the temporal shape of bang-off control is simple.

For the entanglement creation problem, we start from the product state and maximize the concurrence using 
bang-off controls for different durations. Two critical time points are obtained. For duration in the overcon-
strained phase, the optimal control is simple: the control field takes either the maximal value or the minimal. As 
duration increases, the optimal control is of bang-off type with Ns = 3 . The minimal duration to reach the unit 
concurrence is estimated, and time-optimal control is obtained.

Considering the fact that in quantum systems the optimal control is sometimes not bang-bang anymore, 
bang-off control serves as a good approximation of the optimal control, because of its simplicity. The bang-off 
control can be applied in the quantum system with larger size, e.g., the few-body and many-body system. And it 
is interesting to compare the bang-off control with other control protocols for these quantum systems.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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