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Hyperspectral signature‑band 
extraction and learning: 
an example of sugar content 
prediction of Syzygium 
samarangense
Yung‑Jhe Yan 1, Weng‑Keong Wong 1, Chih‑Jung Chen 2, Chi‑Cho Huang 3, Jen‑Tzung Chien 1 & 
Mang Ou‑Yang 1*

This study proposes a method to extract the signature bands from the deep learning models of 
multispectral data converted from the hyperspectral data. The signature bands with two deep‑
learning models were further used to predict the sugar content of the Syzygium samarangense. Firstly, 
the hyperspectral data with the bandwidths lower than 2.5 nm were converted to the spectral data 
with multiple bandwidths higher than 2.5 nm to simulate the multispectral data. The convolution 
neural network (CNN) and the feedforward neural network (FNN) used these spectral data to predict 
the sugar content of the Syzygium samarangense and obtained the lowest mean absolute error (MAE) 
of 0.400° Brix and 0.408° Brix, respectively. Secondly, the absolute mean of the integrated gradient 
method was used to extract multiple signature bands from the CNN and FNN models for sugariness 
prediction. A total of thirty sets of six signature bands were selected from the CNN and FNN models, 
which were trained by using the spectral data with five bandwidths in the visible (VIS), visible to 
near‑infrared (VISNIR), and visible to short‑waved infrared (VISWIR) wavelengths ranging from 400 
to 700 nm, 400 to 1000 nm, and 400 to 1700 nm. Lastly, these signature‑band data were used to train 
the CNN and FNN models for sugar content prediction. The FNN model using VISWIR signature bands 
with a bandwidth of ± 12.5 nm had a minimum MAE of 0.390°Brix compared to the others. The CNN 
model using VISWIR signature bands with a bandwidth of ± 10 nm had the lowest MAE of 0.549° Brix 
compared to the other CNN models. The MAEs of the models with only six spectral bands were even 
better than those with tens or hundreds of spectral bands. These results reveal that six signature 
bands have the potential to be used in a small and compact multispectral device to predict the sugar 
content of the Syzygium samarangense.

Taiwan is suitable for the growth of various fruit trees because Taiwan is located in the subtropical region and has 
diverse terrain. Fruits are produced in Taiwan all year round, and more than 30 kinds of fruits are produced in 
Taiwan. In 2021, The production value of the agricultural products in Taiwan was US$ 9  billion1. The production 
value of fruits was US$ 3.35 billion, ranked first among agricultural products, and accounted for 37.2% of the total 
agricultural products. In 2020, the top four fruit export volumes in Taiwan were pineapple, sugar apple, mango, 
and wax  apple2. The wax apple, with the scientific name of Syzygium samarangens, has the highest export unit 
price of approximately US$ 3.8 to US$ 5.8. The popular species of wax apple in Taiwan include  Pink3, Palm, Ruby, 
Tainung No.1 Amethyst, Tainung No.2 Big Shape, and Tainung No.3 Sugar Barbie with the highest unit  price4.

The price of fruits depends on their quality which is related to fruit shape, size, appearance, water content, 
pulp texture, soluble solids, acidity, sugar content, post-harvest fresh-keeping packaging, etc. Among them, the 
sugar content is an essential indicator for tasting fruits and is normally measured using a refractometer. The 
refractometer measuring the sugar content of fruit juices is a destructive way. Thus, it can only measure the sugar 
content of a sample of the fruit. However, different fruits may contain different sugar content. These differences 
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come from different trees or positions on the tree, climate conditions, and different cultivation methods. Measur-
ing the sugar content of each fruit non-invasive and destructively would bring at least two benefits. Cultivation 
methods could be optimized by observing the sugar content distribution of the fruits in each tree or a single tree 
on the farm without destroying these fruits. The quality of the fruits can be further graded by non-destructively 
measuring the sugar content to increase the economic value of fruits. Thus, the better-quality fruits can have a 
higher price, while the lower-quality fruits can be processed as canned or preserved food.

Hyperspectral imaging (HSI) systems collecting both reflectance spectrum and image data of a sample can be 
developed as a non-destructive  measurement5–7. The deterministic methods for hyperspectral analysis include the 
Multiple Linear Regression (MLR), Principal Component Regression (PCR), and Partial Least Square Regression 
(PLSR). Peris et al.8 applied the MLR with near-infrared spectral data to measure the solids content of peaches. 
Mendoza et al.9 used the PLSR on hyperspectral scattering data to detect apple fruit firmness. Liang et al.10 
detected the zebra chip disease in potatoes using the PLSR with near-infrared (NIR) spectroscopy. Kemps et al.11 
assessed the concentration of anthocyanins, polyphenols, and the sugar content in grapes by PLSR. Chuang et al.12 
proposed the Independent Component Analysis (ICA) and PLSR with NIR spectral data to quantify the sugar 
content of wax apples. Viegas et al.13 suggested that the total anthocyanin content (TAC) and the total phenolic 
compounds (TPC) could be determined by the PLR with NIR spectral data. In addition to the deterministic 
methods, deep learning methods have been developed to predict the quality of fruits. The convolution neural 
network (CNN) and the support vector machine (SVM) were proposed to detect the ripeness of  strawberries14 
and the maturity of  citrus15. Furthermore, Tu et al.16 used the region-based CNN-based model to identify and 
detect the number of passion fruit in orchards. Fajardo and  Whelan17 detected the fruit in orchards using CNN-
based models. Marani et al.18 obtained high accuracy of grape bunch segmentation with a deep neural network.

