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Revisiting nonlinearity of heart rate 
variability in healthy aging
Martín Calderón‑Juárez 1,5, Gertrudis Hortensia González‑Gómez 3, Juan C. Echeverría 4 & 
Claudia Lerma 2*

Aging is commonly regarded as a physiological process in which the dynamic complexity of 
physiological time series and organ systems is gradually lost. This notion is derived from the 
identification of a decline of nonlinear measures with the advance of aging. However, additional 
research on cardiovascular control studied through heart rate variability (HRV), i.e., the instantaneous 
changes in heart rate, shows that despite the constriction of its statistical distribution, the nonlinear 
organization remains present in advanced age. Here, we used surrogate data testing to investigate 
the presence of nonlinear information in HRV time series from a publicly available database of 1121 
healthy human subjects from 18 to 92 years old. We also studied the influence of basic clinical features, 
such as sex, body mass index (BMI), and mean heart rate (HR), on such nonlinear information. We 
found that the percentage of nonlinear time series after 30 years of age diminishes significantly 
(p < 0.01). Furthermore, larger BMI and HR are associated with the presence of more linear information 
in HRV, while the female sex is associated with the manifestation of nonlinear information. This work 
provides a common background for the contextualized interpretation of nonlinear testing and shows 
that the nonlinear content of HRV time series diminishes through aging.

It is widely considered that aging is related to a gradual loss of complexity in physiological  function1–3. This notion 
comes from empirical observations in which the values of some complexity measures diminish with increasing 
 age2,4–6, along with the continuous reduction in the variance and predominance of low-frequency components 
in heart rate variability (HRV)4,7. Contrary to the hypothesis that aging shows a decline in physiological func-
tion and a reduction of physiological complexity  dynamics8, it has been proposed that, despite showing reduced 
variability, certain nonlinear structures in physiological behavior remain  unchanged8,9. These two alternative 
hypotheses represent different notions relating to aspects of the physiological control mechanisms expected to 
change in the aging process in contrast to the impairments accompanying certain pathological  conditions10.

Heart rate variability (HRV), one of the main physiological time series subjected to nonlinear  analysis11, 
refers to the fluctuations in consecutive heartbeats, i.e., the instantaneous changes in heart rate or heart-period 
 intervals12. A large amount of robust clinical research has been published in which the nonlinear analysis of 
HRV has proven to be a promising mathematical clinical tool for the identification of higher-risk cardiovas-
cular patients and a powerful instrument for the study of the multisystemic and intricate physiology of heart 
rate  regulation11. Nonlinear methods are frequently used to obtain relevant information on HRV beyond the 
traditional description of its statistical and power spectral properties. However, the existence of such nonlinear 
properties is not always formally shown. Thus, the risk of indiscriminately searching for nonlinear properties 
that are not rigorously confirmed in the HRV time series is a common pitfall in the investigation of the dynam-
ics in these time series.

Surrogate data testing is a reliable technique for proving, from the statistical point of view, that a nonlinear fea-
ture does exist in the time series under study. A specific nonlinear measure, known as the discriminating statistic, 
is compared with the distribution of the same property determined in a collection of bootstrap-generated signals 
(surrogates), which are very similar to the original data but lack that tested nonlinear  feature13. This methodol-
ogy has been applied in several  scenarios14–19. Still, the heterogeneity among sample populations complicates 
its  interpretation14–19, since the influence of even the most basic characteristics on nonlinear dynamics, such as 
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age, sex, and body mass, are not taken into consideration. Hence, the physiological and clinical interpretation 
of nonlinear characteristics of HRV is unattainable by the lack of a common background.

In this work, we tested the presence of nonlinear information in human HRV. We examined its manifesta-
tion during aging in female and male subjects, as well as the effect of body mass index (BMI). We employed the 
publicly available database “Autonomic Aging: A dataset to quantify changes of cardiovascular autonomic func-
tion during healthy aging”20–22 by analyzing the HRV obtained from ECG recordings of 1121 healthy individuals 
with an age range from 18 to 92  years20. We propose the use of the nonlinear analysis tool recurrence plots and 
its measures of complexity determinism (DET) and laminarity (LAM) as discriminative  statistics23 to test HRV 
through a robust wavelet-based surrogate  algorithm24. The algorithm was previously validated in short-term 
HRV time  series14. DET and LAM are, respectively, measures of predictability and laminar (intermittent) states 
in a given  system25; from the scope of short-term neural modulation of HRV by the autonomic nervous system, 
the increase in the value of these metrics is tightly related with parasympathetic  withdrawal26. Here, we will use 
the gradual wavelet reconstruction algorithm to generate surrogates that preserve with remarkable fidelity the 
power spectrum, data distribution, and nonstationarity of time  series24. This ensures that from a statistical point 
of view, we accurately identify nonlinear behavior in HRV.

