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Nondestructive quality assessment 
and maturity classification 
of loquats based on hyperspectral 
imaging
Shunan Feng 1, Jing Shang 1,2*, Tao Tan 1, Qingchun Wen 1 & Qinglong Meng 1,2

The traditional method for assessing the quality and maturity of loquats has disadvantages such as 
destructive sampling and being time-consuming. In this study, hyperspectral imaging technology was 
used to nondestructively predict and visualise the colour, firmness, and soluble solids content (SSC) 
of loquats and discriminate maturity. On comparison of the performance of different feature variables 
selection methods and the calibration models, the results indicated that the multiple linear regression 
(MLR) models combined with the competitive adaptive reweighting algorithm (CARS) yielded the best 
prediction performance for loquat quality. Particularly, CARS-MLR models with optimal prediction 
performance were obtained for the colour (R2

P = 0.96, RMSEP = 0.45, RPD = 5.38), firmness (R2
P = 0.87, 

RMSEP = 0.23, RPD = 2.81), and SSC (R2
P = 0.84, RMSEP = 0.51, RPD = 2.54). Subsequently, distribution 

maps of the colour, firmness, and SSC of loquats were obtained based on the optimal CARS-MLR 
models combined with pseudo-colour technology. Finally, on comparison of different classification 
models for loquat maturity, the partial least square discrimination analysis model demonstrated the 
best performance, with classification accuracies of 98.19% and 97.99% for calibration and prediction 
sets, respectively. This study demonstrated that the hyperspectral imaging technique is promising for 
loquat quality assessment and maturity classification.

Loquat (Eriobotrya japonica Lindl.) is an evergreen fruit tree of the Rosaceae family, and its fruit is used as a dual-
purpose medicine and food that has been cultivated in China for more than 2000  years1. It is used for clearing 
the pharynx, moistening the lungs, alleviating cough, and lowering  phlegm2. The ripening pattern of loquats is 
similar to that of climacteric fruits. If harvested very early, it will have hard flesh and a bland flavour. As loquats 
have an active postharvest physiological metabolism, they are susceptible to water and nutrient loss and rot if 
harvested  late3,4. Fruit quality has a direct impact on its commercial value. Colour, firmness, and soluble solid 
content (SSC) are important characteristics of loquats and are key parameters for evaluating their taste and 
 maturity5. Therefore, the detection of postharvest loquats is crucial.

However, traditional determination methods have the disadvantage of destructive sampling and are not suit-
able for online detection. In recent years, hyperspectral imaging (HSI) techniques, which combine two-dimen-
sional image information with one-dimensional spectral information, have been widely used to evaluate fruit 
quality and maturity. HSI has been used to determine multiple indicators (SSC, firmness, etc.) of fruits, includ-
ing  plums6, sweet  cherries7,  pears8,  peaches9, and  melons10. Extensive studies have been conducted to predict 
quality and ripeness of fruits. Wei et al.11 used HSI to classify ripeness and predict the firmness of persimmons. 
Munera et al.12 used the index of internal quality and maturity to assess the internal physicochemical attributes 
and sensory perception of ‘Big Top’ and ‘Magique’ nectarines. The ratio of total soluble solids (TSS) to titratable 
acidity (TA) was used as a pineapple ripeness index to analyse the effects of transmittance short-wavelength 
near-infrared spectroscopy and reflectance near-infrared hyperspectral imaging on the prediction of pineapple 
ripeness using the same procedure and model,  respectively13. Benelli et al.14 investigated the potential of using 
HSI directly in the field through proximal measurements under natural light conditions to predict the harvest 
time of ‘Sangiovese’ red grape. They split grape samples into two classes based on the reference value of SSC and 
established models to predict SSC and recognise the maturity stages, respectively. Zhang et al.15 combined HSI 
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with support vector machine (SVM) to evaluate strawberry ripeness. The results indicated that the SVM model 
performed the best, with classification accuracy of over 85%.

