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Two sequence‑ and two 
structure‑based ML models have 
learned different aspects of protein 
biochemistry
Anastasiya V. Kulikova 1,3, Daniel J. Diaz 2,3,4, Tianlong Chen 4,5, T. Jeffrey Cole 1, 
Andrew D. Ellington  3 & Claus O. Wilke  1*

Deep learning models are seeing increased use as methods to predict mutational effects or allowed 
mutations in proteins. The models commonly used for these purposes include large language models 
(LLMs) and 3D Convolutional Neural Networks (CNNs). These two model types have very different 
architectures and are commonly trained on different representations of proteins. LLMs make use 
of the transformer architecture and are trained purely on protein sequences whereas 3D CNNs are 
trained on voxelized representations of local protein structure. While comparable overall prediction 
accuracies have been reported for both types of models, it is not known to what extent these models 
make comparable specific predictions and/or generalize protein biochemistry in similar ways. Here, we 
perform a systematic comparison of two LLMs and two structure-based models (CNNs) and show that 
the different model types have distinct strengths and weaknesses. The overall prediction accuracies 
are largely uncorrelated between the sequence- and structure-based models. Overall, the two 
structure-based models are better at predicting buried aliphatic and hydrophobic residues whereas 
the two LLMs are better at predicting solvent-exposed polar and charged amino acids. Finally, we 
find that a combined model that takes the individual model predictions as input can leverage these 
individual model strengths and results in significantly improved overall prediction accuracy.

Machine learning models such as neural networks are increasingly being used to computationally explore protein 
variants suitable for protein engineering and to predict their effects on protein structure and function1–6. In fact, 
several deep neural network models, including large language models (LLMs) and convolutional neural networks 
(CNNs), have helped with the engineering of proteins with enhanced function/stability7–10. Interestingly, the 
deep learning models employed to date differ substantially in their architectures and, more importantly, the type 
of input data they are trained on. While LLMs are typically trained on large amounts of sequence data, CNNs 
and other model architectures have also been trained on input consisting of protein structures11–13, and models 
trained on both types of input data have produced meaningful insight on protein variants.

Sequence data is significantly more abundant than structure data, so it would be convenient if models could 
be trained purely on sequence data. And in fact, sequence-based models, and specifically protein large language 
models (protein LLMs) using transformer architectures, have been successfully employed in a number of con-
texts, including predicting variant effects and protein fitness5,14,15, predicting post-translational modifications and 
biophysical attributes4, predicting protein structure4,16,17, and even predicting entire protein-protein complexes18. 
At the same time, CNNs trained on structure data have been successful in enhancing enzyme function activ-
ity by suggesting activity enhancing protein variants9,10. Because sequence- and structure-based models learn 
from different protein representations, it is not clear whether they have inherent differences or instead make 
substantially equivalent predictions. Additionally, because the different model architectures have typically not 
been applied head-to-head to the same problem, excellent performance of one architecture in one problem area 
does not imply that a different architecture might not perform similarly well. Further progress on this question 
requires a direct comparison of different model architectures on the same problem.
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Here, we compare two existing sequence-based and two existing structure-based models head-to-head on the 
task they were originally trained for, the prediction of a masked residue. We use two different sequence-based 
LLMs, protBERT4 and ESM1b5, and we compare them to two structure-based 3D CNN models, which we refer 
to here as CNN19 and RESNET12. We find that all these models generally predict the masked residue with similar 
accuracy. However, because the models differ in how they “see” protein biochemistry and what they take as input 
data, they tend to make distinct predictions that reflect different aspects of the underlying protein biochemistry. 
Further, we show that we can improve model performance by combining the models into a single, joint model. 
The combined model can compensate for weaknesses of the individual models by learning how to integrate the 
various model predictions and preferentially relying on the specific predictions that it estimates to be the most 
accurate for a given site in a given protein structure.

