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BLINK enables ultrafast tandem 
mass spectrometry cosine 
similarity scoring
Thomas V. Harwood 1, Daniel G. C. Treen 1, Mingxun Wang 2, Wibe de Jong 3, 
Trent R. Northen 1 & Benjamin P. Bowen 1*

Metabolomics has a long history of using cosine similarity to match experimental tandem mass 
spectra to databases for compound identification. Here we introduce the Blur-and-Link (BLINK) 
approach for scoring cosine similarity. By bypassing fragment alignment and simultaneously scoring 
all pairs of spectra using sparse matrix operations, BLINK is over 3000 times faster than MatchMS, a 
widely used loop-based alignment and scoring implementation. Using a similarity cutoff of 0.7, BLINK 
and MatchMS had practically equivalent identification agreement, and greater than 99% of their 
scores and matching ion counts were identical. This performance improvement can enable calculations 
to be performed that would typically be limited by time and available computational resources.

Tandem mass spectrometry has become a critical component of both targeted and untargeted metabolomics 
experiments. Comparing fragmentation spectra between authentic standards and experimental data is central 
to making high confidence assignments in targeted metabolomics experiments. Untargeted experiments depend 
on matching experimental MS2 spectra against databases such as GNPS1, Metlin2, and MassBank3. Although 
different approaches have been developed4,5, this is still conventionally done by aligning fragment ions that share 
the same mass-to-charge ratio (m/z) and calculating the cosine similarity of their intensities. As a consequence 
of early mass spectrometers having low resolution, integer binning was a sufficient alignment step for comparing 
fragmentation spectra6. But as the resolution of mass spectrometers grew, so too did the sophistication of align-
ment algorithms necessary for high confidence identification and similarity scoring. Many of these approaches 
use iterative operations to compare individual fragment ions between reference and experimental spectra, which 
is inherently slower than vectorized operations.

To this end we introduce BLINK, an approach that enables scoring of fragmentation spectra using sparse 
matrix operations without the drawbacks of traditional m/z binning-based approaches. Rather than multiplying 
two matrices of binned fragmentation spectra directly, we use a uniform kernel to link together bins that are 
within machine noise tolerance, thereby vectorizing the previously costly alignment step. Matching ion counts 
can be approximated via the same methodology. Here we describe BLINK’s implementation and present a 
comparison between BLINK and other high performance similarity algorithms like GreedyCosine in MatchMS 
and Flash entropy7,8.

Results and discussion
For this study, we focused our score equivalence comparison on MatchMS because it is a high-performance, 
widely used, and well-supported Python package with overlapping use cases with BLINK. Flash entropy was only 
benchmarked against BLINK for speed, because the underlying similarity calculation used is mathematically 
distinct from cosine similarity4. To assess BLINK’s agreement with canonical cosine-based scoring approaches, 
we used tandem mass spectra sampled from an aggregate of all publicly available GNPS libraries. Using both 
MatchMS and BLINK, two randomly selected sets of MS/MS spectra were scored against each other. Spectra 
were classified as “similar” if their cosine score was ≥ 0.7 and matching ions were ≥ 6. All 24,708 spectra classified 
as similar by MatchMS were also similar using BLINK, however, 225 spectra were only classified as similar by 
BLINK (Fig. 1a). The spectra classified as similar by both BLINK and MatchMS had raw scores that varied by a 
mean value of 0.0004 and matching ion counts that varied by a mean value of 0.06. The deviation in scores and 
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counts is due to BLINK’s alignment-free approach, which factors all ions within tolerance into the scoring and 
counting, rather than selecting only one.

While the results were similar, BLINK was much faster. Importantly, BLINK scales more favorably with 
high numbers of comparisons. BLINK can perform 1e8 comparisons 3,312 times faster than MatchMS (0.96 s 
for BLINK vs 53 min for MatchMS) (Fig. 1b). Additionally, BLINK was 8 times faster than Flash entropy. This 
difference is because standard tools such as MatchMS rely on loop-based, pairwise alignment procedures for 
matching ions within machine noise tolerance during scoring. BLINK circumvents this computationally expen-
sive fragment alignment step. In addition, rather than iteratively scoring pairs of spectra, BLINK simultaneously 
scores all pairs of spectra via sparse matrix operations. Searches using tandem mass spectra for chemical analogs 
typically combine cosine scoring with shifting the spectra by their difference in precursor m/z. BLINK also has 
the capability of performing analog searches by precursor m/z difference or any user defined mass difference.