Furthermore, considerable attention has been given to visualise quality of fruits. Teerachaichayut et al.16 
applied HSI to perform nondestructive detection and visual analysis of TSS and TA and calculated TSS/TA as 
a measure of the maturity index in intact limes. The predictive distribution maps of TSS, TA and TSS/TA were 
generated by inputting the feature bands of each pixel into optimal models. Li et al.17 realised the visualization of 
SSC and pH based on a colour scale in cherry fruits. Chu et al.18 created the visualization maps for banana quality 
parameters using machine learning algorithm. The results indicated that the hyperspectral imaging is a useful 
tool to assess the quality of bananas. Additionally, due to the complexities involved in processing hyperspectral 
data and the inherent limitations of computer hardware capabilities, it is essential to select feature wavelengths 
instead of using full wavelengths to achieve similar precision in the operation. Zhang et al.19 established partial 
least squares regression (PLSR) model for predicting caffeine content of coffee beans based on full wavelengths 
and feature wavelengths using HSI, respectively. The overall results indicated that, similar to PLSR models built 
on full wavelengths, all PLSR models based on feature wavelengths demonstrated robust performance. Li et al.20 
developed rapid and non-destructive models for detecting anthocyanin content in mulberry fruit using HSI, 
based on both full bands and feature variables, respectively. The results indicated that the models based on feature 
variables demonstrated superior performance compared to those using full bands. Sharma et al.21 applied HSI 
to classify the ripening stages and predict the dry matter content of durian pulp. A comparison was conducted 
between the models using full wavelengths and feature wavelengths. The results indicated that the model based 
on full wavelengths showed comparable performance to the model based on feature wavelengths in maturity 
classification, while the model based on feature wavelengths achieved better results in predicting dry matter. 
Most of the above studies have confirmed the feasibility of fruit quality prediction and maturity classification 
using hyperspectral imaging, and it is crucial to choose feature variables for modelling during data processing. 
Nevertheless, little research has reported the utility of HSI technology to predict and visualise the colour, firm-
ness, and SSC of loquats and discriminate maturity.

This study aimed to explore the feasibility of determining and visualising the colour, firmness, and SSC of 
loquats and discriminating maturity based on HSI. The specific objectives of this study were to (1) compare the 
performance of different feature variables selection methods including competitive adaptive reweighting algo-
rithm (CARS), genetic algorithms (GA), and successive projections algorithm (SPA); (2) establish and compare 
calibration models for predicting quality including PLSR, principal components regression (PCR), multiple 
linear regression (MLR), extreme learning machine (ELM), and back-propagation neural network (BP); (3) 
visualise the spatial distribution of these quality parameters in loquats; and (4) develop recognition models for 
discriminating maturity including partial least square discrimination analysis (PLS-DA), simplified K-nearest 
neighbour (SKNN), and SVM models.

Methods
Sample preparation. A total of 649 loquats (transverse diameter: 35–55 mm) without bruises were har-
vested from the commercial orchards (Loquat Green Planting Demonstration Garden of Kaiyang County) 
located in Guizhou Province, China, on 7 June 2022. The collectors took the permit, which was required at the 
time, and obtained the owner’s permission. The selection of loquats was guided by experienced local growers 
based on visual observation of the external colour, ranging from dark green to dark orange. The samples were 
transported to the laboratory on the same day as the sampling, at a temperature of 23 ± 2 °C. Before the experi-
ment, the loquat surfaces were wiped and numbered. All methods were performed in accordance with the rel-
evant guidelines and legislation.

Deng et al.22 found a significant or highly significant correlation between the colour a* value and loquat qual-
ity. On this basis, the 649 samples were divided into three maturity stages (stage I: 177, stage II: 331, and stage 
III: 141) based on the colour a* value. Stage I represented colour a* values less than 8.33, stage II covered colour 
a* values between 8.33 and 15.41, and stage III encompassed colour a* values greater than 15.41. The images of 
the three maturity stages are shown in Fig. 1.