Results
We compared the performance of four self-supervised deep neural network models on their original training 
task: predicting masked residues in proteins. The four models included two LLMs, ESM1-b5 and protBERT4, and 
two structure-based models, a 3D CNN19 and a Residual Network (RESNET)12. Our first question was whether 
any one of the models was consistently outperforming the others. We generated predictions for every residue 
in a test set of 147 protein structures. We found that the average accuracy across the 147 structures was 60.74%, 
64.4%, 64.8% and 68.3%, respectively, for the ESM1b, CNN, RESNET and protBERT models (Fig. 1a). Here, 
we defined accuracy as the fraction of correct predictions across all residues in a single protein. A prediction is 
classified as “correct” if the predicted amino acid is identical to the amino acid that was originally masked (i.e., 

Figure 1.   Prediction accuracy compared across models. (a) Average accuracy per protein for each model. The 
average accuracy is 60.74%, 64.4%, 64.8%, and 68.3%, respectively, for the ESM1b, CNN, RESNET, and BERT 
models. Average accuracies are highlighted by the black point within each violin. (b) Correlation between 
CNN and ESM1b accuracy ( r = 0.09 , p = 0.28 ). (c) Correlation between CNN and BERT accuracy ( r = 0.22 , 
p = 0.008 ). (d) Correlation between CNN and RESNET accuracy ( r = 0.77 , p < 10

−10 ). (e) Correlation 
between RESNET and ESM1b accuracy ( r = 0.12 , p = 0.16 ). (f) Correlation between RESNET and BERT 
accuracy ( r = 0.20 , p = 0.016 ). (g) Correlation between ESM1b and BERT accuracy ( r = 0.52 , p = 10

−10 ). 
Each point represents a single protein.
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the wildtype amino acid), and the predicted amino acid is defined as the specific amino acid (out of all twenty 
possible) that is assigned the highest probability score by the model. Importantly, we found that prediction 
accuracy varied widely across protein structures, in particular for the LLMs, which yielded accuracies as low as 
0.2 for some structures and in excess of 0.9 for other structures. Accuracies were more consistent for the CNN 
and RESNET models, ranging from approximately 0.5–0.8. We believe these observations reflect the well-known 
bias/variance dilemma in machine learning20: Convolution layers innately possess inductive bias for spatial data 
whereas sequence-based transformer architectures, although more powerful, lack this bias and therefore their 
inferences tend to display higher variance.

We next asked whether the four models had comparable accuracies for the same protein structures. In other 
words, if one model generated either high or low accuracy for a given protein, did the other models do the 
same, or did they behave differently? We found that the structure-based models and the LLMs displayed mark-
edly different behavior. The prediction accuracy of neither of the transformer models was correlated with the 
accuracy of the CNN or RESNET models (Fig. 1b, c, e, f). By contrast, there was a moderate correlation between 
the predictions of the two LLMs (Fig. 1g) and a strong correlation between the two structure-based models 
(Fig. 1d). These findings imply that the two LLMs, which share their input data type and general aspects of their 
architecture (both are transformer-based language models), display similarities in their predictions but behave 
by no means identically. And the structure-based models make entirely different, uncorrelated predictions to 
the LLMs. We would like to emphasize that the two structure-based models displayed a strong correlation even 
though they were trained on different datasets, using different microenvironment sampling procedures, and they 
also had substantially different architectures. The main similarities between these two models are that they use 
structure-based data as input, convolution layers rather than attention for processing, and training data curated 
with at most 50% sequence similarity.

Because predictions between model types were uncorrelated, we next asked whether we could combine 
outputs from the four models for improved prediction accuracy overall. Initially, we tried very simple ensemble 
methods, such as averaging the predictions among models or taking the highest probability among individual 
models as the final prediction. Neither method yielded meaningful improvements in overall prediction accuracy 
over the individual models, and therefore we concluded that a more sophisticated ensembling approach was 
needed.