HSI and multispectral imaging (MSI) systems act as the important instruments to conduct non-destructively 
analysis and detection. HSI systems measure hundreds to thousands of spectral bands with submicron-level 
resolution but have the highest measurement duration in all spectral systems. Contrarily, multispectral imaging 
(MSI) systems detect fewer bands but with a shorter measurement duration and smaller volume compared to 
those of HSI systems. Thus, the HSI systems are suitable to collect high-resolution hyperspectral data for spectral 
analysis. A dozen or several signature bands can be extracted from the hyperspectral data and can be applied in 
a portable MSI system for rapid and massive detection.

Several studies developed the spectral band selection or signature-band extraction based on the deep learning 
models, as listed in Table 1. To improve the computation duration, Zhan et al.19 eliminated the redundant bands 
by the distance density. To find the importance of the corresponding bands in a model, Darling et al.20 applied 
the Frobenius norm to obtain the value of each row vector delivering a contribution vector by getting the trained 
weight matrix. Mou et al.21 proposed an unsupervised deep reinforcement technique for hyperspectral band 
selection. Elkholy et al.22 proposed a deep-encoder-based unsupervised hyperspectral band selection method 
to perform classification. Cai et al.23 reduced redundant bands with contribution map-based CNN.

The deep learning models with hyperspectral data were successfully used to predict the sugar content of the 
Syzygium samarangense with the MAE of 0.5°Brix in our previous  study24. The results indicated that the deep 
learning models with hyperspectral data were beneficial in conducting non-destructive prediction for the sugar 
content of fruits. If the sugar content can be predicted by several spectral bands, the detection time can be greatly 
shortened. How to extract the signature bands from hyperspectral data to conduct a rapid and accurate sugar 
content prediction is a critical issue that is focused in this study. To deal with this issue, this paper presents a 
new method to extract six signature bands from the deep learning models trained with spectral data. The six 
signature bands were further utilized to train new deep-learning models to perform the sugar content prediction. 
The models using six signature bands had the mean absolute errors (MAEs) lower than 0.5°Brix when predicting 
the sugar content. Thus, the resulting performance of those models using six signature bands could be as good 
as that of the commercial Brix meters. Furthermore, the performance of the models using the signature bands 
with different bandwidths in different spectral ranges was evaluated. Firstly, the bandwidth of signature bands 
can be optimized for sugar content prediction because the bandwidth of spectral bands measured by an MSI 
system can be adjusted. Secondly, the spectral range of an MSI system is associated with the sensor equipped on 
this system. For example, the spectral response of a silicon-based complementary metal–oxide–semiconductor 
sensor with and without an infrared filter covers the visible (VIS) spectrum ranging from 400 to 700 nm and the 
visible to near-infrared (VISNIR) spectrum ranging from 400 to 1000 nm, respectively. The spectral response of 
an indium gallium arsenide sensor covers the short-wave infrared (SWIR) ranging from 900 to 2500 nm. Thus, 
which spectral range and bandwidth of signature bands can be employed to effectively identify the sugar content 
is a novel exploration in this paper.

Table 1.  Studies on signature-band extraction or selection with deep learning methods.

Reference Method Target

Zhan et al.19 Occlusion based method Classification of Indian Pines data sets

Darling et al.20 Produced contribution matrix by trained weight matrix Classification of U.S. Army ERDC data sets

Mou et al.21 Deep reinforcement learning Classification of Pavia University, Botswana, Indian Pines,  
and MUUFL Gulfport data sets

Elkholy et al.22 Unsupervised learning with deep autoencoder unmixing Classification of Kennedy Space Center data sets

Cai et al.23 Contribution map-based CNN Classification of Pavia University and Indian Pines data sets

This study Absolute mean of the integrated gradients method Regression on multispectral data sets



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15100  | https://doi.org/10.1038/s41598-023-41603-6

www.nature.com/scientificreports/

The sugar content prediction of Syzygium samarangense was taken as an example in this paper. “Materials 
and data pre-processing” introduces how we collected the hyperspectral data of the peel surface of wax apples 
and performed the pre-processing of the hyperspectral data. “Proposed methods” addresses the method and 
procedure of signature-band extraction from hyperspectral data. This section includes three subsections. Firstly, 
CNN and FNN models were trained and tested with the spectral data of five bandwidths in the four wavelengths, 
respectively. Secondly, the signature bands were assessed from these well-trained models. Thirdly, new CNN 
and FNN models were trained with the signature-band data and evaluated on the performance of sugar content 
prediction, respectively. Thus, “Experimental results” presents the experimental details and results of three 
subsections in “Proposed methods”. “Conclusions and discussion” provides a comprehensive discussion of the 
results and highlights the important conclusions and future works drawn from this study.

Materials and data pre‑processing
Sample preparation. This study takes fruits of wax apple, whose scientific name is Syzygium samaran-
gense, as an example of hyperspectral signature-band extraction for sugar content prediction. The species of 
these apples were Tainung No.3 Sugar  Barbie4. All data collection procedures were conducted at the Fengshan 
Tropical Horticultural Experiment Branch (FTHEB), Kaohsiung, Taiwan. 136 wax apples were purchased from 
Meishan, Fengshan, Liouguei, and Jiadong and refrigerated in a laboratory at FTHEB. The water content of each 
wax apple needs to keep consistent because the water content affects the spectral reflectance of the wax apples 
as well as the temperature of wax apples. Thus, refrigerated wax apples were placed in a 25 °C environment and 
waited for their temperature to return to 25 °C. Afterward, the wax apples were chopped into 16 slices with two 
vertical and three horizontal cuts, as shown in Fig. 1.