To generate adequate variability and broaden the predictive range of colour, firmness and SSC, the samples 
were divided into four groups for experimentation. Among these samples, 140 were used for predicting loquat 

Figure 1.  Images of loquat maturity stage I (a), maturity stage II (b), and maturity stage III (c).



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13189  | https://doi.org/10.1038/s41598-023-40553-3

www.nature.com/scientificreports/

colour (stage I: 47, stage II: 63, and stage III: 30), another set of 140 for predicting loquat firmness (stage I: 45, 
stage II: 53, and stage III: 42), and 120 for predicting loquat SSC (stage I: 25, stage II: 65, and stage III: 30). The 
remaining 249 samples were used to classify loquat maturity (stage I: 60, stage II: 150, and stage III: 39).

Hyperspectral image acquisition and correction. Hyperspectral images of loquat samples were cap-
tured using a hyperspectral imaging system (GaiaFieldF-V10, Jiangsu Dualix Spectral Imaging Technology Co., 
Ltd). A schematic of the system is shown in Fig. 2. It primarily included a hyperspectral imaging spectrograph 
(Imspector V10, Spectral Imaging Ltd., Oulu, Finland), CCD camera (Imperx IPX-2 M30, Pixels: 696 × 1313), 
zoom lens (HSIA-OL23, Focal length: 23 mm), four 200 W halogen light sources (HSIA-LS-T-200 W), transpor-
tation plate, dark room (HSIA-T400-IMS), and computer with image acquisition software. The distance from 
the sample to the lens was 400 mm, and the exposure time of the spectral camera was 12.6 ms. The spectral 
resolution was 3.5 nm, and the spatial resolution was 0.2 mm/pixels. The spectrograph obtained spectral images 
covering a wavelength range from 390 to 1030 nm with 256 spectral bands.

When acquiring hyperspectral images each time, four loquats were placed regularly on the sample stage 
above the displacement platform according to their  number23. To eliminate the effects of noise and dark current 
in the CCD camera, the acquired original images were used to correct the black and white images. The correc-
tion was performed based on Eq. (1). After the hyperspectral images were corrected, the spectral data from the 
entire sample area of loquat were extracted by using ENVI 5.4 (ITT Visual Information Solutions, Boulder, CO).

where, I is the calibrated image, I0 is the original image, B is the dark reference image, and W is the white refer-
ence image.

Reference values for measurement of quality parameters. Following hyperspectral image acquisi-
tion, conventional destructive methods were used to measure the reference values for the colour, firmness, and 
SSC of the loquats. For the determination of colour, a spectrophotometer (Ci7800) was used to measure the col-
our parameters (L*, a*, and b* values), which were evaluated using colour e value calculated based on Eq. (2)24. 
The formula emphasizes the colour contrast in the a* and b* directions, enabling a more effective comparison of 
colour characteristics among different loquats.

Firmness was measured using a texture analyser (TA.XT.plus) with a cylindrical puncture probe of 2 mm at 
a test speed of 3 mm/s. The measurement required the peeling of the loquat around the equator.

The measurements of the SSC were carried out using a digital refractometer (PAL-α) in the range 0–85%.

Data preprocessing and feature variables selection. To improve the accuracy and stability of the 
model, spectral pre-processing aims to eliminate instrument noise, scattering, and baseline shifts. Standard nor-
mal variation (SNV) was used to preprocess the original spectra; it can reduce the effects of surface scattering 
and light path alterations on diffuse  reflection25.

Additionally, the hyperspectral data were characterised by redundancy and multicollinearity. To reduce the 
number of modelling calculations and improve the operational efficiency of the model, the CARS, GA, and SPA 

(1)I =
I0− B

W − B

(2)e =
1000a∗

(L ∗ ×b∗)

Figure 2.  Schematic diagram of the hyperspectral imaging acquisition system.
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were applied to select the feature variables. Variable points with large absolute values of the regression coefficients 
in the PLSR model established by CARS are selected as the new correction set, and the subset with the smallest 
root mean square error was obtained after several  cycles26. The GA simulates the mechanisms of natural selection 
and genetics and iteratively performs operations to generate a subset of  variables27. Unlike GA, SPA is a forward 
feature variables selection method that minimises the collinearity between feature  vectors28.