We trained a simple fully-connected neural network model to produce a combined prediction from the four 
individual models. The combined model takes in 80 probabilities (20 per input model), passes them into two 
intermediate dense layers, and ultimately outputs a set of 20 probabilities, where each node represents the prob-
ability of one of 20 amino acids (Fig. 2). We trained this model (Supplementary Figs. S1 and S2) using a training 
dataset consisting of 3209 proteins with a sequence similarity of at most 80% to any of the 147 proteins in the 
test set or the training sets of the individual models. After training, we generated predictions on a test set of 147 
proteins and assessed prediction accuracy for each protein. We found that the combined model outperformed all 
four individual neural networks with an average accuracy of 82%, an improvement of over 10 percentage points 
from the most accurate individual model (Fig. 3).

Figure 2.   Combined model architecture. As input, the combined model receives a conjoined input vector of 
length 80 (orange). There are two hidden layers with 120 and 60 nodes, respectively (white). The output is a 
vector of 20 probabilities, one for each of the amino acids (green).
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We next assessed how well the different models predict specific amino acid classes. We pooled all sites from 
all 147 test proteins and divided the sites by amino acid class (defined in Supplementary Table S1). We then cal-
culated the accuracy within each amino acid class for all four individual models as well as the combined model. 
We found that overall, the combined model improved predictions for all classes and outperformed all individual 
models (Fig. 4). When looking at individual models, we see that the structure-based models outperformed the 
language models for aliphatic and unique (G and P) amino acids, while language models generally outperformed 
the structure-based models for polar and charged amino acids.

We then inspected how the accuracy of combined predictions relates to the individual predictions. To do so, 
we classified every individual prediction by whether the combined model agreed with all four individual models, 

Figure 3.   Combined model accuracy. Each blue point within the violin shows the prediction accuracy for a 
single protein. The mean accuracy across all proteins, indicated by the blue line, was 82%. The black point and 
bars represent the mean and 95% confidence interval, respectively. Accuracies of individual models are indicated 
by red (BERT), green (RESNET), purple (CNN) and yellow (ESM1b) lines.

Figure 4.   Prediction accuracy per amino acid class. Accuracy was calculated as an average across all sites of a 
specific amino acid class for each model. Sites were pooled together from all 147 proteins in the test dataset.
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only structure-based models, only sequence models, or none of the model. Unsurprisingly, when all models were 
unanimous, the prediction accuracy was very high, 96.9% (Fig. 5a). In other words, whenever the four individual 
networks individually made the same prediction, and that prediction also coincided with the combined network, 
then that prediction was likely correct. This scenario was also by far the most common, occurring  38.3% of 
the time (Fig. 5b). We saw the next highest accuracies whenever the combo model prediction agreed with at 
least one the transformers, closely followed by the case where a combination of structure and language models 
agreed with the combined model and the case when one or both structure-based models agreed (Fig. 5a). For 
these predictions, the combined model was correct between 70 and 80% of the time. On the other hand, unique 
predictions (where the combined model did not agree with any of the individual models) were the least likely 
correct, yet still better than random chance (5%) at an accuracy of ∼ 32.7%.

Thus, all possible combinations of individual model predictions were possible as predictions by the combined 
model, including the case where the combined model disagreed with all individual models. This observation 
suggests that the combined model learns how to interpret the amino acid probability distribution for each indi-
vidual model to properly aggregate the information into a more generalizable distribution rather than simply 
preferring one individual model or applying majority rule.

We further confirmed the differences between LLMs and structure-based models by breaking down the 
distribution of correct predictions by individual amino acids (Supplementary Fig. S3). This analysis can be 
thought of as asking which individual model the combined model relied on to make specific predictions. We 
found that in cases where the combined model relied exclusively on the structure-based models’ predictions, the 
correctly predicted amino acids were more likely aliphatic, whereas in cases where the combined model relied 
exclusively on predictions from the LLMs, the correctly predicted amino acids tended to be charged (positive or 
negative) or polar. Somewhat surprisingly, the correct predictions made by the structure-based models displayed 
an amino acid distribution most similar to the overall distribution of amino acids within the proteins (Supple-
mentary Fig. S4). The distribution of amino acids when all models were in agreement was somewhat similar 
(Supplementary Fig. S3). By contrast, the distribution of amino acids correctly predicted by one or both LLMs 
were markedly different (Supplementary Fig. S3). Finally, for correct unique predictions, where the combined 
model was correct and all individual models where incorrect, the shape of the distribution of amino acids was 
more similar to the distribution of correct LLM predictions than to the overall distribution of amino acids in 
the proteins (Supplementary Fig. S3).

