
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14175  | https://doi.org/10.1038/s41598-023-41295-y

www.nature.com/scientificreports

Time‑feature attention‑based 
convolutional auto‑encoder 
for flight feature extraction
Qixin Wang 1, Kun Qin 1, Binbin Lu 1*, Huabo Sun 2 & Ping Shu 2

Quick Access Recorders (QARs) provide an important data source for Flight Operation Quality 
Assurance (FOQA) and flight safety. It is generally characterized by large volume, high‑dimensionality 
and high frequency, and these features result in extreme complexities and uncertainties in its usage 
and comprehension. In this study, we proposed a Time‑Feature Attention (TFA)‑based Convolutional 
Auto‑Encoder (TFA‑CAE) network model to extract essential flight features from QAR data. As a case 
study, we used the QAR data landing at the Kunming Changshui International Airport and Lhasa 
Gonggar International Airport as the experimental data. The results show that (1) the TFA‑CAE model 
performs the best in extracting representative flight features in comparison to some traditional 
or similar approaches, such as Principal Component Analysis (PCA), Convolutional Auto‑Encoder 
(CAE), Self‑Attention‑based CAE (SA‑CAE), Gate Recurrent Unit based Auto‑Encoder (GRU‑AE) and 
TFA‑GRU‑AE models; (2) flight patterns corresponding to different runways can be recognized; and 
(3) anomalous flights can effectively deviate from many observations. Overall, the TFA‑CAE model 
provides a well‑established technique for further usage of QAR data, such as flight risk detection or 
FOQA.

Civil aviation is constantly striving to improve flight safety. To change the accident-prone nature of Chinese civil 
aviation and improve flight safety, the Civil Aviation Administration of China (CAAC) decided in 1997 to make 
the flight quality monitoring project mandatory for all transport airlines. By January 1, 1998, all transport aircraft 
registered in China were required to install a Quick Access Recorder (QAR) or equivalent equipment to record all 
aircraft flight status during flights. The flight data recorded by QARs are used to monitor flight operations, aircraft 
performance, etc., to detect faulty flights that deviate from standard flight procedures. Furthermore, the causes 
of faulty flights are analyzed and then addressed by developing corresponding improved guidance measures, 
resulting in further flight quality improvements. At the end of 2013, the flight Quality Monitoring Base Station 
Construction Project was approved by the CAAC to collect, process and analyze all the QAR data of aircraft in 
China. By the end of 2017, the base station had collected QAR data from more than 3000 aircraft taken by all 51 
transport air carriers in China’s civil aviation category. A huge amount of rich flight data is continuously gathered 
at this base station, which provides a complete database for studying flight risks as well as data-driven methods.

Automatic Dependent Surveillance Broadcast (ADS-B) data is another kind of flight data and also used for 
flight quality monitoring, such as the aircraft landing  time1, estimation of aircraft arrival  time2,3. ADS-B data 
has a good timeliness compared to QAR data, but only a limited number of flight parameters (about 40 flight 
parameters) are recorded, which makes it insufficient to be used in complex application scenarios. Compared to 
ADS-B data, QAR data are typically featured by high-dimensional and high-frequency data to record details of 
a flight, including time, position, flight operations, flight attitude, flight dynamics and the external environment 
(up to 2000 flight parameters). The recorded Flight parameters reflect the status of aircraft’s system. For example, 
excessive value of flight parameter AOA (Angle of attack) may suggest potential risks of aircraft stalling while 
the flight parameter VRTG (Normal acceleration) is usually used to indicate the heavy landing when an aircraft 
touches the ground. Therefore, the QAR data can be used to monitor and detect various flight events. However, 
these features result in extreme complexities and uncertainties in its usage and comprehension. Feature extrac-
tion, as a typical data mining topic, provides a technical means to solve the dimensional  curse4. It plays a key 
role in many applications, such as  classification5,  regression6, and data  mining7,8, and is also a prior basis in fault 
diagnosis that focuses on fault feature  extraction9–12.
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Principal Component Analysis (PCA), by which raw data are projected onto their principal dimensions 
according to the variance-covariances of the original  samples13, is the most commonly used unsupervised method 
for feature  extraction14,15. Linear Discriminant Analysis (LDA) and its variant, Marginal Fisher Analysis (MFA), 
are two supervised feature extraction methods, among which LDA finds a useful linear subspace by optimizing 
discriminant class  data16 and MFA characterizes the interclass separability and intraclass compactness of the given 
data to obtain the optimal  projection17. All the above feature extraction methods have the same shortcoming: 
all the projections are linear transformations. Although other  studies18–20 have attempted to solve this problem 
using nonlinear kernel functions, the features extracted by the developed approaches may fail to cover all useful 
information of the input raw data since diverse nonlinear correlations exist in the complex industrial  data21.