Model building and evaluation. Two commonly used tools for multivariate data analysis, PLSR and 
PCR models, were developed by combining chemical concentration and preprocessed data,  respectively29. Sub-
sequently, three feature variables models, namely, MLR, BP, and ELM models, were established based on the 
selected feature variables. MLR is used to characterise the relationship between spectral data and mass param-
eters using a linear fitting  equation30. BP, which is one of the most typical multilayer forward network, is a local 
optimisation method based on gradient  descent31. ELM is a high-efficiency single hidden layer feed-forward 
neural network that can map nonlinear relationships between input and output  values32.

To evaluate the performances of the prediction models, the determination coefficient of the calibration set 
(R2

C), root mean square error of the calibration set (RMSEC), the determination coefficient of the prediction 
set (R2

P), root mean square error of the prediction set (RMSEP), and residual predictive deviation (RPD) were 
calculated. Generally, a model that performs well has higher values of R2

C, R2
P, and RPD and lower values of 

RMSEC and RMSEP. The model performs poorly when the RPD is lower than 1.5, whereas an RPD between 1.5 
and 1.99 indicates that the model performs moderately well. An RPD between 2 and 2.5 indicates that the model 
performs well, and the model performs excellently when the RPD is higher than 2.533.

where nc and np denote the number of samples in the calibration and prediction sets; yact and ymean denote the 
measured and mean values; ycal and ypre denote the predicted values in the calibration and prediction sets, respec-
tively; and SD denotes the standard deviation of the measured values in the prediction set.

Results and discussion
Spectral characteristics. The original and preprocessed (SNV) spectral curves are shown in Fig. 3. The 
spectra of the loquat samples showed the same tendency but with different reflection intensities. The preproc-
essed curves (Fig. 3b) were generally smoother than the original spectral curves (Fig. 3a), indicating a significant 
pretreatment effect. A clear absorption peak near 675 nm occurred, which correlated with the absorption of 
 chlorophyll34. The more obvious absorption peak at approximately 980 nm may be attributed to the O–H chemi-
cal bond, which is related to  water35.

Statistical analysis of chemical concentration values. Figure 4 shows colour e value, firmness, and 
SSC of loquat samples at three maturity stages; the data are shown as mean ± SD. There is an increasing trend for 
colour e value and SSC of loquats and a downward trend for firmness with maturity stages.

The SPXY  algorithm36 was used to divide all the samples into calibration and prediction sets. The ratio of 
the calibration set to the prediction set was 3:1. Table 1 presents the calibration and prediction sets statistics for 
colour e value, firmness, and SSC. The range of values of the calibration set was wider than that of the predic-
tion set, which indicated that the results for the calibration and prediction sets were reasonable and the selected 
modelling samples were highly representative.

Modelling based on full spectra. PLSR and PCR models were built up to assess the parameters of loquat 
quality using spectra preprocessed with SNV. The prediction results for the PLSR and PCR models are listed in 
Table 2.

The prediction performances of the PLSR models for colour e value (R2
P = 0.96, RMSEP = 0.49, RPD = 4.97), 

firmness (R2
P = 0.82, RMSEP = 0.27, RPD = 2.39), and SSC (R2

P = 0.72, RMSEP = 0.67, RPD = 1.92) were better 

(3)R2
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than those of the PCR models. This may be because the PLSR method has the advantage of considering both 
matrices, x (spectral matrix) and y (concentration matrix).

Feature variables selection. Feature variables selected by CARS. When extracting the feature variables 
using CARS, the number of Monte Carlo sampling runs was set to 50, and the cross-validation of the group 
amount was set to five. The optimal feature variables was selected based on the minimal RMSECV, which cor-
responded to the sampling runs at 27, 23, and 28 for colour e value, firmness, and SSC, respectively. The selected 
variables were 20, 29, and 18 for colour e value, firmness, and SSC of loquats, respectively. Table 3 presents the 
detailed variables selected by CARS.
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Figure 3.  (a) Reflectance curves of raw spectra; (b) pretreated spectra of loquat samples.
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Figure 4.  (a) Colour e value of loquat samples at different maturity stages; (b) firmness of loquat samples at 
different maturity stages; (c) SSC of loquat samples at different maturity stages.

