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Serum metabolomics 
of hyperbilirubinemia 
and hyperuricemia in the Tibetan 
plateau has unique characteristics
Heng Zhang 1,2,4, Xianzong Ma 1,2,4, Junfeng Xu 3,4, Peng Jin 1,3, Lang Yang 1,3, Yuanming Pan 2, 
Fumei Yin 1,2, Jie Zhang 2, Jiheng Wang 1,3, Dongliang Yu 2, Xiaoying Wang 2, Mingjie Zhang 2, 
Xin Wang 2*, Dezhi Wang 1,2* & Jianqiu Sheng 1,2,3*

Few studies have provided data on the metabolomics characteristics of metabolic diseases such 
as hyperuricemia and hyperbilirubinemia in the Tibetan plateau. In the current study, we sought 
to investigate the serum metabolomics characteristics of hyperbilirubinemia and hyperuricemia 
in the Tibetan plateau, with the aim to provide a basis for further research on their pathogenesis, 
prevention, and treatment. The study participants were born in low-altitude areas below 1000 m 
and had no prior experience living in a high-altitude area before entering Golmud, Tibet (average 
elevation: 3000 m) and Yushu, Qinghai (average elevation: 4200 m). Thirty-four participants with 
hyperbilirubinemia (18 in Golmud and 16 in Yushu), 24 participants with hyperuricemia, and 22 
healthy controls were enrolled. The serum samples of subjects were separated and then sent to a 
local tertiary hospital for biochemical examination. Serum widely targeted technology, based on the 
ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) platform, was 
used to detect serum metabolites and differential metabolites. Compared to the healthy controls, 
hyperbilirubinemia patients from Golmud showed 19 differential metabolites, hyperbilirubinemia 
patients from Yushu showed 12 differential metabolites, and hyperuricemia patients from Yushu 
showed 23 differential metabolites. Compared to the hyperbilirubinemia patients from Golmud 
that is at a low altitude, the Yushu groups had 33 different metabolites. Differential metabolites are 
primarily classified into amino acids and their derivatives, nucleotides and their derivatives, organic 
acids and their derivatives, and lipids/fatty acids. These are related to metabolic pathways such as 
caffeine metabolism, arachidonic acid metabolism, and tyrosine metabolism. Hyperbilirubinemia 
and hyperuricemia in the Tibetan plateau have unique serum metabolomics characteristics. Glycine 
derivatives and arachidonic acid and its derivatives were associated with plateau hyperbilirubinemia, 
and vanillic acid and pentadecafluorooctanoic acid were associated with plateau hyperuricemia.
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QTRAP	� Quadrupole-linear ion trap
LIT	� Linear ion trap
QQQ	� Triple quadrupole
IS	� Ion spray
MRM	� Multiple reaction monitoring mode
DP	� Declustering potential
CE	� Collision energy
MWDB	� Metware Database
PCA	� Principal component analysis
PLS-DA	� Partial least squares discriminant analysis
OPLS-DA	� Orthogonal partial least squares discriminant analysis
VIP	� Variable importance in projection
KEGG	� Kyoto Encyclopedia of Genes and Genomes
HMDB	� Human metabolome database
ALT	� Alanine aminotransferase
AA	� Arachidonic acid
UTP	� Uridine triphosphate
PFOA	� Pentadecafluorooctanoic acid
15-hete	� 15-Hydroxyeicosatetraenoic acid
12-hete	� 12-Hydroxyeicosatetraenoic acid
VA	� Vanillic acid
TRP	� Transient receptor potential
12-LOX	� 12-Lipoxygenase
15-LOX	� 15-Lipoxygenase
VEGF	� Vascular endothelial growth factor
HSP90	� Heat shock protein 90
H/R	� Hypoxia-reoxygenation

In medicine, a plateau environment refers to an area that is 3000 m or more above sea level, which has the char-
acteristics of low oxygen partial pressure, cold climate, high wind speed, and strong ultraviolet rays1. Moreover, 
when people from the plains rapidly enter a plateau, acute mountain sickness (AMS) is likely to occur due to 
hypoxia. A series of nonspecific clinical syndromes, such as headache, dizziness, nausea, vomiting, insomnia, 
and fatigue, may occur in mild cases, while in severe cases, AMS will cause damage to the heart, lung, brain, and 
other important organs2–5. Furthermore, high altitude exposure could decrease splanchnic perfusion6 and blood 
oxygen levels, leading to hypoxia and hypoxia-induced reductive oxidative stress7.