Furthermore, depending on the number of comparisons and hardware specifics, the scoring speed can be 
increased by an additional 5–10 times if using GPU acceleration. This speedup can enable investigators to per-
form high-throughput calculations that would otherwise be prohibitively time intensive. For example, NIST209 
currently has over 1.3 million spectra and a typical metabolomics data set can have 10,000 features. Extrapolating 
from the speed tests in Fig. 1b, performing a complete database search would take 4.5 days with MatchMS, and 
this is reduced to 3.3 min using BLINK. Our benchmarking was performed without database indexing to more 
directly compare algorithm performance, however, pre-indexing of library spectra prior to scoring could also 
be utilized to further decrease compute time.

There are some limitations to BLINK’s alignment-free approach. Because all ions within tolerance are fac-
tored into the cosine score, scores calculated using BLINK diverge from precise, loop-based implementations as 
tolerance increases, resulting in higher scores and matches (Fig. 2). Therefore, traditional tools may be a more 
appropriate choice for data generated by low resolution mass spectrometers that require a wide tolerance win-
dow. However, given trends in mass spectrometry hardware development, this limitation will likely become less 
relevant over time as higher resolution machines are continually developed10. One viable strategy for use cases 
that require 100% agreement with conventional approaches is to recalculate the top BLINK hits using precise 
methods, maintaining much of the performance advantages of BLINK’s alignment-free approach while produc-
ing identical scores. For instance, to recalculate the 24,933 BLINK hits from Fig. 1a would take less than 10 s 
with MatchMS. We envision that the speed-up using BLINK will enable scientists to efficiently make chemical 
assignments as the size of MS2 databases continues to grow, particularly in-silico databases uncoupled from the 
availability of new authentic standards and instrument throughput 11,12.

Depending on the BLINK bin width used, compute time and agreement with MatchMS vary (Fig. 3.). While 
scoring speed increases as bin width increases, using a bin width larger than 0.001 results in diminishing gains 
in performance. Additionally, while equivalence to MatchMS remains constant when bin width is smaller than 
0.0001, there is a significant increase in compute time. The divergence in scores between MatchMS and BLINK 
as bin width increases can be explained by the binned fragment m/z values of two spectra being compared being 
within tolerance to each other while the original values were not, or vice versa. For use cases that require high 
agreement to conventional approaches, the bin width should be informed by the reliable accuracy of the mass 
spectrometer used to collect the experimental tandem mass spectra.

Figure 1.   Evaluation of timing and agreement comparing BLINK cosine scoring to MatchMS and Flash 
entropy. (a) Modified confusion-matrix of spectral similarity using BLINK and MatchMS on over 100 million 
comparisons where “similar” results had high scores and high matching ions. In addition to raw counts, the 
percentages of counts normalized by MatchMS values are shown. (b) Median cosine scoring runtimes for 
BLINK (blue), MatchMS (orange) and Flash entropy (green) across 3 replicates. BLINK and Flash entropy 
scoring was performed without GPU acceleration.
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Methods
Implementation.  Typically, two fragmentation data files, a query and a reference, are used as input. The 
files are parsed and the fragmentation spectra are represented as lists of m/z and intensity arrays with associated 
metadata. To discretize the spectra, m/z values are first converted to integer-bins based on the user defined bin 
width (default is 0.001 Da). These values can optionally be shifted by the precursor m/z or other user defined 
mass for analog searches. Intensity arrays in each spectrum are then unit-vector normalized. Each set of pro-
cessed spectra is converted into two sparse matrices. The first contains fragment intensities, and the other frag-
ment counts. Each sparse matrix is constructed such that rows are m/z bins and columns are the spectrum index 
(Fig. 4a).

Prior to scoring, the m/z bins are expanded (i.e. blurred) by distributing intensities and summing fragment 
m/z bins with a tolerance-window wide array, referred to here as BLINK’s kernel. This allows for m/z bins to be 
linked between spectra within a tolerance parameter (default is 0.01 Da). It is only necessary to perform this 
computation on one set of spectra, so the kernel is used to transform the smaller of the two (typically the query) 
(Fig. 4b).