Finally, we asked whether the solvent exposure of a site (i.e., whether it is on the surface or in the core of the 
protein) contributed to differences in predictions between the models. We did this by correlating the Relative 
Solvent Accessibility (RSA) of each site in our dataset with the model confidence for that site. Model confidence 
is defined as the probability with which the top scoring amino acid is predicted at a site, and it correlates well 
with model accuracy (Supplementary Fig. S5 and prior work19). Therefore, we used it here as an approximation 
of model accuracy, which cannot be defined for individual sites (a site either is or is not predicted correctly). We 
found that all models had a tendency to have higher confidence in their predictions for buried residues (RSA near 
zero) than for exposed residues (RSA of 0.2 or larger) (Fig. 6). However, on average, performance of the RESNET 

Figure 5.   Comparison of combined model predictions with individual model predictions. (a) Proportion of 
correct predictions for sites at which the combined model prediction agrees with predictions of specific model 
combinations. (b) Proportion and number of sites corresponding to each scenario under part (a).
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and BERT model was more uniform across the RSA range (and in particular for the RESNET model) than it was 
for the CNN and ESM1b models. Both the CNN and ESM1b model made a large number of low-confidence 
predictions above RSA of 0.2. In the combined model, we saw prediction confidence markedly increased across 
all RSA values. The network did not have a strong bias towards either buried or exposed residues and instead 
made predictions with comparable confidence across the entire spectrum of RSA values.

Discussion
We have compared the performance of two existing structure- and two existing sequence-based neural network 
models on the task of predicting masked residues in proteins, the task that all these models were originally trained 
on. We have found that the two different model types vary widely in their performance on specific proteins, 
even if their average accuracies are similar. Predictions by structure-based models are not correlated or at most 
weakly correlated to predictions by sequence-based models. The structure-based models perform best at pre-
dicting aliphatic core residues, whereas the sequence-based models provide more accurate predictions for polar, 
solvent-exposed sites. We have further constructed a combined model that uses the predictions of the individual 
models as input and turns them into an ensemble prediction. This combined model has achieved significantly 
higher prediction accuracy than the individual models, and importantly, can leverage the individual models for 
their specific strengths. The combined model seems to be able to select the individual model predictions that 
are most suitable for specific sites.

Sequence-based language transformer models and structure-based convolutional models differ widely in 
their training data, their internal structures, and their strengths and weaknesses. The transformer architecture 
has grown popular in the fields of natural language processing and image recognition21,22. More recently, the self-
supervised technique masked-language modeling (MLM) used to train LLMs has been applied to predict masked 
residues in protein sequences3–6. Such LLMs can capture interactions between amino acids that are far apart in 
the sequence but spatially close in the structure, relying solely on input sequence for inference, without the need 
for additional features or annotations17. By contrast, 3D CNNs are fundamentally different from LLMs as they 
take the local protein structure rather than the entire amino-acid sequences as input8–10,12,19,23. The input consists 
of a voxelized box built around a focal residue which is removed before training or inference. The advantage of 
this structural data as model input is that it directly provides information on physical contacts within a protein, 
which are most critical for accurate residue prediction8,19.

Because LLMs do not use any structural information as input, we might expect them to perform consistently 
worse than 3D CNNs at predicting masked residues. However, we have seen that this is not the case for the four 
models considered here; both model types predicted residues with comparable overall accuracies. At the same 
time, there were clear differences between model types. The structure-based models tended to perform better at 
predicting aliphatic or hydrophobic residues, whereas the LLMs had an edge for polar or charged amino acids. 
These differences may be due in part to the fact that the latter amino acids are more common on the surface of 
the protein, where the voxelized input boxes to the structure-based models are partially empty and thus provide 
less data to base inference on.