Bilirubin is the primary metabolite of iron porphyrin compounds; hyperbilirubinemia refers to a situation in 
which the total bilirubin level is more than 20.5 mol/L, which may occur due to excessive red blood cell death, 
the reduced ability of hepatocytes to convert bilirubin, or blocked bilirubin excretion8 and can cause irreversible 
damage to the nervous system9. Bilirubin is an important antioxidant that can scavenge reactive oxygen species 
(ROS) and reduce the level of oxidative stress in the body10. Previous studies have found that the level of heme 
oxygenase-1 (HO-1) in the blood of climbers was significantly increased, which can catalyze the production of 
biliverdin, iron, and CO from heme11. Subsequently, biliverdin is reduced to bilirubin, resulting in increased 
bilirubin levels in the body. Hyperuricemia refers to a fasting blood uric acid level greater than 420 μmol/L in 
men and 360 μmol/L in women under a normal purine diet. Previous studies have found that the level of uric 
acid (the end product of purine metabolism in the body) was significantly increased in people in the plateau12,13. 
As the level of uric acid increases, the ROS-RAS pathway can be activated, resulting in pro-oxidative stress14,15. 
Hypoxia can cause liver injury through elevated oxidative stress and cell apoptosis at high altitudes16,17. The liver 
is the direct bilirubin-producing organ and a major uric acid-producing site10,18. Liver injury caused by hypoxia at 
high altitudes can result in direct bilirubin entering the bloodstream. Xanthine oxidase, which is mainly present 
in the liver and spleen, is a key rate-limiting enzyme for uric acid production18. Hypoxia-induced liver injury 
could enhance the expression of xanthine oxidase, increasing uric acid19.

In recent years, metabolomics has developed rapidly to study the pathogenesis of metabolic diseases. Among 
them, widely targeted metabolomics integrates the advantages of non-targeted and targeted metabolite detec-
tion technologies. Metabolomics can achieve high-throughput, high-sensitivity, wide-coverage, and accurate 
metabolite detection and analysis by using high-sensitivity liquid chromatography–tandem mass spectrometry 
(LC–MS/MS) and a self-built metabolite database. It possesses unique advantages for revealing the metabolic 
processes and the pathogenesis of diseases. Therefore, in this study, we aim to explore the metabolomic char-
acteristics and pathogenesis of hyperbilirubinemia and hyperuricemia at high altitudes using widely targeted 
metabolomics combined with clinical laboratory indicators.

Participants and methods
Study participants.  A total of 614 soldiers who grew up in plain areas and had entered high-altitude areas 
in Golmud (377 persons, average altitude: 3000 m) and Yushu (237 persons, average altitude: 4200 m) for the 
first time were selected as a group to conduct an epidemiological questionnaire survey and blood biochemical 
examination. Following the collection of blood samples from the soldiers, the samples were left undisturbed for 
30 min, before being centrifuged at 3000 rpm at 4 °C for 15 min. Subsequently, serum samples were separated 
and sent to a local tertiary hospital for biochemical examination. The inclusion criteria were hyperbilirubinemia 
(total bilirubin > 20.5 μmol/L, 18 cases in Golmud, 16 cases in Yushu) and hyperuricemia (> 420 μmol/L in males 
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or > 360 μmol/L in females, 24 cases), while the other biochemical indicators were normal. Twenty-two healthy 
participants residing in the plateau were used as health controls.

Ethics statements.  This study was approved by the Ethics Committee of the Seventh Medical Center of 
Chinese PLA General Hospital (protocol number: 2018069). Informed consent was collected from all partici-
pants. All experiments were conducted in accordance with Good Clinical Practice (GCP) and with the ethical 
principles of the Declaration of Helsinki.

Sample preparation and extraction.  The samples stored at − 80 °C were thawed on ice and vortexed for 
10 s. Subsequently, 50 μL of samples and 300 μL of extraction solutions (ACN: methanol = 1:4, V/V) containing 
internal standards were added into a 2-mL microcentrifuge tube. The samples were vortexed for 3 min and then 
centrifuged at 12,000 rpm for 10 min (4 °C). Next, 200 μL of the supernatant was collected and placed at − 20 °C 
for 30 min, before being centrifuged at 12,000 rpm for 3 min (4 °C). Finally, 180 μL aliquots of supernatant were 
transferred for LC–MS analysis.