Table 1.  Statistics of colour e value, firmness and SSC of loquats.

Quality parameter

Calibration set Prediction set

Num Range Mean SD Num Range Mean SD

Color e value 105 1.17–9.08 4.60 2.13 35 1.27–8.88 5.55 2.43

Firmness/(kg/cm2) 105 0.85–4.06 2.39 0.81 35 0.93–3.26 1.80 0.63

SSC/(°Brix) 90 5.50–10.50 7.79 1.21 30 6.60–10.50 8.81 1.29
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Feature variables selected by GA. The GA has a strong global optimisation ability. When extracting the feature 
variables using the GA, the population size, crossover probability, mutation probability, and the number of itera-
tions were set to 30, 0.5, 0.01, and 100, respectively. The optimal combination of variables with the minimal 
RMSECV was viewed as the key variable to determine the parameters in the loquat. The number of correspond-
ing feature variables set with the minimal RMSECV was 29, 22, and 23 for colour e value, firmness, and SSC in 
loquats, respectively. Table 3 lists the variables selected by the GA.

Feature variables selected by the SPA. For SPA, the number of variables was selected based on the minimum 
root mean square error (RMSE). Firstly, the RMSE decreases rapidly owing to the elimination of unimportant 
redundant variables. When the redundant information variable set of spectral information was minimal, the 
number of corresponding feature variables sets was 3, 27, and 16 for colour e value, firmness, and SSC in the 
loquat, respectively. Table 3 presents the detailed variables selected by the SPA.

Modelling based on feature variables. The MLR, ELM, and BP models for predicting loquat quality 
were established based on these feature variables. The performances of the models are listed in Table 4.

As presented in Table 4, for colour e value, CARS was superior to the GA in setting the proper parameters. 
The models built based on the feature variables extracted by SPA exhibited the worst performance, with R2

C lower 
than R2

P, which might be caused by under-fitting. The number of feature variables selected using CARS was 20, 
which represented 7.81% of the full spectrum. Compared with other models built based on feature variables 
selected by CARS, the MLR model built based on the feature variables extracted by CARS obtained a higher 
RPD and lower RMSEC and RMSEP. Compared with the models based on full wavelengths shown in Table 2, 
the prediction accuracy of MLR, ELM, and BP models based on feature variables selected by CARS and GA was 
enhanced. Especially, the CARS-MLR model achieved the best performance (R2

C = 0.97, RMSEC = 0.39, R2
P = 0.96, 

RMSEP = 0.45, and RPD = 5.38) in predicting colour e value.
For firmness, the CARS appeared to be superior to the SPA and GA regarding setting appropriate parameters. 

The number of feature variables selected by CARS was 29, which was 11.33% of the full spectrum. Compared 
with other models built based on the feature variables selected by CARS, the MLR model built based on the 
feature variables extracted by CARS obtained higher R2

C, R2
P, and RPD and lower RMSEC and RMSEP. Com-

pared with the models based on full wavelengths shown in Table 2, the prediction accuracy of MLR, ELM, and 
BP models based on the feature variables selected by CARS and SPA was improved. Especially, the CARS-MLR 
model achieved the best performance (R2

C = 0.90, RMSEC = 0.26, R2
P = 0.87, RMSEP = 0.23, and RPD = 2.81) in 

predicting firmness.
For SSC, CARS appeared to be superior to the GA through the set of proper parameters. The accuracies of the 

SPA-ELM and SPA-BP models were lower than those of the CARS-ELM and CARS-BP models. The SPA-MLR 
model indicated the worst performance of R2

C lower than R2
P, which might be caused by under-fitting. The num-

ber of feature variables selected by CARS was 18, which was 7.03% of the full spectrum. Compared with other 

Table 2.  Performance of PLSR and PCR models for colour e value, firmness, and SSC.