With the continuous development of Artificial Neural Networks (ANNs), they have become powerful tech-
nologies for approximating complicated functions and have achieved great success across various industrial 
applications. An Auto-Encoder (AE), containing an encoder and a decoder, is a special ANN model that extracts 
features by minimizing the reconstruction error in an unsupervised manner. The original input data are first 
mapped into a low-dimensional representation space to obtain the most appropriate features; the decoder then 
maps the features in the low-dimensional representation space to the input space. The loss error between the 
original input of the encoder and output of the decoder is used as the loss error to train the resulting model. 
Figure 1 shows a pictorial representation of the autoencoder network model.

AEs and their  variants22–24 have been applied in various fields, such as fault  diagnosis25,26, smart  grids27, and 
Natural Language Processing (NLP)28. However, the features extracted by the traditional AE may fail to satisfy 
the final discrimination  task29. For multi-feature time series data, the traditional AE directly maps the origi-
nal input to learn features, but this process ignores the inter-time and inter-feature relationships. In addition, 
previously developed feature extraction methods are not based on the requirements of specific applications, 
resulting in extracted features that are not applicable to realistic application tasks. In this article, a Time Feature 
Attention (TFA) module is developed to capture the internal relationship between different flight moments as 
well as the internal relationship between different flight parameters. On this basis, a TFA-based Convolutional 
AE (TFA-CAE) is proposed to perform feature extraction of QAR flight time series data. The remainder of this 
paper is organized as follows. The methodology used in our research is presented in "Data and methodology" 
section, where the details of the TFA and TFA-CAE are described in "TFA module" and "TFA-CAE model for 
QAR feature extraction" sections, respectively. "Case study" section presents the experimental results of a case 
study. This study is summarized in "Conclusion and discussion" section.

Data and methodology
QAR data processing. During flight, aircraft are generally influenced by various kinds of factors, such as 
the external meteorological environment (speed and direction of wind, temperature and atmospheric pressure, 
etc.), conditions of the aircraft itself (status of engine, flight control settings, etc.), competencies and pilot tech-
niques. The complex impacts of these factors on the aircraft are constant and fluctuate throughout the  flight30. 
Although these factors are always in flux, their impacts on the aircraft are eventually transformed into changes 
in the kinematic and attitude flight parameters of the  aircraft31. Thus, we select the attitude and kinematic flight 
parameters to perform feature extraction. The details of the flight parameters used in this article are shown in 
Table 1.

Figure 2 shows the fatal accidents and onboard fatalities in each flight phase from 2008 to  201732. From the 
statistical results, we can see that the landing phase occupied only 1% of the total flight time but yielded high 
percentages of fatal accidents and onboard fatalities (up to 24% and 20%, respectively). Therefore, the landing 
phase is the focus of this article.

The specific study flight phase focused on in our research is illustrated in Fig. 3. Since landing phases occupy 
approximately 90 s in duration, as shown in Fig. 2, a sample duration of 90 s is used in this flight phase. Specifi-
cally, we start sampling at 90 s before the touchdown point and end sampling at the touchdown point. For each 
sampling moment, the values sampled are all the flight parameters shown in Table 1.