Conditions of high‑performance liquid chromatography (HPLC).  The sample extracts were ana-
lyzed using an LC–ESI–MS/MS system (UPLC, ExionLC AD, https://​sciex.​com.​cn/; MS, QTRAP®6500+, https://​
sciex.​com/). The analytical conditions were as follows: UPLC: column, Waters ACQUITY UPLC HSS T3 C18 
(1.8 µm, 2.1 mm × 100 mm); column temperature, 40 °C; flow rate, 0.4 mL/min; injection volume, 2 μL; sol-
vent system, water (0.1% formic acid): acetonitrile (0.1% formic acid); gradient program, 95:5 V/V at 0 min, 
10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min, 95:5 V/V at 12.1 min, 95:5 V/V at 14.0 min.

Electrospray ionization quadrupole‑linear ion trap mass spectrometry/mass spectrometry 
(ESI‑QTRAP‑MS/MS).  Linear ion trap (LIT) and triple quadrupole (QQQ) scans were acquired on a triple 
quadrupole-linear ion trap mass spectrometer (QTRAP), QTRAP® LC–MS/MS System, equipped with an ESI 
Turbo Ion-Spray interface, operating in positive and negative ion modes and controlled by Analyst 1.6.3 software 
(Sciex). The ESI source operation parameters were as follows: source temperature, 500 °C; ion spray voltage (IS), 
5500 V (positive), − 4500 V (negative); ion source gas I (GSI), gas II (GSII), and curtain gas (CUR) were set at 
55, 60, and 25.0 psi, respectively; the collision gas (CAD) was high. Declustering potential (DP) and collision 
energy (CE) for individual multiple reaction monitoring mode (MRM) transitions were measured with further 
optimization. A specific set of MRM transitions was monitored for each period according to the metabolites 
eluted within this period.

Statistical analysis.  The statistical analysis was performed using SPSS 26.0 (IBM, USA). The measurement 
data are expressed as x ± s, and the comparison between groups was performed using t-test or nonparametric 
test. The enumeration data are expressed as the rate (%), and the comparison between groups was performed 
using the χ2 test. A P-value < 0.05 was considered statistically significant. A qualitative analysis of blood metabo-
lites from 80 participants on the plateau was conducted based on the UPLC-MS/MS detection platform, Met-
ware Database (MWDB), and the metabolite information public database. The MRM of triple four-pole mass 
spectrometry was used for quantitative analysis of metabolites, while multiple regression analysis methods, such 
as principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal 
partial least squares discriminant analysis (OPLS-DA), were used to identify and analyze the changes in each 
metabolite. Based on the OPLS-DA results, the metabolites with fold changes ≥ 2 and ≤ 0.5 were selected. If 
there were biological repeats in the sample grouping, the metabolites with variable importance in projection 
(VIP) ≥ 1 were selected based on the above. The results were combined with the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database20,21 and the human metabolome database (HMDB) to search for differential 
metabolite-related metabolic pathways and disease information.

Ethics approval and consent to participate.  This study was approved by the Ethics Committee of 
the Seventh Medical Center of Chinese PLA General Hospital (Protocol Number 2018069). Informed consent 
was collected from all participants. All experiments were conducted in accordance with Good Clinical Practice 
(GCP) and the ethical principles of the Declaration of Helsinki.

Results
Analysis of the incidence of gastrointestinal symptoms in the Tibetan plateau participants and 
the biochemical characteristics of the research participants.  As shown in Table 1, the participants 
were all males aged 19–28 years, with a local residence time of > 2 years. The average age of the participants in the 
healthy control group was 22.90 ± 0.66 years, the average age of the participants in the hyperbilirubinemia group 
was 24.71 ± 0.86 years, and the average age of the participants in the hyperuricemia group was 21.29 ± 0.60 years. 
The levels of both direct and indirect bilirubin were upregulated in the hyperbilirubinemia group compared to 
healthy controls at high altitudes. The hyperuricemia group exhibited significantly enhanced levels of uric acid 
and direct bilirubin, whereas the indirect bilirubin production was unchanged. Additionally, the levels of alanine 
aminotransferase (ALT) were elevated in both the hyperbilirubinemia and hyperuricemia groups compared to 
the controls.