Hyperspectral data collection. The hyperspectral data collection was conducted in a dark room and 
performed by the coaxial heterogeneous HSI  system25. This system can concurrently acquire the VIS and SWIR 
spectral data of the wavelength ranging from 400 to 1700 nm. The raw hyperspectral image is three-dimensional 
data (W, L, Λ), where W is image width, L is image length, Λ is the number of spectral bands. The spectral 
data were divided into four wavelength ranges for spectral analysis, including 400–1700 nm, 400–700 nm, 400–
1000 nm, and 900–1700 nm where the band numbers of the hyperspectral data in these four spectral ranges are 
1367, 575, 1053, and 424, respectively.

Destructive sugar content measurement. After the hyperspectral data collection, the wax apple slices 
were squeezed to extract their juice. The sugar contents of these juice were measured by a commercial refractom-
eter ATAGO PAL-1. Organisation Internationale de métrologie légale26 recommended that the refractometers 
can be used to determine the sugar content of fruit juices. The refractometer provides the index of °Brix, which 
correlates to total soluble solids (TSS) concentration. The TSS of the juice is mainly composed of glucose, fruc-
tose, and sucrose. Thus, TSS concentration in juice can represent its sugar content.

Spectral calibration and denoising. To eliminate the effect of the dark offset and system response, the 
raw hyperspectral data, Is(x, y, λ), minus dark, ID(x, y, λ), and divided by the spectrum of a standard calibration 
whiteboard, I(x, y, λ). Thus, the reflectance R(x, y, λ) could be derived from Eq. (1), written as

The noise of the reflectance data was reduced by adopting a Savitzky–Golay filter, written as

(1)R
(
x, y, �i

)
=

IS
(
x, y, �i

)
− ID(x, y, �i)

Iw
(
x, y, �i

)
− ID(x, y, �i)

.

Figure 1.  (a) An intact wax apple marked with cut lines and (b) slices of three wax apples fixed on a flat plate 
for hyperspectral measurements.
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Data augmentation. The bottom part of wax apples has the highest sugar content. Thus, the bottom slices 
were used for sugar content modeling and prediction. A total of 1034 slices were recruited for spectral analysis. 
The image width and length of the slices are approximately 30–100 pixels and 70–160 pixels, respectively. An 
area of 20 by 20 pixels in each slice was used. Thus, the hyperspectral cubic data of each slice had the size of 
20 × 20 × 1367. These three-dimensional data were the input of the CNN model. For the FNN model, 20 by 20 
values in each band were averaged. Thus, the three-dimensional data were transferred to the one-dimension 
array with the size of 1 × 1367.

Each slice is seen as an individual sample which is measured with a °Brix value. The °Brix of the samples 
mostly ranged between 8 to 14. The samples were divided into five groups to observe the regression results 
of sugar content according to their °Brix values. The taste of fruits below the °Brix of 10 is not actually sweet. 
Thus, the first group contained the samples whose °Brix value was lower than 10. The second, third, and fourth 
groups contained the samples whose °Brix value was between 10 to 11, 11 to 12, and 12 to 13, respectively. The 
fifth group contained the samples whose °Brix value was larger than 13. Basically, 218 samples in most of °Brix 
levels were randomly selected for sugar content regression and divided into training, validation, and test sets, 
as shown in Table 2. The sample numbers of training, validation, and test sets were 131, 44, and 43, respectively.

Proposed methods
This study aims to extract the signature bands from hyperspectral data for rapid sugar content prediction. The 
bandwidth of the hyperspectral data measured by the coaxial heterogeneous HSI system is nanometer to sub-
nanometer. In contrast, the multispectral data measured by an MSI system is approximately greater than 5 nm. 
As shown in Fig. 2, block A introduces that the hyperspectral data are converted to spectral data with multiple 
bandwidths to simulate multispectral data. The spectral data are used to create the CNN and FNN-based sugar 
content prediction models. The models are trained, verified, and tested. Block B illustrates that these models are 
used to extract the signature bands by the absolute mean of the integrated gradients method. Block C depicts 
that the CNN-based and FNN-based models are trained, verified, and tested with signature-band data for sugar 
content prediction.

Modeling using multispectral data. Hyperspectral data conversion. In the coaxial heterogeneous 
HSI system, the VIS spectrometer has a spectral resolution of ~ 0.5 nm in the wavelength ranging from 400 to 
1000 nm; the SWIR spectrometer has a spectral resolution of ~ 2.5 nm in the wavelength ranging from 900 to 
1700 nm. The hyperspectral data were converted to spectral data, RM(x,y,λc), which is written as

where  RM(x,y,λc) is the mean of the integrated intensity of the central band, λc; the central band λc ranges from 
400 to 1700 nm with an interval of bandwidth, w.

A total of six sets of spectral data were converted from hyperspectral data according to the six bandwidths, 
w , of ± 2.5 nm, ± 5 nm, ± 7.5 nm, ± 10 nm, ± 12.5 nm, and ± 15 nm. Each set was grouped into four subsets based 
on the spectral range of 400–1700 nm, 400–1000 nm, 400–700 nm, and 900–1700 nm, as shown in Table 3.