Methods
Study design. In this retrospective study, we assessed the ECG recordings from the database “Autonomic 
Aging: a dataset to quantify changes of cardiovascular autonomic function during healthy aging”20–22, which 
contains data from 1,121 healthy volunteers recruited at Jena University Hospital. The database contains at least 
one ECG channel (lead II), age range, sex, and body mass index (BMI), and it is described  elsewhere20. Briefly, we 
analyzed one ECG channel recorded at 1000 Hz from each participant. The ECG recording was taken in a quiet 
and fully shaded room with the temperature set at 22 °C. According to the database information, after subjects 
lied down comfortably on an examination tilt table, the electrodes were placed and subjects were instructed to 
avoid movement, yawning, or coughing. After a few minutes in such position, the instructor started the record-
ing. The recording length ranged from 8 to 36 min. Our protocol was approved by the Research and Ethics Com-
mittee of our institution (protocol number 22-1309).

Age groups are defined as follows: Group 1 (18–29 years), Group 2 (30–39 years), Group 3 (40–49 years), 
Group 4 (50–59 years), Group 5 (60–69 years) and Group 6 (70+ years), as they were presented  elsewhere20. A 
segment of the last 5 min of each ECG recording was taken. If this segment was noisy or if any arrhythmia was 
observed, the 5-min segment nearest to the end was selected. Finally, if a 5-min segment free of arrhythmias, 
noise, or artifacts could not be found, the ECG recording was discarded. Seventy-one ECG recordings were not 
included owing to either noise in the signal, observations of ectopic heartbeats, supraventricular arrhythmias, 
or the unavailability of the ECG recording. Twenty-four subjects were also excluded owing to unspecified age 
in the database. Finally, 1026 subjects were considered for the analysis of HRV. Figure 1 summarizes how these 
cases were selected, whilst Table 1 describes how groups were conformed. The proportion of male and female 
participants was different across the age groups (p < 0.001).

ECG processing. According to the database  information20–22, the ECG recordings were obtained from 
either MP150 (ECG100C, BIOPAC systems inc., Golata, CA, USA) or Task Force Monitor system (CN Systems 
Medizintechnik GmbH, Graz AUT). The ECG recordings were visually inspected by two of our trained observ-

Figure 1.  Selection of individuals included in the study.
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ers and the correct identification of R waves was visually supervised in the Kubios HRV premium  software27. 
After correction of misidentifications, artifacts, and identification of arrhythmias, an automatic beat correction 
 algorithm3 was applied to correct any remaining ectopic heartbeats that were replaced by interpolated RR values. 
Most of the RR time series did not require any ectopy correction, heartbeat interpolation was applied only in 15 
recordings (1.5%), and the percentage of heartbeats corrected by the automatic beat correction algorithm was 
within 0.55% and 1.24%.

HRV linear indices. To provide a common reference framework, we provide a description of traditional 
HRV indices, time and frequency-based  measurements12. We report the mean heart rate (HR), the standard 
deviation of NN intervals (SDNN), and the square root of the mean of the squares of differences between adja-
cent NN intervals (RMSSD).

Power spectral density was calculated by the discrete Fourier transform (DFT). The HRV series were resam-
pled at 3 Hz to obtain evenly spaced HRV time series. To reduce the spectral leakage owing to the discontinuities 
at the boundaries of the finite HRV time series, a 300 data-points Hamming window function was applied within 
the resampled HRV time series with 50% overlapping. Finally, we used the DFT to calculate the mean power at 
the low-frequency band (LF, [0.04–0.15 Hz]), and high-frequency band (HF, [0.15–0.4 Hz]).

A larger statistical variability in HRV (SDNN and RMSSD), as well as a lower HR, reflect short-term pre-
dominance of parasympathetic activity; the HF band reflects parasympathetic and breathing pace regulation 
on HRV, and the LF band shows a mix of sympathetic and parasympathetic activity. Therefore, the LF/HF ratio 
(reported here) is usually used to provide a quick and global reference to the predominance of sympathetic over 
parasympathetic  balance12.