TFA module. The function of the attention mechanism has been widely demonstrated in many previous 
 studies33–40. The attention mechanism, on the one hand, helps a model to know the key places to focus on and, on 

Figure 1.  The pictorial representation of an autoencoder network model.
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Table 1.  Details of the selected flight parameters.

Name Parameter name in the QAR Units

Angle of attack AOA deg

Angle of pitch PITCH deg

Angle of roll ROLL deg

Angle of flight path FPA deg

Head angle (magnetic north) HEAD_MAG deg

Rate of pitch change PITCH_RATE deg/s

Indicated air speed of calibration IASC knot/s

Instantaneous vertical velocity IVV g

Lateral acceleration G-force LATG g

Longitudinal acceleration G-force LONG g

Vertical acceleration G-force VRTG g

Radar altitude of calibration RALTC ft

Figure 2.  Percentages of fatal accidents and onboard fatalities by phase of flight from 2008 to  201732.

Figure 3.  Schematic diagram of the data sampling process during the landing phases.
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the other hand, enhances the representational value of  interests40. For a given QAR time series data in this article, 
we aim to specify when (the key time of the QAR data) and which (the key flight parameters of the QAR data) 
to focus on and to simultaneously enhance their corresponding representational values with the employment 
of an attention mechanism. In this article, we propose a TFA module to exploit both time and feature attention 
based on an efficient architecture.

The TFA module contains two submodules, the Time Attention Module (TAM) and the Feature Attention 
Module (FAM), which are placed together in sequential order. Given an original QAR time series S ∈ R

F×T , a 
one-dimensional time attention map At ∈ R

1×T is first produced by TAM and is then multiplied by S ∈ R
F×T 

to generate the time-refined data S′ ∈ R
F×T . Immediately afterward, the FAM takes time-refined data S′ ∈ R

F×T 
as the input and infers a one-dimensional feature attention map Af ∈ R

F×1 , which is immediately multiplied by 
S′ ∈ R

F×T to obtain the final refined data S′′ ∈ R
F×T . Figure 4 illustrates the overall computation process of the 

TFA module, which can be summarized as follows:

where ⊙ stands for the Hadamard product. During multiplication, time attention values are broadcast along 
the direction of the dimension of flight parameters, while the values of feature attention are broadcast along the 
direction of the time dimension. Figures 5 and 6 show the overviews of the time attention module and feature 
attention module, respectively. In the remainder of this section, we will cover the details of these two modules.

(1) Time attention module (TAM): The role of the time attention module is to highlight the important 
moments of QAR time series data and suppress the unnecessary moments. Within the time attention mod-
ule, this is achieved by increasing the representation weight of important flight moments while decreasing 
the representation weight of unnecessary ones. To produce the attention map, we exploit the relationship 
between the different flight moments of the QAR data. As each time point of QAR data is considered a time 
detector, time attention focuses on the time points that are meaningful (‘when’) given input QAR data. The 
time attention is calculated by collecting and squeezing the information of the feature dimension of QAR 
data. For this, a network module, namely Time Perceptron List (TPL), is proposed to aggregate the feature 
information, as shown in Fig. 5. The detailed operation process of the attention module is described below.
Given original QAR data S ∈ R

F×T as input, TAM first uses the TPL module to aggregate the information of 
the feature dimension of S ∈ R

F×T , generating a time context descriptor Ct =
{

ct1, c
t
2, . . . , c

t
i , . . . , c

t
n

}

 . The TPL 
consists of multiple single-layer perceptions that are arranged in a sequential manner along the time axis. The 
number of multiple single-layer perceptions is equal to the length of the QAR time series. Each single-layer 
perceptron fci is used to collect the feature information of the QAR time series at time i , generating a context 
descriptor cti  . To produce our time attention map At ∈ R