We apply the exponential learning rate decay method in Eq. (4) with the initial learning rate lr of the CNN 
and FNN models. The exponential learning rate decay method is written as

where lr is the learning rate, and k is the decaying rate; j is the iteration number of the epoch. The performance 
of the CNN and FNN models for sugar content prediction was evaluated by the mean absolute error, MAE, 
which is defined as

where yi is the prediction value of the sugar content, ŷ  is the true value of the sugar content, and n is the sample 
size. The goodness-of-fit of the CNN and FNN models was assessed by the R-squared value which is defined by

where y is the mean of the prediction values. An  R2 value of zero indicates that the regression of a model doesn’t 
fit the data properly, while an  R2 value of 1 indicates that the regression of the model fits perfectly.

CNN modeling and verification using multispectral data. The architecture of the CNN model for modeling 
multispectral data is shown in Fig. 3. The input of this model is three-dimensional data (W, L, Λ). The number 
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of bands, Λ, was tens to hundreds. The proposed CNN model is composed of 2D convolution layers (Conv2D) 
with L2-norm regularization, Batch Normalization layers (BN), Dropout layers (DP), and Fully-Connected layer 
(FC). All the neurons were activated by the Rectified Linear Unit (ReLU), and the loss is measured by the Root 
Mean Squared Logarithmic Error (RMSLE).

FNN modeling and verification using multispectral data. The architecture of the FNN model for modeling mul-
tispectral data is shown in Fig. 4. The input of the model is one-dimensional data with a size for tens to hundreds 
of bands. The CNN model consists of 4 FC-ReLU-BN-DP layers. The final output Y is the sugar content predic-
tion result of the model. The FNN model is similar to the proposed CNN model. The weights with the smallest 
RMSLE are recorded for the test datasets.

Table 2.  Some statistics of experimental materials, including the mean and standard deviation in each °Brix 
interval of samples and the sample numbers of training, validation, and test sets in each data type and spectral 
range. STD denotes the standard deviation of °Brix values.

Data Type Spectral range (nm) Size (W × L × Λ)

Groups Number of samples

°Brix interval Mean STD Train Valid Test Total

3-D data

400–1700 20 × 20 × 261

[00,10] 8.65 0.82 131 44 43 218

[10,11] 10.44 0.25 97 33 32 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218

400–1000 20 × 20 × 121

[00,10] 8.65, 0.82 131 44 43 218

[10,11] 10.44 0.25 97 33 32 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218

400–700 20 × 20 × 61

[00,10] 8.65 0.82 97 33 32 218

[10,11] 10.44 0.25 131 44 43 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218

900–1700 20 × 20 × 161

[00,10] 8.65 0.82 97 33 32 218

[10,11] 10.44 0.25 131 44 43 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218

1-D data

400–1700 1 × 261

[00,10] 8.65 0.82 131 44 43 218

[10,11] 10.44 0.25 97 33 32 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218

400–1000 1 × 121

[00,10] 8.65 0.82 131 44 43 218

[10,11] 10.44 0.25 97 33 32 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218

400–700 1 × 61

[00,10] 8.65 0.82 131 44 43 218

[10,11] 10.4 0.25 97 33 32 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218

900–1700 1 × 161

[00,10] 8.65 0.82 131 44 43 218

[10,11] 10.44 0.25 97 33 32 162

[11,12] 11.48 0.23 131 44 43 218

[12,13] 12.52 0.27 131 44 43 218

[13,17] 14.01 0.88 131 44 43 218



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15100  | https://doi.org/10.1038/s41598-023-41603-6

www.nature.com/scientificreports/

Signature‑band extraction from multispectral data. According to the integrated gradient defined in 
Ref.27, the mean of the integrated gradients (MIG), derived from S samples, is written as

where R is the input data, and M is the number of intervals along the path from the baseline from R′ to R. Most 
deep learning frameworks could efficiently perform the calculation of the gradient.

The MIG of the CNN models is a three-dimensional matrix. The three-dimensional MIG is averaged along 
the width, W, and length, L. Afterward, a one-dimensional array, Score, with the data points corresponding to the 
bands, λc, is obtained, as defined in Eq. (8). The MIG of the FNN models is a one-dimensional matrix. The Score 
of the FNN is the absolute of the MIG. The Score represents the contribution score of bands in a deep learning 
model. The significance of a band in a model is positively correlated to the Score of this band.

The band with the first highest Score is selected for the first signature band. The second signature band is 
selected according to the band which has the second highest Score and is out of the ± 20 nm range of the first 
selected band, and so on.

Modeling using signature bands. The hyperspectral data of the signature bands are resampled into the 
spectral data with the bandwidths of ± 25 nm, ± 20 nm, ± 15 nm, ± 10 nm, and ± 5 nm. The spectral data are used 
to train new CNN and FNN models for sugar content prediction. The input data of the CNN and FNN models 
were three-dimensional hyperspectral and one-dimensional spectral data of the signature bands, respectively. 
The band number of a signature-band set is six.
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1
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×
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M
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[
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Figure 2.  Procedure of the proposed method for signature-band extraction.

Table 3.  Band numbers of hyperspectral data and multispectral data with six bandwidths in four spectral 
ranges.