Figure 6.   Model confidence as a function of Relative Solvent Accessibility (RSA). (a) CNN, (b) RESNET, (c) 
ESM1b, (d) BERT, (e) combined model. Counts are binned into the following four groups: 1–25 predictions/site 
(lightest color), 26–50 predictions/site, 51–75 prediction/site, and over 75 predictions/site (darkest color).
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The consequence of the differing strengths and weaknesses of the two model architectures is that the different 
models can be combined for improved overall performance. The network output for all four models consists of 
a distribution of 20 probabilities, one for each of the amino acids. This distribution of probabilities can also be 
viewed as an embedding for a biochemical environment24–26. Considering that the distributions of probabilities 
can differ widely even if the same amino acid is predicted to be the most likely, we expect that these distributions 
carry meaningful information about the microenvironment surrounding the focal residue in the folded protein. 
Moreover, we would expect similar microenvironments to have similar distributions27. Consequently, the com-
bined model can use the probability distributions of the four input models to infer the likely microenvironment 
of the focal residue and then infer which amino acid to place at this location. This is not a simple majority rule 
among the models but a non-trivial inference task, as can be seen from the fact that the model on occasion makes 
unique predictions distinct from any of the input models.

One challenge we encountered with LLMs is achieving a clean separation between training and test datasets. 
Because the LLMs require very large training datasets, they are frequently trained on virtually any unique pro-
tein sequence available. To put into perspective, ESM-1b (650M parameters) and ProTrans (450 M parameters) 
were trained with ∼ 27 M and > 80 M protein sequences with 50% and 100% sequence similarity from UniRef28, 
respectively, whereas the structure-based models we used here (both with 12 M parameters) were trained with 
∼ 1.6 M and ∼ 2.3 M microenvironments sampled from ∼ 17 K and ∼ 23 K sequences with a 50% sequence 
similarity. The large training sets for the language models raise the possibility that these models overfit to their 
training datasets to the point of memorization. With enough training, any model will eventually memorize the 
training set and be unable to generalize to unseen data29,30. We saw evidence of potential overtraining when we 
used more recent models of protBERT and ESM1-b, as well as ESM1-v6. For these models, we obtained accuracies 
averaging at ∼ 95% across proteins (Supplementary Figs. S6 and S7). However, since these models had trained 
on datasets containing most proteins in the UniRef, we could not guarantee that our test sequences were not in 
the training data. In fact, we are quite certain they were. Here, primarily for this reason, we used older verisons 
of protBERT and ESM1-b because they were trained on smaller datasets. Ideally, all models would need to be 
retrained on a clean and consistent dataset for a better comparison.

In summary, our results show that two different neural network types, due to differences in how they learn 
protein features, can make unique contributions to the same residue prediction task. At the same time, predic-
tions that match between a sequence-based and a structure-based model are most likely to be correct, implying 
that although model predictions are not strongly correlated they do show some overlap. It remains an open 
question to what extent our results here generalize to other models with similar or differing architectures, and 
whether LLMs can in principle be trained to the point where they perform as well as or better than a structure-
based model. One conceptual difficulty with this question is that LLMs use such large training sets and so many 
parameters that they in essence memorize the entire known protein universe. To what extent such models actually 
generalize protein biochemistry is difficult to assess.

Methods
We used four pre-existing self-supervised deep learning models trained to predict masked residues: two 
sequence-based transformer models, ESM1-b5 and protBERT4, and two structure-based models, CNN19 and 
RESNET12. The two structure-based models have been trained on the same dataset, while the LLMs have been 
trained on separate and distinct training datasets. For all models, we defined model performance as the accuracy 
with which each model could predict masked amino acids in an array of different proteins.

Testing individual models.  We first assessed each model separately, using a test dataset we had previ-
ously used in studying the 3D CNN model19. Our test set is derived from the PSICOV dataset31, which consists 
of 150 well studied protein structures commonly used for covariation analyses. From this dataset, we removed 
three proteins for technical reasons, as described19. We verified that none of the remaining 147 proteins were in 
UniRef50, the training set of the ESM1-b model. Similarly, the CNN and RESNET training set had been chosen 
to not contain proteins with a sequence similarity of greater than 50% to any of the proteins in the test dataset19. 
Because protBERT has been trained on nearly every sequence in the UniRef RCSB databank28, we could not 
guarantee that our test sequences were not in the training data for that model.