1×T , the time context descriptor is then forwarded to 
a Multi-Layer Perceptron (MLP) network with one hidden layer. The activation size of the hidden layer is set to 
R
T/r×1 to reduce the overhead of the model’s parameters, and r is the reduction ratio. After the time attention 

map passes through a sigmoid function, it is multiplied with the original QAR time series S ∈ R
F×T using 

the Hadamard product, resulting in time-refined data S′ ∈ R
F×T . In short, the time attention is computed as:

where σ stands for the sigmoid function, WMLP
0  and WMLP

1  stand for the weights of the MLP network, and 
WMLP

0  is followed by a Rectified Linear Unit (ReLU) activation function. WTPL
i  stands for the weight of fci 

in the TPL.
(2) Feature attention module (FAM): The role of the feature attention mechanism is to focus on “which” fea-
tures are informative. It can be considered complementary to time attention, which highlights the important 
flight feature parameters of time-refined QAR data and suppresses the unnecessary ones. A feature attention 
map is generated by exploiting the inter-feature relationships of the given QAR data. Each feature series of 

(1)
S′ = At(S)⊙ S

S′′ = Af (S
′)⊙ S′

(2)
At = σ(MLP(TPL(S)))

= σ(WMLP
1 (WMLP

0 [WTPL
1 · X1,W

TPL
2 · X2, . . . ,W

TPL
i · Xi , . . . ,W

TPL
t · Xt ]))

Figure 4.  Overview of the TFA module.
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the QAR data works as a feature detector and is used for calculating its feature attention value by collecting 
and squeezing its information of the time dimension. Similar to the calculation of time attention, a Feature 
Perceptron List (FPL) module is constructed to aggregate feature information, as shown in Fig. 6.
Given time-refined data S′ ∈ R

F×T , we first aggregate the feature information along the time axis of S′ ∈ R
F×T 

by using the FPL module, generating a feature context descriptor Cf = {c
f
1, c

f
2, . . . , c

f
j , . . . , c

f
m} . All the single-

layer perceptions are arranged along the feature axis, and each single-layer perceptron fcj in the FPL module 
is used to collect the feature information along the time axis of the j th feature. The feature context descrip-
tor is also then forwarded to a new network composed of an MLP with a hidden layer, producing a feature 
attention map Af ∈ R

F×1 . The activation size of the hidden layer is set to RF/r×1 to reduce the overhead of 
the model’s parameters, where r is the reduction ratio. After the feature map passes a sigmoid function, it is 
multiplied with time-refined data S′ ∈ R

F×T using the Hadamard product, resulting in the final refined data 
S" ∈ R

F×T . In short, the feature attention is computed as:

where σ stands for the sigmoid function, WMLP
0  and WMLP

1  stand for the weights of the MLP network, and 
WMLP

0  is followed by a ReLU activation function. WFPL
j  stands for the weight of fcj in the FPL.

TFA‑CAE model for QAR feature extraction. AE architectures, including Convolutional Neural Net-
work AEs (CNN-AEs) and Recurrent Neural Network AEs (RNN-AEs), have been demonstrated to be powerful 
nonlinear feature extraction models, boasting both flexibility and diversity. Typically, the nature of input data 
determines the selection of model architecture. Previously, it was generally accepted that RNN-based AEs were 
the preferred choice for dealing with time series data, while CNN-based AEs were preferred for image data. Nev-
ertheless, it has recently been demonstrated that CNN-based AEs outperform general RNN-based AEs on time 
series  data41. With complex structures, CNNs are able to extract richer and more complicated hidden features 
from high-dimensional data than  RNNs42. Therefore, CNNs are selected to construct our AE model to extract 
flight features from QAR data.

In this article, we construct a Time-Feature Attention-based Convolutional Auto-Encoder (TFA-CAE) net-
work model for extracting flight features from QAR time series data. Figure 7 shows the details of the TFA-CAE 
model, including its special structure and parameters. The TFA-CAE model mainly consists of three parts: the 
TFA module, an encoder and a decoder, where the TFA module is followed by a CAE. The overall workflow of 
the TFA-CAE model is described below.