Data type Bandwidth (nm)

Band numbers

400–1700 nm 400–1000 nm 400–700 nm 900–1700 nm

Hyperspectral data ± 0.25 ~ ± 1.25 1367 1053 575 424

Multispectral data

 ± 2.5 261 121 61 161

 ± 5 130 60 30 80

 ± 7.5 87 40 20 53

 ± 10 65 30 15 40

 ± 12.5 52 24 12 32

 ± 15 43 20 10 27
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The architecture of the CNN model for modeling resampled spectral data is shown in Fig. 5. The input of 
this model is three-dimensional data (W, L, Λ). The number of bands, Λ, was six. The CNN model consists of 
two Conv-ReLu-BN layers with 64 kernel filters, two Conv-ReLU-BN layers with 64 kernel filters, one Average 
Pooling layer, two FC-ReLU-BN-DP layers, and the output layers with the rectified linear unit (ReLU) as the 
activation function. Because the number of bands, Λ, diminished to 6, some layers were reduced and the Average 
Pooling instead of Max-Pooling for the smaller size resampled data was used.

The architecture of the FNN model for modeling multispectral data is shown in Fig. 6. The input of the model 
is one-dimensional data with a size of six bands. The FNN model consists of 4 FC-ReLU-BN layers. The final 
output Y is the sugar content prediction result of the model. The FNN model is similar to the proposed CNN 
model; the weights with the smallest RMSLE are recorded for the test datasets.

Experimental results
Results of the modeling using multispectral data. Modeling with the spectral data in different wave-
length ranges might have various results; thus, the spectral range was divided into four spectral ranges, including 
VIS (400–700 nm), VISNIR (400–1000 nm), SWIR (900–1700 nm), and VISWIR (400–1700 nm). The hyper-
parameters of the CNN and FNN models are shown in Tables 4 and 5. The CNN and FNN models using spec-
tral data of six bandwidths assumed the same ten hyperparameters and nine hyperparameters, respectively. 
The exponential learning rate decay method is applied with the initial learning rate, and the decaying rate k is 
1 ×  10–6. Adam optimizer was also applied. In the CNN model, the regularization parameter is 1 ×  10–10 for L2 
regularization.

Figure 3.  The proposed convolution neural network model with the input of three-dimensional spectral data 
for sugar content prediction.

Figure 4.  The proposed feedforward neural network model with the input of one-dimensional spectral data for 
sugar content prediction.

Figure 5.  The proposed convolution neural network model with the input of three-dimensional multispectral 
data for sugar content prediction.
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The prediction results of the CNN and FNN models using multispectral data with six bandwidths in four 
spectral ranges are shown in Table 6. The CNN and FNN models using the spectral data of ± 2.5 nm bandwidth 
had the worst prediction performance compared to those using the spectral data with the other bandwidths. 
Furthermore, the CNN and FNN models using the spectra in the SWIR spectral range had the worst prediction 
performance compared to those using the spectra in the other spectral ranges. Thus, the spectral data of ± 2.5 nm 
bandwidth and the spectra in the SWIR spectral range were excluded from the signature-band extraction.

Results of signature‑band extraction. Thirty deep learning models were trained by the spectral data 
with five bandwidths in three spectral ranges. The five bandwidths included ± 5 nm, ± 7.5 nm, ± 10 nm, ± 12.5 n
m, and ± 15 nm, and the three spectral ranges were 400–700 nm, 400–1000 nm, and 400–1700 nm. The contribu-
tion of the bands used by each model was assessed by the Score, which is the absolute of the MIG, according to 
Eqs. (7) and (8). The top six spectral bands with the highest Score values of each model are listed in Tables 7, 8, 
9, 10 and 11. Each entry in these tables includes the spectral band and its MIG value. The absolute MIG values 
of the FNN model using spectral data with a bandwidth of ± 5 nm in a spectral range of 400–700 nm are shown 
in Fig. 7. The six signature bands in this FNN model were selected according to the criteria introduced in sub-
section B of section III and marked in the bars with a slash texture.

Figure 6.  The proposed feedforward neural network model with the input of one-dimensional signature-band 
data for sugar content prediction.

Table 4.  Selected hyperparameters of the convolution neural network model with multispectral data.

Spectral range 400–1700 nm 400–1000 nm 400–700 nm 900–1700 nm

Conv. kernel size 1 × 5 1 × 2 1 × 2 1 × 5

MaxPooling1 size 1 × 2 1 × 2 2 × 1 2 × 2

MaxPolling2 size 1 × 2 2 × 1 2 × 1 2 × 2

FC1 units 2048 1024 1024 1024

FC2 units 512 256 512 512

FC3 units 1 1 1 1

Batch size 32 64 128 32

Dropout rate 0.3 0.3 0.2 0.1

Learning rate 0.0006 0.0006 0.0006 0.001

Table 5.  Selected hyperparameters of the feedforward neural network model with multispectral data.

Spectral range 400–1700 nm 400–1000 nm 400–700 nm 900–1700 nm

FC1 units 256 256 256 256

FC2 units 128 128 128 128

FC3 units 64 64 64 64

FC4 units 32 32 32 32

FC5 units 1 1 1 1

Batch size 32 64 128 64

Dropout rate 0.3 0.3 0.3 0.3

Learning rate 0.001 0.001 0.001 0.001
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Results of modeling using signature bands. Each model trained by the spectral data with a bandwidth 
in a spectral range had one set of the six signature bands with the six highest absolute MIGs, as listed in Tables 7, 
8, 9, 10 and 11. Thus, a total of thirty sets of spectral bands associated with the bandwidths of ± 25 nm, ± 20 nm
, ± 15 nm, ± 10 nm, and ± 5 nm in three spectral ranges of 400–1700 nm, 400–1000 nm, and 400–700 nm were 
selected as signature bands. The performance of the CNN and FNN models trained using these thirty sets of 
signature bands was further evaluated. The eight hyperparameters of the CNN and FNN models trained by 
these signature bands with the lowest MAE in each spectral range are shown in Tables 12 and 13, respectively. 
The exponential learning rate decay method is applied with the initial learning rate, and the decaying rate k is 
1 ×  10–6. Adam optimizer was also applied. In the CNN model, the regularization parameter is 1 ×  10–10 for L2 
regularization.