Each pair of sparse matrices are resized such that they contain an equal number of rows, and one of the matri-
ces is transposed. The two matrices are multiplied, generating the score matrix (Fig. 4c). When performed on 
the matrices containing intensity data, this step simultaneously computes the cosine scores for each combination 
of spectra. Fragment counting is based on the same algorithm, but uses the fragment count matrices as input. 
Scoring operations can optionally be performed with GPU acceleration.

Speed benchmarking and similarity agreement.  Calculations were done using an exclusive CPU 
node on the Perlmutter supercomputer at NERSC. Each CPU node is equipped with 512 Gb of DDR4 RAM and 
dual AMD EPYC 7763 64 × core processors. Two sets of spectra were randomly sampled from an aggregate of all 
GNPS library spectra (All-GNPS) as of January 17th 2022 ranging in size from 1e2 to 1e4. Each subset of spectra 

Figure 2.   Direct comparison of scores (a) and matching ions counts (b) between BLINK and MatchMS. Score 
and match thresholds of 0.7 and 6 respectively are represented by red lines. Comparisons with exact matching 
ion counts and scores within 0.001 are shown in blue. The remaining comparisons are shown in orange.

Figure 3.   BLINK compute time in seconds per ten million comparisons (a) and equivalence of scores to 
MatchMS results (b). Recommended bin width of 0.001 is represented by a dashed red line.
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was sampled independently without replacement. Scoring was performed using tolerance values of 0.01 Da and 
0.009 Da for BLINK and MatchMS respectively. Tolerance for Flash entropy was similarity set to 0.009 Da. The 
BLINK bin width parameter was set to 0.001 Da. BLINK’s true tolerance is equivalent to the tolerance parameter 
subtracted by the bin width, hence the difference in tolerance values used for the three algorithms. To improve 
scoring behavior of all algorithms, the spectra were filtered to remove noise ions and the intensity values were 
scaled by their square-root. Fragment ion noise filtering was accomplished by removing ions that were < 1% of 
base peak intensity and ions with m/z values greater than the precursor m/z. Additionally, all ions with intensity 
values of 0 were removed from the spectra.

Progressively larger sets of spectra were sampled and scored with 3 replicates and their median calculation 
timings with MatchMS, BLINK, and Flash entropy were reported in Fig. 1b. The modified confusion-matrix 
reported in Fig. 1a was generated using 1e8 scores from the first replicate of the speed benchmark. Spectra were 
classified as similar if their score was ≥ 0.7 and matching ions were ≥ 6. These values were chosen because they 
are commonly used in the field.

Mean score and matching ion count differences.  The same set of scores used to construct the confu-
sion-matrix were used to calculate the mean score and matching ion count differences. Differences of the true 
positive scores (classified as similar by both MatchMS and BLINK) were calculated by subtracting the BLINK 
scores and counts by their MatchMS counterpart.

Direct score and matching ion count comparison.  Two sets of spectra were sampled from the pub-
licly available Berkeley Lab spectral library in GNPS to make a total of 10 million comparisons. Pre-processing 
of spectra was performed as described above for speed benchmarking prior to scoring. Scores were considered 
equivalent if the difference was less than 0.001, and matching ion counts had to be identical. For this comparison, 
a bin width of 0.001, a BLINK tolerance of 0.01, and a MatchMS tolerance of 0.009 was used.

Speed benchmarking and similarity agreement across bin widths.  The same 10 million compari-
sons used to generate the direct score and matching ion count comparison reported in Fig. 3 were recalculated 
across nine bin widths, from 10e−6 to 0.01, maintaining a constant BLINK tolerance value of 0.01. The largest bin 
width of 0.01 was chosen because BLINK bin width cannot exceed tolerance.

Conclusion
Comparison of fragmentation spectra has become a primary step in both targeted and untargeted metabolomics 
workflows. Using an alignment-free and vectorized approach, BLINK is able to compute cosine similarity scores 
of tandem mass spectrometry data faster than previously possible. Currently, our implementation is limited to 

Figure 4.   Workflow model illustrating the general methodology used to calculate cosine similarity scores and 
matching ion counts using BLINK.
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calculating cosine similarity, however, adapting this framework to other similarity measures like spectral entropy4 
or SIMILE13 to enable performance gains is a promising area of future work.

Data availability
BLINK is implemented in Python3 and is published under a modified open-source license. Code and license are 
available on Github: https://​github.​com/​biora​ck/​blink.
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