(3)
Af = σ(MLP(FPL(S′)))

= σ(WMLP
1 (WMLP

0 [WFPL
1 · P1,W

FPL
2 · P2, . . . ,W

FPL
i · Pi , . . . ,W

FPL
f · Pf ]))

Figure 5.  Overview of the time attention module.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:14175  | https://doi.org/10.1038/s41598-023-41295-y

www.nature.com/scientificreports/

The TFA module is first applied to the original QAR data, producing the final refined time series data. Within 
the encoder, multiple convolutional layers and max-pooling layers are stacked in an interleaved manner for the 
extraction of hierarchical features. A 1D vector is generated by flattening all the units within the output of the 
last convolutional layer and is then transformed into a low-dimensional feature space (latent space) by the two 
subsequent fully connected layers. Designed as a symmetric form to the encoder, the decoder is composed of 
multiple unmax-pooling and deconvolutional layers that are stacked in an interleaved manner to reconstruct 
the original QAR data from the latent features. Moreover, during the training process of the TFA-CAE model, 
the indices of each max-pool layer within the encoder are fed to the symmetrical unmax-pooling layer within 
the decoder to perform upsampling. The parameters of the model are optimized through back-propagation of 
the error loss between the original QAR data and the reconstructed output of the decoder.

Case study
Experimental data. In this article, the flight datasets landing at Kunming Changshui International (ICAO: 
ZPPP, hereafter) and Lhasa Gonggar International (ICAO: ZULS, hereafter) airports are taken as the experi-
mental data for our case study. The dataset contains 12,176 flights, and all the flights are extracted in the way 
shown in Fig. 3. All flights are sampled with the flight parameters listed in Table 1. After being standardized by 
min–max normalization, we split the dataset into a training dataset for training the model, a validation dataset to 
determine when to stop the model training process and a test dataset to evaluate the performance of the model. 
The dataset is divided in the ratio of 6:2:2. Table 2 presents the details of the division of each dataset.

Model training. Self-attention43, as a well-known attention mechanism variant, was proposed with the 
aim of capturing the internal relationships of data or features and has exhibited great performance in various 
applications, such as translation. This is similar to the idea of our TFA module proposed in this article. In the 
experiments of this article, we also construct a Self-Attention-based CAE (SA-CAE) model to extract flight fea-
tures. In addition, we also adopted traditional CAE, Gate Recurrent Unit based Auto-Encoder (GRU-AE) and 
TFA-GRU-AE models for comparison with the TFA-CAE model. The PyTorch deep learning framework (ver-
sion 1.11) is employed to construct and train all the above models. Moreover, the adaptive moment estimation 
(Adam) optimizer is employed for the optimization of all models. The batch size of the QAR training data is set 
as 32, and the learning rate is set as 0.0001. During the training processes of all network models, we introduce an 

Figure 6.  Overview of the feature attention module.
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early-stopping mechanism to decide when to terminate the training of models. Its patience is set to 15, meaning 
that the model training process is stopped when the error loss induced on the validation set no longer decreases 
after 15 epochs. In addition, the reduction ratios as for time attention and feature attention are fixed to 16 and 
4, respectively.

Noteworthy, a small fraction of anomalous flights deviated from the common flight pattern in the dataset, 
which may be due to harsh external atmospheric environments, improper pilot operations and malfunctions of 
the aircraft themselves. Therefore, to minimize the distortion of these anomalous flights on the model during 
the training process, we adopt the Huber loss  function44 with lower anomaly sensitivity to compute the error 
loss value. The Huber loss function is shown in Eq. (4):

where y − f (x) is the residual and δ is the threshold parameter. When the residual is larger than δ , the Huber loss 
function uses the Mean Absolute Error (MAE) function to calculate the loss error; otherwise, the Mean Squared 
Error (MSE) function is employed to calculate the loss error. The setting of δ determines how anomalies are 

(4)Lδ
(

y, f (x)
)

=

{

1
2
(y − f (x))

2
, for

∣

∣y − f (x)
∣

∣ ≤ δ

δ ·
(∣

∣y − f (x)
∣

∣− 1
2
δ
)

, otherwise.