The sugar content prediction results of the CNN and FNN models using the signature bands are shown in 
Table 14. The FNN model using the VISWIR signature bands with a bandwidth of ± 12.5 nm had a minimum 
MAE of 0.390° Brix compared to the other FNN models. The CNN model using the VISWIR signature bands 
with a bandwidth of ± 10 nm had the lowest MAE of 0.549° Brix compared to the other CNN models. The MAEs 
of the FNN models were significantly lower than those of the CNN models.

Table 6.  Sugar content prediction results of the convolution neural network and feedforward neural network 
models using the multispectral data of six bandwidths in four spectral ranges. MAE denotes the mean absolute 
error of the predictions.  R2 denotes the R-squared values of the models. Bold values denote the best results of 
the sugar content prediction in the CNN and FNN models.

Model Spectral range

MAE and  R2

 ± 2.5 nm  ± 5 nm  ± 7.5 nm  ± 10 nm  ± 12.5 nm  ± 15 nm

CNN

400–1700 nm
0.723 0.475 0.437 0.466 0.400 0.484

0.702 0.864 0.886 0.871 0.901 0.849

400–1000 nm
0.679 0.619 0.489 0.536 0.511 0.501

0.708 0.278 0.868 0.840 0.874 0.860

400–700 nm
0.642 0.523 0.474 0.570 0.482 0.509

0.737 0.800 0.874 0.758 0.848 0.843

900–1700 nm
0.739 0.857 0.870 0.923 0.802 0.797

0.619 0.571 0.577 0.511 0.578 0.603

FNN

400–1700 nm
0.603 0.540 0.507 0.478 0.451 0.519

0.825 0.864 0.883 0.896 0.903 0.868

400–1000 nm
0.614 0.465 0.459 0.491 0.484 0.408

0.811 0.896 0.898 0.881 0.890 0.920

400–700 nm
0.532 0.527 0.450 0.434 0.491 0.487

0.857 0.879 0.898 0.908 0.887 0.881

900–1700 nm
0.771 0.692 0.802 0.776 0.869 0.886

0.724 0.770 0.705 0.718 0.671 0.653

Table 7.  Top six Score ranked spectral bands associated with the convolution neural network and feedforward 
neural network models using the spectral data with a bandwidth of ± 5 nm in three spectral ranges. The Socre 
is the absolute mean of the integrated gradients.

Model Spectral range

Bands (nm) and their mean of the integrated gradients

1st 2nd 3rd 4th 5th 6th

CNN

400–1700 nm
565 nm 585 nm 515 nm 545 nm 745 nm 695 nm

− 0.056 − 0.030 0.029 − 0.022 0.020 − 0.019

400–1000 nm
685 nm 565 nm 655 nm 545 nm 495 nm 475 nm

− 0.083 − 0.076 0.073 − 0.054 − 0.053 0.053

400–700 nm
485 nm 445 nm 625 nm 545 nm 495 nm 475 nm

0.111 0.093 − 0.071 0.066 − 0.063 0.058

FNN

400–1700 nm
565 nm 655 nm 505 nm 1155 nm 485 nm 585 nm

− 14.74 14.085 12.355 11.536 9.276 − 8.535

400–1000 nm
575 nm 655 nm 505 nm 555 nm 485 nm 595 nm

− 14.289 13.686 12.766 − 11.332 9.22 − 7.660

400–700 nm
655 nm 495 nm 695 nm 565 nm 515 nm 435 nm

37.260 23.970 − 23.750 − 18.619 16.998 − 16.412
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Table 8.  Top six Score ranked spectral bands associated with the convolution neural network and feedforward 
neural network models using the spectral data with a bandwidth of ± 7.5 nm in three spectral ranges. The Socre 
is the absolute mean of the integrated gradients.

Model Spectral range

Bands (nm) and their mean of the integrated gradients

1st 2nd 3rd 4th 5th 6th

CNN

400–1700 nm
587.5 nm 542.5 nm 677.5 nm 647.5 nm 992.5 nm 737.5 nm

− 0.134 0.089 0.076 0.056 0.043 − 0.038

400–1000 nm
512.5 nm 452.5 nm 602.5 nm 572.5 nm 692.5 nm 662.5 nm

0.270 − 0.187 − 0.169 − 0.167 − 0.140 0.132

400–700 nm
572.5 nm 497.5 nm 452.5 nm 617.5 nm 662.5 nm 527.5 nm

− 0.090 0.073 − 0.062 0.030 0.024 0.023

FNN

400–1700 nm
572.5 nm 662.5 nm 497.5 nm 1172.5 nm 707.5 nm 602.5 nm

− 19.366 14.214 13.285 12.81 − 9.030 − 8.708

400–1000 nm
575.5 nm 497.5 nm 662.5 nm 707.5 nm 962.5 nm 527.5 nm

− 21.109 − 16.406 − 12.557 − 8.242 − 7.978 6.651

400–700 nm
662.5 nm 692.5 nm 557.5 nm 497.5 nm 437.5 nm 632.5 nm

42.964 − 36.237 − 31.850 28.393 − 18.123 − 10.25

Table 9.  Top six Score ranked spectral bands associated with the convolution neural network and feedforward 
neural network models using the spectral data with a bandwidth of ± 10 nm in three spectral ranges. The Socre 
is the absolute mean of the integrated gradients.