Recurrence plot quantification analysis (RQA). RQA is a tool for nonlinear analysis based on the 
study of the textures observed in recurrence plots and is suitable for short, nonstationary, and noisy time series, 
such as  HRV25. The phase space of a multidimensional system can be reconstructed from a unidimensional time 
series (such as HRV), and a recurrence plot is the visualization of the approximate dynamical recurrences that 
occur in such phase space. The recurrence plot is formally defined by:

where εi is the distance that defines the vicinity of the point −→x i , and � · � is the norm that defines the shape or 
criteria to define the vicinity. Given that HRV time series are often nonstationary, the fixed amount of neighbors 
(FAN) was used to capture the time series dynamics, where εi is variable for each point, and the recurrence density 
was fixed at 0.07. FAN norm is intended for the analysis of nonstationary data and the recurrence neighborhood 
varies along the data to maintain the same recurrence density for all points. �(x) is the Heaviside function, if 
the distance between points −→x i and −→x j is shorter than εi , the point −→x j lies within the recurrence vicinity and 
the number 1 is assigned ( Ri,j = 1 ), otherwise a 0 is assigned. We chose the embedding delay value τ by taking 
the first local minimum of the average mutual information function. The embedding dimension m was chosen 
with the false nearest-neighbors function, when it reached its first value at 0. This approach has been described 
previously for short-term  HRV14.

The complexity measures determinism (DET) and laminarity (LAM) were calculated from the recurrence 
plot of each HRV time series. DET is the ratio of recurrence points that form diagonal structures. This measure 
reflects that a segment of the trajectory is rather close during n time steps to another segment of the trajectory 
at a different  time25. LAM refers to the ratio between recurrence points forming the vertical structures and the 
entire set of recurrence points and represents the occurrence of laminar states in the  system23.

Nonlinearity testing. The Pinned Wavelet Iterative Amplitude Adjusted Fourier Transform (PWIAAFT) 
algorithm described by Keylock, C.28 conveys the basis of nonstationarity preservation in surrogate data. In this 
algorithm, the time series at issue is decomposed using maximal overlap discrete wavelet transform (MODWT). 
Then, the wavelet coefficients of greater energy are pinned (fixed), and on the remaining, the iterative amplitude 
adjusted Fourier transform (IAAFT) is applied to dismantle nonlinear dynamics. However, this procedure was 
later refined to improve the convergence of time series and received the name of gradual wavelet reconstruction 
(GWR)24. In the latter technique for generating surrogate data, a cubic Hermitian polynomial is used to interpo-
late between fixed values. The IAAFT and GWR algorithms described  in24 are also shown in the Supplementary 
Information.

(1)Ri,j = �
(

εi − �
−→x i −

−→x j�
)

, i, j = 1, . . . ,N ,

Table 1.  Healthy participants included in the study, by age and sex.

Age group (years) Females, N = 632 (61.6%) BMI (kg/m2) Males, N = 394 (38.4%) BMI (kg/m2)

18–29 454 (67.7%) 22 ± 3 217 (32.3%) 23 ± 3

30–39 65 (46.8%) 23 ± 4 74 (53.2%) 25 ± 5

40–49 44 (47.3%) 27 ± 6 49 (52.7%) 26 ± 4

50–59 28 (45.2%) 29 ± 9 34 (54.8%) 27 ± 4

60–69 24 (61.5%) 26 ± 5 15 (38.5%) 27 ± 3

70+ 17 (77.3%) 26 ± 3 5 (22.7%) 26 ± 2
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In this work, we used a threshold ρ = 0.01 for GWR surrogate generation, as used previously for 5-min HRV 
time  series14. This is a robust algorithm to synthesize surrogate time series that preserve the statistical properties 
of the original data, as well as the power spectral density distribution. Furthermore, its main advantage against 
Fourier ransform-based algorithms is the preservation of nonstationarity in the original data. Ninety-nine sur-
rogates for every original HRV time series were generated to achieve the surrogate tests with the significance α 
level of 0.01. According to the percentile in which the discriminant statistic value is located, a p-value was given. 
A statistically significant result for the surrogates was considered when p < 0.05 (i.e., the hypothesis about pres-
ence of nonlinear information in the original time series was accepted).

Statistical analysis. Categorical variables are described as absolute frequency (and percentages) and were 
compared between groups using Pearson’s chi-squared test. Continuous variables are described as mean ± stand-
ard deviation and were compared between two groups by Student’s t-test and among several groups by two-way 
analysis of variance (ANOVA). In the latest, we applied two-levels pairwise comparisons (sex and age group) 
for our dependent variables (HR, SDNN, RMSSD, LF/HR ratio, DET and LAM), with post hoc adjustment of 
p-values using the Bonferroni method. We compared sex and all age groups to all others. To assess the influence 
of independent variables age group, sex, BMI, and HR on surrogate data testing (i.e., linear and nonlinear clas-
sification of HRV time series) we performed a logistic regression to estimate the odds ratio (OR, 95% confidence 
interval). Statistical tests were done using the Statistical Package for the Social Sciences (SPSS 26, IBM SPSS Inc., 
USA) Statistical significance was considered at p < 0.05.