Figure 7.  The special structure and parameters of the TFA-CAE model.

Table 2.  The details of the divisions of the three datasets.

Flight phase Dataset name Dataset size

Landing

Training dataset 7305

Validation dataset 2435

Test dataset 2436
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viewed. In the process of model training, each model is trained several times with δ ranging between 0.1 and 1; 
the step is 0.1. The setting of δ is decided when the average loss value on the test data first decreases and remains 
stable afterward. Eventually, the values of δ are set to 0.5 for the model.

As described in "Introduction" section concerning the AE network model, the AE uses the encoder to map 
the original input to the feature representation in the latent space and the decoder to reconstruct the original 
input with the feature representation. Therefore, a smaller error loss indicates a better feature representation 
from the original QAR data. In this article, all the AE models are trained with multiple dimensions of the latent 
space. The average loss values of all the models are shown in Fig. 8. By comparing the average loss values of the 
models, we can first see that the CAE models can extract more representative flight features than the GRU-AE 
models since the CAE models have smaller average loss values than the GRU-AE models. TFA module helps the 
models extract more representative flight features. The AE models with TFA module have smaller average loss 
values than the corresponding ones without TFA module. TFA-CAE model outperforms the other models in 
terms of flight feature extraction from QAR data since it attains the smallest average loss values as shown in Fig. 8.

Visualization results of feature extraction. With the latent space size (extracted features) set to 2 in 
our case study, we can visualize the extracted flight feature results. The visualization outcome of the flight fea-
tures extracted by the CAE and GRU-AE models and the PCA during the landing phase is shown in Fig. 8. All 
flight features extracted by each individual model are labeled with their different flight patterns split by the head 
angle (magnetic north).

As the four flight patterns shown in Fig. 9a–f, we can see that both CAE and GRU models outperform the 
PCA method in discovering flight patterns in the extracted flight features since are not clear in. Moreover, the 
traditional CAE and SA-CAE models can extract more representative flight features from the original QAR data 
than GUR-AE and TFA-GRU-AE models. However, the divisions of flight patterns in Fig. 9e and f are much 
clearer than in Fig. 9b and c, the traditional CAE and SA-CAE models are inferior to GRU-AE and TFA-GRU-AE 
models in identifying different flight patterns. In addition, TFA module helps both CAE and GRU-AE models 
to clearly divide the flight patterns by comparing Fig. 9a,f with Fig. 9c,e.

Moreover, as shown in Fig. 9a, the flight objects within the sparse area around each flight pattern are separated 
clearly and generally considered anomalous flights that deviate from the common flight pattern. Overall, the 
TFA-CAE model proposed in this article can extract more representative flight features and obtain a better result 
of the discovery of flight patterns and their division, which provides a well-established technique for further 
usage of QAR data, such as flight risk detection or FOQA.

Arrangement of the time and feature attention. For time and feature attention, the arrangement 
order of these two submodules may affect global performance since each module has different functions. In this 
section, we compare the two different ways of arranging the time and feature attention submodules: sequential 
time-feature and sequential feature-time use of both attention modules. A Feature-Time Attention-based CAE 
(FTA-CAE) model was built and trained to compare with TFA-CAE model. The comparison of the average loss 
value between TFA-CAE and FTA-CAE models is shown in Fig. 10. From the result, we can see the average loss 
value of the FTA-CAE model is larger than that of the TFA-CAE model, time-feature attention outperforms 
feature-time attention in terms of helping the CAE model extract flight features.

Furthermore, the visualization results of flight features extracted by the FTA-CAE and TFA-CAE models are 
compared in Fig. 11. As shown in Fig. 11b, the FTA-CAE model is able to discover the four flight patterns within 
the extracted flight features. By comparing Fig. 11a and b, the TFA-CAE model outperforms the FTA-CAE model 
in terms of the division of flight patterns since the flight patterns P2 and P3 are not clearly divided in Fig. 11b. 