Analysis of the metabolic signatures of patients with plateau hyperbilirubinemia.  The results 
of OPLS-DA are shown in Fig. 1. Compared to the healthy control group, the Golmud and Yushu groups had 

https://sciex.com.cn/
https://sciex.com/
https://sciex.com/
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obvious tendencies to separate metabolites (Fig. 1A,B). Compared to the Golmud group, the Yushu group had 
an obvious tendency to separate metabolites (Fig. 1C). A total of 556 metabolites were detected. Compared to 
healthy controls, 17 metabolites were downregulated and two were upregulated in the Golmud group, as indi-
cated by the volcanic map analysis (Fig. 2A). Additionally, 11 metabolites were downregulated and one metabo-
lite was upregulated in the Yushu group (Fig. 2B). Compared to the Golmud group, the Yushu group had 18 
downregulated and 15 upregulated metabolites (Fig. 2C). The differential metabolic clustering heatmap is shown 
in Fig. 3A–C, and the metabolites among the groups showed obvious clustering. The violin plot of the differential 
metabolites showed that the content of 15-deoxy-δ-12,14-PGJ2, hydroxyphenethylamine significantly increased 
(VIP > 1), while the content of arachidonic acid (AA), 1,3-dimethyluric acid, 1,7-dimethyluric acid, 3,7-dimeth-
yluric acid, mandelic acid, 1-methyluric acid, aminophylline, uridine triphosphate (UTP), 1,7-dimethylxan-
thine, 1-methylxanthine, 3-methylxanthine, 7-methylxanthine, theobromine, P-hydroxyphenyl acetic acid, 

Table 1.   Clinical and demographic characteristics of the study participants. HB hyperbilirubinemia, HU 
hyperuricemia.

Index Healthy control (n = 22) HB (n = 34) P-value HU (n = 24) P-value

Age (years) (mean ± SD) 22.90 ± 0.66 24.71 ± 0.86 0.14 21.29 ± 0.60 0.08

Residence time (years) (mean ± SD) 3.40 ± 0.52 4.53 ± 0.66 0.22 3.11 ± 0.43 0.66

BMI (kg/m2) (mean ± SD) 21.56 ± 1.39 22.01 ± 0.45 0.73 20.75 ± 0.36 0.59

Total bilirubin (μmol/L) (mean ± SD) 13.34 ± 0.88 28.09 ± 1.21 0.00 18.57 ± 1.45 0.00

Direct bilirubin (μmol/L) (mean ± SD) 4.64 ± 0.27 10.55 ± 0.95 0.00 9.65 ± 1.10 0.00

Indirect bilirubin (μmol/L) (mean ± SD) 8.70 ± 0.68 17.54 ± 1.30 0.00 8.81 ± 0.86 0.92

Serum uric acid (μmol/L) (mean ± SD) 365.50 ± 6.87 390.82 ± 13.10 0.15 488.75 ± 8.80 0.00

Alanine aminotransferase (U/L) (mean ± SD) 23.91 ± 1.67 36.18 ± 3.86 0.02 49.04 ± 7.81 0.00

Aspartate aminotransferase (U/L) (mean ± SD) 21.09 ± 0.93 26.99 ± 2.93 0.12 37.04 ± 8.90 0.10

−10 −5 0 5 10

T score ( 5.23% )

20

10

0

−10

−20

−30

O
rt

h
o

g
o

n
al

T
 s

co
re

 (
 1

1
%

 )

GeH

YsN+GeN

Group

−10 −5 0 5 10

T score ( 6.2% )

30

20

10

0

−10

−20

O
rt

h
o

g
o

n
al

T
 s

co
re

 (
 1

0
.3

%
 )

YsH

YsN+GeN

Group

−20 −10 0 10 20

T score ( 13.1% )

30

20

10

0

−10

−20

−30

O
rt

h
o

g
o

n
al

T
 s

co
re

 (
 1

0
.9

%
 )

YsH

GeH

Group

−10 −5 0 5 10

T score ( 5.5% )

20

10

0

−10

−20

O
rt

h
o

g
o

n
al

T
 s

co
re

 (
 8

.2
9

%
 )

GyH

YsN+GeN

Group

A B

C D

Figure 1.   Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot map. (A) Golmud 
hyperbilirubinemia (GeH) vs. healthy control. (B) Yushu hyperbilirubinemia (YsH) vs. healthy control. (C) GeH 
vs. YsH. (D) Hyperuricemia group vs. healthy control.
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1,2,3-trihydroxybenzene, N-phenylacetylglycine, and 2-furoylglycine decreased significantly (VIP > 1) in the 
Golmud group compared to the healthy control group (Fig. 4A). The content of pentadecafluorooctanoic acid 
(PFOA) in the Yushu group was significantly increased (VIP > 1), while thromboxane B2, 15-hydroxyeicosa-
tetraenoic acid (15-hete), 12-hydroxyeicosatetraenoic acid (12-hete), suberic acid, sebacate, 1-O-feruloylquinic 
acid, 2-pyrrolidone, 5-methyl-THF, oxymetazoline, N-phenylacetylglycine, and oxidized glutathione were sig-
nificantly downregulated (VIP > 1) (Fig. 4B). Organic acids and their derivatives, nucleotides and their deriva-
tives, pyridine and its derivatives, and benzoic acid and its derivatives were significantly increased in the Yushu 
group compared to the Golmud group (Fig. 4C).