Model Quality parameter LVs

Calibration set Prediction set

R2
C RMSEC R2

P RMSEP RPD

PLSR

Color e value 12 0.96 0.42 0.96 0.49 4.97

Firmness 12 0.86 0.30 0.82 0.27 2.39

SSC 17 0.87 0.43 0.72 0.67 1.92

PCR

Color e value 22 0.96 0.43 0.95 0.51 4.76

Firmness 16 0.81 0.35 0.80 0.28 2.29

SSC 27 0.81 0.53 0.65 0.75 1.72

Table 3.  Optimal variables for colour e value, firmness, and SSC selected by CARS, GA, and SPA.

Index Methods Number Variables/nm

Color e value

CARS 20 397, 401, 404, 413, 418, 422, 432, 443, 498, 526, 541, 553, 621, 623, 641, 717, 750, 972, 974, 993

GA 29 394, 397, 399, 401, 411, 413, 415, 420, 422, 425, 505, 507, 515, 517, 519, 522, 524, 526, 529, 536, 538, 541, 543, 546, 548, 551, 553, 555, 558

SPA 3 551, 392, 577

Firmness

CARS 29 394, 399, 406, 408, 411, 413, 415, 555, 616, 619, 626, 641, 643, 678, 690, 693, 705, 707, 727, 730, 733, 743, 783, 785, 796, 974, 987, 1022, 1024

GA 22 546, 548, 551, 553, 555, 558, 560, 675, 678, 680, 685, 688, 690, 693, 698, 700, 703, 801, 1006, 1019, 1022, 1024

SPA 27 399, 406, 413, 415, 418, 422, 425, 429, 436, 439, 441, 448, 458, 493, 510, 526, 546, 577, 648, 678, 695, 745, 875, 914, 945, 1019, 1022

SSC

CARS 18 418, 425, 439, 488, 505, 695, 705, 720, 824, 883, 885, 888, 914, 919, 940, 961, 990, 1019

GA 23 418, 420, 462, 465, 467, 474, 476, 479, 484, 507, 522, 524, 901, 904, 906, 917, 919, 982, 985, 987, 1016, 1019, 1022

SPA 16 406, 408, 418, 425, 432, 443, 446, 450, 453, 481, 775, 867, 914, 937, 979, 1027
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models built based on the feature variables selected by CARS, the MLR model established based on the feature 
variables extracted by CARS obtained higher R2

C, R2
P, and RPD and lower RMSEC and RMSEP. Compared with 

the models based on full wavelengths shown in Table 2, the prediction accuracy of MLR, ELM, and BP models 
based on feature variables selected by CARS was improved. Especially, the CARS-MLR model achieved the best 
performance (R2

C = 0.88, RMSEC = 0.41, R2
P = 0.84, RMSEP = 0.51, and RPD = 2.54) in predicting SSC.

Modelling based on the optimal combinations of variables. MLR models using optimal feature variables selected 
by CARS were established to predict the quality of the loquats regarding colour e value, firmness, and SSC. The 
scatter plots of the actual measured and predicted values are shown in Fig. 5.

Figure 5 shows that the prediction errors of the three quality parameters were all small, and most of the data 
points were distributed near the fitting line, which indicates that the CARS-MLR model can predict loquat quality 
(colour e value, firmness, and SSC) very well.