Results
Figure 2 illustrates the imitation of an original HRV time series by surrogate time series, as well as their corre-
sponding recurrence plots. Figure 3 shows the results of HRV traditional indices through age groups. There are 
no significant differences in the mean HR of groups older than 30 years compared with the 18–29 years group. 
The groups older than 30 years of age show smaller values of SDNN and RMSSD compared with the 18–29 years 
group (same sex). Few differences are observed between males and females in all linear HRV indices (same age 
group).

Figure 2.  Illustrative HRV time series and a surrogate time series generated by the PWIAAFT algorithm (upper 
row). Also, their corresponding recurrence plots are shown (bottom row), where a similar texture is observed.
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Regarding RQA indices, few DET value differences were found along age groups and between males and 
females (Fig. 4). Larger values of LAM (Fig. 4) are observed in the groups of 40- 49, 50–59, and 60–69 years of 
age compared with the 18–29 years of age group in females and males. Also, larger values of LAM are observed 
in males compared with females from 18–69 years (except for the 50–59 years of age group).

Table 2 shows the p-values of ANOVA main effects and interactions. Age has a significant effect on all vari-
ables analyzed here. And sex has only a significant effect on LF/HF, DET and LAM. However, the interaction 
between age and sex is not significant for any HRV variable.

A larger proportion of nonlinear time series was observed in the female group compared to the male group 
after surrogate data testing with DET and LAM as discriminating statistics (Fig. 5). Also, a smaller proportion 
of nonlinear time series was found in groups 30–39, 40–49, 50–59, 60–69, and 70+ years of age compared with 
the 18–29 years of age group with both discriminating statistics (Fig. 5).

Figure 6 shows that subjects that display a nonlinear behavior in accordance with the HRV nonlinear meas-
ures DET and LAM have both significantly smaller BMI and lower HR in comparison with those classified with 
linear HRV time series.

When DET is used as the discriminating statistic, the probability of finding nonlinearity in the HRV time 
series decreases with age, higher BMI, and HR (OR per unit shown in Fig. 7). Female sex increases the probability 
of classifying HRV time series as nonlinear. Similar results are found with LAM. However, for the 40–49 years 
of age group, BMI and HR do not show a statistically significant association to the presence of nonlinearity 
according to the OR.

Figure 3.  Heart rate variability linear indices grouped by age and sex. *p < 0.05 male vs. female (same age 
group). #p < 0.05 vs. 18–29 years group (same sex).

Figure 4.  Recurrence quantitative analysis by age and sex. *p < 0.05 male vs. female (same age group). #p < 0.05 
vs. 18–29 years of age group (same sex).
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Discussion
In this work, we show that nonlinear information in HRV data is less likely to be found in older healthy humans 
as well as in subjects with larger BMI and higher HR. Also, female subjects are more likely to present nonlinear 
behavior in HRV. In a previous work we have shown that it is possible to dissect nonlinear components in physi-
ological time series obtained from ECG recordings in healthy subjects and end-stage renal disease  patients14 
by employing a surrogate data method based on wavelets. Although several studies have applied surrogate data 
testing to investigate the presence of nonlinear dynamics in HRV, the effect of basic physical characteristics 
of human subjects such as sex, age, BMI and HR have not been fully assessed. This work provides a common 
background for the contextualized interpretation of nonlinear testing and shows that nonlinear information in 
HRV decreases through clinically healthy aging.

The exploration of nonlinear dynamics in HRV has been performed using methods that either take into 
consideration or not the influence of  nonstationarity14–18. Previously we confirmed that linear nonstationary 
HRV time series may be erroneously reported as nonlinear in case of not using algorithms, such the GWR 
selected here, to generate surrogates that preserve the statistical properties, power spectral density distribution 
and nonstationarity of the original time  series14.

Nonlinear behavior in HRV is attributed to the continuous interaction among the activities of the two 
branches of the autonomous nervous system: sympathetic and parasympathetic; the neuroendocrine system; 
the intrinsic cardiac nervous system; and the central pathways controlling the spontaneous beat-to-beat dynamics 

Table 2.  Main ANOVA effects and interactions (p-values).