Figure 8.  Comparison among the average loss values of the models on the test dataset.
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However, the FTA-CAE model outperforms the SA-CAE and CAE models in the division of flight patterns; the 
division of these four flight patterns in Fig. 11b is clearer than in both Fig. 9b and c.

Figure 9.  Flight feature extraction results obtained during the landing phase. As illustrated, subfigure (a) is the 
flight feature result extracted by our TFA-CAE model; (b) is the flight feature result extracted by the SA-CAE; 
(c) is the flight feature result extracted by the CAE; (d) is the flight feature result extracted by PCA; (e) and (f) 
are the flight feature results by the GRU-AE and TFA-GRU-AE respectively.
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Throughout the above comparisons, we can learn that (1) the combination of time and feature attentions can 
help the CAE model extract more representative flight features from QAR data and (2) the sequential time-feature 
attention module is better than the sequential feature-time attention module. Our final attention module and 
TFA-CAE model are shown in Figs. 4 and 7, respectively.

Conclusion and discussion
In this article, to address the difficulties of mining QAR data caused by their high-dimensional and high-fre-
quency characteristics, we propose a TFA-CAE network model to perform flight feature extraction by essentially 
capturing the internal relationships among different flight phases as well as different sets of flight parameters. 
For comparison, the classic PCA approach, traditional CAE network, an SA-CAE and GRU-AE network models 
were also conducted with the same QAR dataset. The results show that our TFA-CAE model can extract more 
representative flight features and simultaneously discover runway-level flight patterns that are clearly separated 
from each other. Moreover, within the extracted flight features, the anomalous flights deviating from the com-
mon flight pattern are clearly separated from their corresponding flight patterns. The TFA-CAE model provides 
a well-established technique for further usage of QAR data, such as flight risk detection or FOQA.

Air transport is playing an increasingly popular and irreplaceable role in transportation, and flight safety 
has always been a crucial focus in civil aviation safety management. With the expectation that more flights 

Figure 10.  Comparation of the average loss values between TFA-CAE and FTA-CAE models.

Figure 11.  Flight feature extraction results obtained during the landing phase. As illustrated, subfigure (a) is 
the flight feature result extracted the TFA-CAE model while (b) is the flight feature result extracted by the FTA-
CAE.
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will depart in the future, flight safety management is facing increasing and new challenges. To address these 
challenges and further enhance flight safety, a shift has been made in civil aviation safety management from 
post-accident investigation and analysis to pre-accident warning. In response to such a requirement, civil avia-
tion endeavors to effectively prevent potential flight accidents before they occur by innovatively and proactively 
identifying operationally significant safety events that are currently untracked. By appropriately dealing with 
these potential aviation safety incidents, the accident rate per year will remain at its lowest historical level. QAR 
data will provide an effective way to achieve Flight Operation Quality Assurance (FOQA). Since QAR data are 
onboard-recorded flight data and record many various types of flight parameters, they reflect various real flight 
situations that occur during the flight process, with factors such as the pilot’s actual basic capabilities and skills, 
the actual flight patterns, the performance of the aircraft itself and the potential flight faults or anomalies. Mas-
sive and rich flight big data provide a complete database for studying flight risks and deep learning methods. 
With the continuous development of ANNs, the combination of big QAR data and deep learning will provide 
an important and effective method for flight safety management.

However, we only tried a two-dimensional time-series data set as the input of TFA-CAE model, which could 
be challengeable when more complex data are provided. Therefore, a more generic technical architecture for 
extracting flight features from variable-length time series data could be anticipated in the future. Besides, the eval-
uation is limited to a simple case study with QAR data collected from two specific airports, further experiments 
and comparisons with more datasets and baseline techniques are required for the generalization and perfection 
of techniques proposed in this study. In addition, the automatic discovery of common flight patterns and detec-
tion of anomalous flights or risks are two future topics that can enable better-targeted flight safety management.

Data availability
Data that support the findings of this study are available upon reasonable request to the corresponding author.
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