LLM output was generated using the berteome library (version 0.1.6) available at: https://​github.​com/​tijeco/​
berte​ome. The berteome library requires prior installation of the transformers package available at: https://​pypi.​
org/​proje​ct/​trans​forme​rs/. We used version 4.10.0 of the transformers package. The berteome library generates 
ESM1-b predictions from the pre-trained esm1b_t33_650M_UR50S model5 and protBERT predictions from 
the pre-trained Rostlab/prot_bert model4. CNN model output was generated using the network with input box 
size of  20 Å3 as described19. The CNN model is available at https://​github.​com/​akuli​kova64/​CNN_​prote​in_​lands​
cape and the RESNET model is available at https://​github.​com/​danny​305/​MutCo​mputeX.

Generating a combined model.  After assessing each individual model, we used the outputs of all four 
neural networks as training data for a combined model. The combined neural network model consisted of four 
layers: an input of 80 nodes (20 per model), two intermediate layers of 120 nodes and 60 nodes (“relu” activation 
function), respectively, and a final output layer of 20 nodes (“softmax” activation function). Each node in the 
output layer represents the probability of one of the 20 amino acids. All layers are fully connected. The model was 
implemented in python (v3.8.9) with the Tensorflow library (v2.9.2) using the keras API (v2.9.0)32.

To compile a training set for the combined model we first downloaded all PDB ID’s of proteins clustered into 
80% homology groups from the RCSB website using the following link: https://​cdn.​rcsb.​org/​resou​rces/​seque​nce/​
clust​ers/​clust​ers-​by-​entity-​80.​txt. To avoid reusing any proteins previously used to train the individual models, 

https://github.com/tijeco/berteome
https://github.com/tijeco/berteome
https://pypi.org/project/transformers/
https://pypi.org/project/transformers/
https://github.com/akulikova64/CNN_protein_landscape
https://github.com/akulikova64/CNN_protein_landscape
https://github.com/danny305/MutComputeX
https://cdn.rcsb.org/resources/sequence/clusters/clusters-by-entity-80.txt
https://cdn.rcsb.org/resources/sequence/clusters/clusters-by-entity-80.txt
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we removed any proteins that were part of the training sets of the 3D CNN (training set as described19), RESNET 
and ESM1-b (UniRef50), as well as the test set (PSICOV) and their homologs of 80% or greater similarity. We 
did not filter out proteins used to train the protBERT model as it was pre-trained on the UniRef100 dataset, 
containing most of the proteins in the RCSB database. Proteins longer than 1024 residues were also removed 
due to length restrictions of the ESM1-b model. Finally, we removed protein structures where we could not add 
hydrogen atoms or partial charges with PDB2PQR (v3.1.0)33. The resulting training set contained a total of 3209 
protein structures.

To produce training data for the combined model, we generated CNN and RESNET predictions for each 
residue in our 3209 protein structure files. Similarly, the sequences corresponding to the 3209 protein structures 
were used to generate predictions from the protBERT and ESM-1b models. The combined network was trained on 
each protein/sequence position in this dataset for 150 epochs, on the goal of being able to predict the residue at 
each position in a protein. We used a fixed learning rate of 0.0001 using the Adam optimizer and the “categorical 
crossentropy” loss function. Finally, the fully trained combined network was tested against the same set of 147 
proteins we had used initially to test individual models.

Relative solvent accessibility values were calculated using freeSASA software34 and applying the normaliza-
tion constants as described35.

Data availability
Final data analysis and figure production was performed in R36, making extensive use of the tidyverse family of 
packages37. The trained neural network model, analysis scripts, training set, and processed data are available on 
GitHub: https://​github.​com/​akuli​kova64/​BERT_​CNN_​compa​rison/.
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