The optimal CARS-MLR prediction model formulae for colour e value, firmness, and SSC of loquats are as 
follows:

(8)

Ycolour e value = 22.89− 8.82�397 + 12.37�401 − 22.02�404 + 28.37�413 + 2.09�418

+ 20.83�422 − 11.90�432 − 24.50�443 + 23.75�498 − 17.75�526 + 20.45�541

− 16.34�553 − 0.04�621 + 21.10�623 − 8.06�641 − 15.07�717 + 14.64�750

+ 23.98�972 − 0.96�974 − 18.62�993

(9)

YFirmness = 13.36− 11.57�394 + 19.69�399 − 14.56�406 − 21.74�408 + 11.40�411

+ 21.95�413 − 1.14�415 + 5.08�555 − 72.32�616 + 98.67�619 − 48.77�626

+ 8.86�641 + 5.32�643 − 1.30�678 − 31.62�690 + 53.08�693 + 22.26�705

− 61.38�707 + 100.76�727 − 95.06�730 + 48.17�733 − 11.88�743 − 9.22�783

− 23.11�785 + 10.39�796 − 15.85�974 + 1.51�987 + 12.89�1022 + 7.36�1024

Table 4.  Prediction results of the MLR, ELM, and BP models.

Quality parameter Model Method Band Num

Calibration set Prediction set

R2
C RMSEC R2

P RMSEP RPD

Color e value

MLR

CARS 20 0.97 0.39 0.96 0.45 5.38

GA 29 0.97 0.40 0.96 0.49 5.01

SPA 3 0.92 0.62 0.98 0.37 6.60

ELM

CARS 20 0.97 0.39 0.96 0.46 5.31

GA 29 0.96 0.41 0.96 0.50 4.87

SPA 3 0.93 0.57 0.97 0.40 6.08

BP

CARS 20 0.96 0.42 0.96 0.51 4.78

GA 29 0.96 0.44 0.94 0.58 4.20

SPA 3 0.91 0.63 0.97 0.44 5.56

Firmness

MLR

CARS 29 0.90 0.26 0.87 0.23 2.81

GA 22 0.85 0.31 0.79 0.29 2.20

SPA 27 0.88 0.28 0.84 0.25 2.51

ELM

CARS 29 0.85 0.31 0.83 0.26 2.43

GA 22 0.83 0.34 0.75 0.31 2.04

SPA 27 0.81 0.35 0.79 0.29 2.21

BP

CARS 29 0.89 0.27 0.83 0.26 2.46

GA 22 0.83 0.34 0.77 0.30 2.12

SPA 27 0.84 0.32 0.82 0.27 2.39

SSC

MLR

CARS 18 0.88 0.41 0.84 0.51 2.54

GA 23 0.76 0.59 0.59 0.82 1.58

SPA 16 0.74 0.61 0.77 0.61 2.13

ELM

CARS 18 0.86 0.45 0.76 0.63 2.06

GA 23 0.74 0.61 0.62 0.78 1.65

SPA 16 0.75 0.60 0.69 0.70 1.84

BP

CARS 18 0.87 0.43 0.77 0.61 2.11

GA 23 0.60 0.77 0.59 0.81 1.59

SPA 16 0.72 0.64 0.57 0.84 1.54
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where Ycolour e value, YFirmness, and YSSC represent the predicted values for colour e value, firmness, and SSC, respec-
tively. λi denotes the reflectance at the feature wavelength, where the subscript i indicates the wavelength (nm).

Visualised distribution of quality parameters. A feature of the HSI technique is that information can 
be gathered from each pixel of the test  sample37. The information extracted from the hyperspectral images was 
used to generate visualisation distribution maps of the reference values (colour e value, firmness, and SSC), 
which enabled visualisation of the differences in the reference values between the  samples38. Due to the approxi-
mately spherical shape of loquat fruit, the spectra of different pixels within the same fruit region may exhibit 
significant differences, potentially leading to poor imaging results. One specific application of loquat fruit detec-
tion is to evaluate the overall fruit quality, with secondary emphasis on expressing local characteristics. Building 
upon this fact, the deviation between the pixel values and the mean spectrum is compressed, and the sum of 
the compressed deviation and the mean spectrum is employed as the input  variable17. In this study, the optimal 
CARS-MLR models were used to predict the quality parameter content of each pixel in  loquat39. Figure 6 shows 
the intuitive distribution of colour e value, firmness, and SSC for samples 1, 2, and 3, respectively. The samples 1, 
2, and 3 correspond to maturity stages I, II, and III, respectively.