Model Spectral range

Bands (nm) and their mean of the integrated gradients

1st 2nd 3rd 4th 5th 6th

CNN

400–1700 nm
570 nm 590 nm 510 nm 530 nm 650 nm 630 nm

− 0.079 − 0.074 0.064 0.056 0.045 0.036

400–1000 nm
530 nm 550 nm 590 nm 710 nm 450 nm 510 nm

0.092 0.087 − 0.057 − 0.053 − 0.038 − 0.035

400–700 nm
510 nm 530 nm 610 nm 490 nm 590 nm 450 nm

0.072 0.035 − 0.034 0.033 − 0.032 − 0.027

FNN

400–1700 nm
570 nm 510 nm 590 nm 1190 nm 1170 nm 490 nm

− 23.476 16.677 − 16.253 − 16.205 14.884 14.346

400–1000 nm
570 nm 590 nm 510 nm 650 nm 670 nm 490 nm

− 25.192 − 20.786 18.080 13.278 12.671 11.789

400–700 nm
490 nm 670 nm 510 nm 550 nm 690 nm 570 nm

46.826 43.590 40.398 − 38.985 − 36.393 − 32.428

Table 10.  Top six Score ranked spectral bands associated with the convolution neural network and 
feedforward neural network models using the spectral data with a bandwidth of ± 12.5 nm in three spectral 
ranges. The Socre is the absolute mean of the integrated gradients.

Model Spectral range

Bands (nm) and their mean of the integrated gradients

1st 2nd 3rd 4th 5th 6th

CNN

400–1700 nm
587.5 nm 662.5 nm 512.5 nm 637.5 nm 712.5 nm 562.5 nm

− 0.069 0.060 0.046 0.041 − 0.041 − 0.034

400–1000 nm
512.5 nm 662.5 nm 562.5 nm 587.5 nm 537.5 nm 687.5 nm

0.163 0.134 − 0.102 − 0.079 − 0.039 − 0.039

400–700 nm
512.5 nm 587.5 nm 562.5 nm 662.5 nm 612.5 nm 462.5 nm

0.129 − 0.123 − 0.099 0.078 0.077 − 0.044

FNN

400–1700 nm
587.5 nm 562.5 nm 662.5 nm 512.5 nm 1187.5 nm 712.5 nm

− 21.876 − 21.629 18.925 17.093 13.427 − 12.145

400–1000 nm
587.5 nm 562.5 nm 662.5 nm 512.5 nm 712.5 nm 487.5 nm

− 32.426 − 29.572 29.164 28.083 − 15.352 14.503

400–700 nm
662.5 nm 562.5 nm 487.5 nm 512.5 nm 587.5 nm 687.5 nm

55.080 − 41.580 40.196 36.291 − 28.255 22.905
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Table 11.  Top six Score ranked spectral bands associated with the convolution neural network and 
feedforward neural network models using the spectral data with a bandwidth of ± 15 nm in three spectral 
ranges. The Socre is the absolute mean of the integrated gradients.

Model Spectral range

Bands (nm) and their mean of the integrated gradients

1st 2nd 3rd 4th 5th 6th

CNN

400–1700 nm
595 nm 655 nm 685 nm 535 nm 565 nm 895 nm

− 0.041 0.031 0.027 0.019 − 0.018 − 0.018

400–1000 nm
595 nm 565 nm 655 nm 535 nm 625 nm 505 nm

− 0.084 − 0.082 0.055 0.053 0.028 0.024

400–700 nm
505nm 565 nm 475 nm 535 nm 595 nm 625 nm

0.295 − 0.221 − 0.137 0.077 − 0.067 0.036

FNN

400–1700 nm
565 nm 595 nm 505 nm 1195 nm 655 nm 715 nm

− 23.844 − 21.856 21.712 16.830 16.287 − 14.651

400–1000 nm
505 nm 595 nm 565 nm 655 nm 715 nm 895 nm

34.878 − 33.987 − 30.594 27.233 − 19.088 12.860

400–700 nm
505 nm 565 nm 655 nm 595 nm 445 nm 625 nm

58.007 − 46.255 37.925 − 23.789 − 20.799 − 17.332

Figure 7.  Absolute mean of the integrated gradients of the feedforward neural network model with a 
bandwidth of ± 5 nm in a spectral range of 400–700 nm. The top six Score ranked bands are shown by the bars 
with slash texture and selected as the signature bands, as listed in Table 7. The blue bars represent that the MIG 
value of the bands is positive. The red bars represent that the MIG value of the bands is negative.

Table 12.  Selected hyperparameters of the convolution neural network models using the signature bands with 
the lowest prediction error in each spectral range.