HRV variable

Main effects

Interaction (age × sex)Age Sex

HR 0.021 0.419 0.513

SDNN  < 0.001 0.750 0.172

RMSSD  < 0.001 0.159 0.387

LF/HF  < 0.001  < 0.001 0.387

DET  < 0.001 0.014 0.188

LAM  < 0.001  < 0.001 0.097

Figure 5.  Percentage of nonlinear time series by sex (A,C) and age groups (B,D). *p < 0.001 vs. 18–29 years-old 
group.
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of heart rate. These interactions are expected to be nonlinear because of the different timing and hierarchical 
organization in addition to various physiological conditions involved in regulation that are based on the dynamic 
and simultaneously changing activity of the physical environmental  stressors29.

Previous studies have reported that some complexity measures decay during healthy aging  process2,30, which 
are proposed to reflect a decline of physiological  dynamics31,32. However, it has been pointed out by other 
researches that decreasing values of nonlinear measures in physiological time series do not necessarily imply a 
loss of “complexity” in the data, and it is, in fact, much more complicated to link this phenomenon with physi-
ological  restrictions9, because the physiological behavior is not necessarily fully imprinted in corresponding time 
 series33, and such measures may be biased by the context and characteristics of the  recordings9. Further research 
on fractal properties of cardiac dynamics showed that despite identifying that the variability of the statistical 
dispersion of the heartbeats duration measured by the standard deviation is more restricted for older humans, 
the temporal fractal and nonlinear organization of HRV remains manifested in older but healthy  individuals8.

The above-mentioned investigations are broadly heterogeneous in their methodology and studied subjects. In 
the present work, we present the analysis of a large sample size and wide age range, and also observe a progressive 
reduction in the statistical dispersion of HRV data and nonlinear measures values (DET and LAM), as observed 
by other  authors2,30. However, this constriction on the age range does not mean a “complexity reduction” of the 
 data8; therefore we applied a robust surrogate data algorithm that is a suitable tool for the presence of nonlinear-
ity in each of the HRV time  series14. This surrogate data testing shows that the proportion of time series that are 
classified as nonlinear under the hypothesis constructed by GWR is reduced with advanced age, and also by the 
biological sex of individuals. Moreover, we show that BMI, as a proxy indicator of body fatness, is also indirectly 
associated with nonlinearity contents. This may suggest that the metabolic status of individuals plays a role in 
the dynamical organization of HRV. Interestingly, the mean HR (i.e. the dynamic setting point of the HRV time 
series) has also a major impact on the intricate organization of the time series. It is known that the metabolic 
(long-term) and autonomic (short-term) regulations are strong modulators of  HRV34,35. Nevertheless, the obser-
vation here of a connection between cardiometabolic indicators and nonlinear organization is quite relevant.

Our results are yet far from a full characterization of the HRV dynamical behavior in healthy aging and 
therefore of the cardiovascular system by itself. Nonlinearity testing may give different results because it is 
aimed to identify other nonlinear  features13. Although age, sex, BMI and HR are independent factors that impact 
nonlinear testing, the biological mechanisms by which this relation is manifested can only be speculated and 
require further research in controlled experimental settings. Whether the length of the ECG recordings and 
daytime in which they were obtained also affect this relation remains unknown, and it is feasible that a given 
nonlinear feature requires larger length of data to be appreciated, or it could be intermittent thereby needing an 
appropriate moment to be observed. A future perspective of the current study is the investigation of the presence 
of nonlinear information in HRV data under pathologic conditions; this approach would allow obtaining a more 
detailed insight of the involved physiological mechanism related to the HRV time series nonlinear organization.

The limited data about subjects limits the generalization of the presented results to the vast myriad of physi-
ological possibilities that may affect HRV. The database used lacks information about menopausal status or 
hormonal contraceptive use, which is a factor that has an important effect on HRV of adult  women36. Also, the 
proportion of subjects > 70 years old is markedly small compared with the remaining groups, this is a potential 
selection bias and may underrepresent the HRV behavior for this age group.

Figure 6.  BMI and HR in linear and nonlinear time series. *p < 0.05.
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Conclusion
Nonlinear information as assessed by recurrence plot quantification analysis in HRV data is less likely to be 
found in older healthy humans as well as in subjects with larger BMI and higher HR. Also, female subjects are 
more likely to present HRV nonlinear behavior regardless of the age group.

Data availability
The data used in this study is publicly available at: https:// physi onet. org/ conte nt/ auton omic- aging- cardi ovasc 
ular/1. 0.0/.

Code availability
The used in this study is publicly available. Surrogate data testing: https:// sites. google. com/ site/ chris keylo cknet/ 
softw are/ surro gate- gener ation- algor ithms/ pwiaa ft. Recurrence plot analysis: https:// tocsy. pik- potsd am. de/ CRPto 
olbox/.
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