As shown in Fig. 6, colour e value and SSC gradually increased with the different maturity stages, while 
firmness gradually decreased with the different maturity stages. And there were significant visual differences 
between the different samples. Therefore, the distribution map is useful for online monitoring of loquat quality.

(10)

YSSC = 36.33− 76.42�418 + 84.97�425 + 26.85�439 − 48.79�488 + 30.30�505

− 21.61�695 + 77.22�705 − 67.04�720 − 29.14�824 − 31.90�883 + 222.32�885

+ 61.35�888 − 176.46�914 − 122.60�919 + 72.51�940 + 68.45�961 − 134.16�990

+ 81.12�1019

)b()a(
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Figure 5.  Scatter plots of the modelling results of the CARS-MLR model: (a) prediction results of colour e 
value; (b) prediction results of firmness; (c) prediction results of SSC.
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Maturity stage classification. A total of 249 samples were used for classifying loquat maturity, with 60 
samples in stage I, 150 in stage II, and 39 in stage III. The Kennard–Stone algorithm was applied to partition 
the samples from each stage into calibration and prediction sets at a ratio of 2:1, resulting in 166 and 83 samples 
in the calibration and prediction sets, respectively. The PLS-DA, simplified K nearest neighbor (SKNN), and 
SVM models were applied to discriminate the maturity stages of loquats. The discrimination results are listed 
in Table 5.

As presented in Table 5, the PLS-DA model had a higher discrimination accuracy in the calibration set than 
the SKNN and SVM models. The three models had the same discrimination accuracy (97.59%) for the prediction 
set. Figure 7 shows the confusion matrix of the prediction set, in which two samples from Stage I were incorrectly 

Figure 6.  Prediction maps for colour e value, firmness, and SSC in different loquat samples.

Table 5.  Prediction results of maturity stages of loquat by PLS-DA, SKNN, and SVM models.

Model

Calibration set Prediction set

Total accuracy/%Num Error Accuracy/% Num Error Accuracy/%

PLS-DA 166 3 98.19 83 2 97.59 97.99

SKNN 166 14 91.57 83 2 97.59 93.57

SVM 166 9 94.58 83 2 97.59 95.58
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Figure 7.  Confusion matrix of prediction set.
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identified as Stage II in each of the PLS-DA, SKNN, and SVM models. The results illustrated that the PLS-DA 
model had the best performance in discriminating loquat maturity.

Conclusions
In this study, hyperspectral imaging technology was used to detect and visualise loquat quality and discriminate 
maturity. The main findings of this study are as follows.

1. Hyperspectral imaging coupled with chemometric algorithms is a feasible method for assessing loquat 
quality. Comparing full spectra models (PLSR and PCR) with simplified models (MLR, ELM, and BP net-
work) based on feature variables selected by three effective variables selection algorithms (CARS, GA, and 
SPA), the CARS-MLR models with the optimal prediction performance were obtained for colour e value 
(R2

P = 0.96, RMSEP = 0.45, RPD = 5.38), firmness (R2
P = 0.87, RMSEP = 0.23, RPD = 2.81), and SSC (R2

P = 0.84, 
RMSEP = 0.51, RPD = 2.54), respectively.

2. The optimal prediction model combined with pseudo-colour technology could visualise the quality param-
eter distribution of loquats. The maps show that the distribution of the quality parameters essentially cor-
responded to the actual situation, and the content of the same quality parameters was significantly different 
between the loquat samples.

3. Hyperspectral imaging combined with pattern recognition can be used to evaluate loquat maturity. On 
comparison of the three maturity classification models (PLS-DA, SKNN, and SVM models), the PLS-DA 
model showed the best performance, with classification accuracies of 98.19% and 97.99% for calibration and 
prediction sets, respectively.

This study indicates that hyperspectral imaging technology can be used to non-destructively and rapidly 
determine loquat quality and maturity, providing a theoretical basis for the development of instruments in the 
future.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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