Spectral range (nm) 400–1700 400–1000 400–700

Bandwidth (nm) ± 10 ± 7.5 ± 12.5

Conv. kernel size 4 × 1 4 × 1 4 × 1

Avg. pooling size 2 × 2 2 × 2 1 × 4

FC1 units 1024 1024 1024

FC2 units 512 512 512

FC3 units 1 1 1

Batch size 16 128 64

Learning rate 0.0004 0.0008 0.0004
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Conclusions and discussion
This study proposes a signature-band extraction method using the absolute mean of the integrated gradients 
score to extract signature bands from sugar-content deep-learning models with the input of spectral data. Firstly, 
the hyperspectral data with bandwidths lower than 2.5 nm were converted to spectral data with bandwidths 
of ± 2.5 nm, ± 5 nm, ± 7.5 nm, ± 10 nm, ± 12.5 nm, and ± 15 nm. The spectral data were used to train and verify 
CNN and FNN models. The CNN model using the VISWIR spectral data with a bandwidth of ± 12.5 nm had a 
minimum MAE of 0.400°Brix compared to that of the other CNN models. Furthermore, the FNN model using 
the VISNIR spectral data with a bandwidth of ± 15 nm had a minimum MAE of 0.408°Brix compared to the 
other FNN models.

The absolute MIG method was used to extract signature bands from the CNN and FNN models. The MIG 
of the deep learning model corresponding to an input of spectral bands can be positive or negative. The MIG 
implies that the input bands have either positively or negatively correlated to the output of the model. The six 
spectral bands with the highest positive absolute MIGs were considered to be signature bands. However, the 
FNN and CNN models trained by these signature bands didn’t have lower prediction errors compared to the 
models trained by the six signature bands with the highest absolute MIGs. Thus, this study finds the signature 
bands with the highest absolute MIGs instead of finding the signature bands with the highest positive MIGs. 
The central wavelength of the top six bands selected from the CNN models in the VISWIR range was not over 
1000 nm (Tables 7, 8, 9, 10 and 11). Only one of each six bands over 1000 nm was chosen from the FNN models 
in the VISWIR range. The results imply that the signature bands in our deep learning models for predicting the 
sugar content of the wax apples are significantly located in the VIS range. This finding seems to show that the 
VIS spectrum of the appearance of the wax apples might have correlated considerably with the sugar content 
of the wax apples.

Thirty sets of six signature bands of spectral data in five bandwidths were used to train the CNN and FNN 
models for sugar content prediction. The input data of the CNN and FNN models were three-dimension and 

Table 13.  Selected hyperparameters of the feedforward neural network models using the signature bands that 
had the lowest prediction error in each spectral range.

Spectral range (nm) 400–1700 400–1000 400–700

Bandwidth (nm) ± 10 ± 12.5 ± 12.5

FC1 units 512 512 512

FC2 units 256 256 256

FC3 units 128 128 128

FC4 units 64 64 64

FC5 units 1 1 1

Batch size 64 128 128

Learning rate 0.0008 0.0008 0.0008

Table 14.  Sugar content prediction errors of the convolution neural network and feedforward neural network 
models using the signature bands with the bandwidths of ± 5 nm, ± 7.5 nm, ± 10 nm, ± 12.5 nm, and ± 15 nm in 
three spectral ranges of 400–700 nm, 400–1000 nm, and 400–1700 nm. MAE denotes the mean absolute error 
of the predictions.  R2 denotes the R-squared values of the models. Bold values denote the best results of the 
sugar content prediction in the CNN and FNN models.

Model Spectral range

MAE and  R2

 ± 5 nm  ± 7.5 nm  ± 10 nm  ± 12.5 nm  ± 15 nm Average of MAEs in each row

CNN

400–1700 nm
0.578 0.588 0.549 0.573 0.594

0.576
0.794 0.820 0.811 0.789 0.774

400–1000 nm
0.567 0.596 0.634 0.606 0.569

0.585
0.828 0.783 0.794 0.800 0.812

400–700 nm
0.551 0.645 0.582 0.661 0.580

0.604
0.841 0.785 0.803 0.758 0.849

FNN

400–1700 nm
0.469 0.498 0.470 0.390 0.434

0.452
0.885 0.866 0.894 0.916 0.893

400–1000 nm
0.518 0.418 0.497 0.503 0.447

0.477
0.860 0.889 0.886 0.876 0.899

400–700 nm
0.493 0.451 0.478 0.393 0.465

0.456
0.877 0.888 0.884 0.903 0.881

Average of MAEs in each column 0.529 0.533 0.535 0.521 0.515
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one-dimension, respectively. The minimum MAE of the CNN and FNN models using six signature bands were 
0.549°Brix and 0.390°Brix. Both results were less than 0.55°Brix; and close to or better than that of the CNN and 
FNN models using hundreds of spectral bands or thousands of spectral bands. The performance of the FNN mod-
els was almost better than that of the CNN models in the three spectral ranges of 400–1700 nm, 400–1000 nm, 
and 400–700 nm. The correlation between two adjacent bands is reduced in spectral data compared to hyper-
spectral data; the CNN model tends to find the correlation between two spectral bands; this might be why the 
performance of the CNN model was worse than that of the FNN model. The results reveal that the FNN model 
with one-dimensional input data might perform better on the sugar content prediction than the CNN model 
with three-dimensional input data. Furthermore, the CNN and the FNN models using only six signature bands 
have a high potential to predict the sugar content of wax apples. These six signature bands could be used in an 
MSI system to non-destructively and rapidly predict the sugar content of the wax apples in the future.

The spectral data was not overlapped in the spectrum when it was converted from the hyperspectral data in 
this study. However, the spectrum of each spectral band could overlap. Spectral data with overlapped spectrums 
could be considered for signature-band extraction. Furthermore, the spectral bands used in an MSI system could 
have different bandwidths. Thus, the signature bands might be chosen from the bands with different bandwidths. 
These two variables greatly increase the complexity of the band extraction. In the future, an artificial intelligence 
model may perform signature-band extraction from spectral data with different bandwidths or overlapped 
spectrums.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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