Analysis of the metabolic signatures of patients with plateau hyperuricemia.  The results of 
OPLS-DA are shown in Fig. 1D. The metabolite separation trend in the hyperuricemia group was obvious com-
pared to that in the healthy control group. A total of 556 metabolites were detected. Compared to the healthy 
controls, two metabolites were upregulated and 21 were downregulated in the hyperuricemia group, as shown 
by the volcano plot analysis (Fig. 2D). The differential metabolic clustering heatmap is shown in Fig. 3D, and 
the metabolites in the hyperuricemia group and the healthy controls showed obvious clustering. The violin plot 
of the differential metabolites (Fig. 4D) showed that compared to the healthy control group, the hyperuricemia 
group had significantly higher contents of PFOA and vanillic acid (VA) (VIP > 1), while o-phosphoethanol-
amine, thromboxane B2, 15-hete, 12-hete, azelaic acid, subericacid, sebacate, carbamoyl phosphate, 1-O-fer-
uloyl quinic acid, 5-methyl-THF, 2-pyrrolidone, adenosine, 2-(formylamino) benzoic acid, p-cresol, o-cresol, 
DL-3,4-dihydroxyphenyl glycol, chloramphenicol, salicylic acid, 1,2,3-trihydroxybenzene, oxymetazoline, and 
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Figure 2.   Volcano plot of differential metabolites among groups. (A) Golmud hyperbilirubinemia (GeH) vs. 
healthy control. (B) Yushu hyperbilirubinemia (YsH) vs. healthy control. (C) GeH vs. YsH. (D) Hyperuricemia 
group vs. healthy control. Each point in the volcano plot represents a metabolite, the abscissa represents the 
logarithm of the quantitative difference between two samples of a metabolite, and the ordinate represents the 
VIP value. The green dots in the figure represent downregulated differentially expressed metabolites, the red 
dots represent upregulated differentially expressed metabolites, and the black dots represent metabolites that 
were detected but not significantly different.
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oxidized glutathione were significantly decreased (VIP > 1). The primary differential metabolites were amino 
acids and their derivatives, nucleotides and their derivatives, organic acids and their derivatives, and lipids/fatty 
acids. Among them, PFOA increased, and 1-O-feruloylquinic acid and 2-pyrrolidone decreased significantly. 
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Figure 3.   Clustering heatmap of differential metabolites. (A) Golmud hyperbilirubinemia (GeH) vs. healthy 
control. (B) Yushu hyperbilirubinemia (YsH) vs. healthy control. (C) GeH vs. YsH. (D) Hyperuricemia group 
vs. healthy control.
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Additionally, the changes in the organic acids and their derivatives were relatively obvious among the three 
groups, and 1-O-feruloylquinic acid and 2-pyrrolidone decreased most significantly between the Yushu group 
and healthy control group and between the Golmud group and Yushu group.

Pathway analysis of differential metabolite enrichment.  Enrichment analysis of the metabolic 
pathways involved in the differential metabolites showed that compared to the healthy controls, the metabolic 
pathways enriched by the serum differential metabolites in the Golmud group were primarily the metabolic 
pathways, caffeine metabolism, tyrosine metabolism, phenylalanine metabolism, AA metabolism, and the neu-
roactive ligand–receptor interaction. Compared to the healthy controls, AA metabolism and bile secretion were 
the primary metabolic pathways enriched in the serum differential metabolites in the Yushu group. Compared to 
the Golmud group, the primary metabolic pathways of the serum differential metabolites enriched in the Yushu 
group were caffeine metabolism, inflammatory mediator regulation of the transient receptor potential (TRP) 
channels, tyrosine metabolism, biosynthesis of the puffed fatty acids, and AA, among which, the upregulated 
metabolites were primarily involved in caffeine metabolism. Compared to the metabolic pathways in the healthy 
controls, those enriched by the differential metabolites in the plateau hyperuricemia group were primarily bile 
secretion, purine metabolism, AA metabolism, and the sphingolipid signaling pathway (Fig. 5).

Discussion
In this study, we found that compared to healthy controls in the Tibetan plateau, participants with hyperbiliru-
binemia in Golmud had significantly higher levels of nucleotides and their derivatives, lipids and their deriva-
tives, and some organic acid metabolites. Hyperbilirubinemia participants from Yushu showed that benzene and 
its derivatives, some nucleotides, organic acids, and vitamins and their derivatives were significantly reduced. 
Additionally, serum glycine derivatives (primarily phenylacetylglycine) and AA and its metabolites 12-hete and 
15-hete found in Golmud and Yushu participants with hyperbilirubinemia were significantly reduced. Previous 
studies have shown that glycine could reduce ROS levels to protect cells22. AA is a polyunsaturated fatty acid 
that can induce or inhibit oxidative stress23,24, while oxidative stress could further facilitate the release of AA25. 
Moreover, 12-hete is the primary metabolite of AA catalyzed by 12-lipoxygenase (12-LOX), which promotes the 
generation of ROS and is involved in the body’s oxidative stress response26. Furthermore, 15-hete is a metabolite 
of AA catalyzed by 15-lipoxygenase (15-LOX), which can promote angiogenesis by stimulating the production of 
vascular endothelial growth factor (VEGF)27–29, improve the viability of pulmonary artery smooth muscle cells30, 
and inhibit the apoptosis of pulmonary artery smooth muscle cells through heat shock protein 90 (HSP90)31. 
Additionally, a study on neonates with hyperbilirubinemia found that they were in a state of oxidative stress and 
that the activity of the serum antioxidant enzymes decreased with an increase in the serum bilirubin levels32. 
Moreover, the inadequate oxygen-carrying capacity of erythrocytes could promote hemoglobin production to 
ensure oxygen supply, increasing indirect bilirubin in the blood. Liver injury induced by hypoxia at high altitudes 
could facilitate direct bilirubin entry into the bloodstream. Our study revealed that the hyperbilirubinemia group 
exhibited increased levels of direct bilirubin, indirect bilirubin, and ALT when compared to the control group, 
suggesting that the red blood cells from subjects of the hyperbilirubinemia group might fail to carry adequate 
oxygen and that these subjects might be more vulnerable to liver injury induced by hypoxia. Bilirubin exhibits 
antioxidant properties in vivo and in vitro33,34, and it is speculated that the ROS levels in patients with hyperbili-
rubinemia decreased due to the antioxidant role of bilirubin, causing a decrease in glycine derivatives and AA 
and its metabolites 12-hete and 15-hete35.

Xanthine oxidase, which is primarily present in the liver and spleen, is a key rate-limiting enzyme for uric 
acid production18. Hypoxic liver injury has been shown to elevate the expression of xanthine oxidase, increas-
ing uric acid19. We observed that the hyperuricemia group exhibited elevated levels of direct bilirubin and 
ALT compared to the healthy controls. Therefore, we speculated that subjects in the hyperuricemia group were 
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more susceptible to hypoxic liver injury. This study showed that compared to healthy participants residing on 
the plateau, the serum levels of benzene and its derivatives, lipids, and some organic acids and its derivatives 
in patients with hyperuricemia were significantly lower, whereas the VA and PFOA levels were significantly 
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Figure 4.   Violin plot of differential metabolites. (A) Golmud hyperbilirubinemia (GeH) vs. healthy control. (B) 
Yushu hyperbilirubinemia (YsH) vs. healthy control. (C) GeH vs. YsH. (D) Hyperuricemia group vs. healthy 
control.
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increased. Previous studies have shown that VA has strong antioxidant, antihypotension, and antiapoptotic 
functions and has protective effects on the heart and liver36–38. Indeed, it has been shown that cells pretreated 
with VA can reduce ROS production and attenuate mitochondrial-mediated caspase-3 activity, thereby reduc-
ing apoptosis in H9c2 cells after hypoxia-reoxygenation (H/R) injury39. The increase in direct bilirubin could 
reduce ROS levels in patients with hyperuricemia at high altitudes. However, elevated levels of uric acid could 
exacerbate ROS production and may eventually upregulate ROS levels in the body, resulting in a compensatory 
increase in VA levels. Moreover, we found that 1-O-feruloylquinic acid and 2-pyrrolidone were significantly 
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downregulated in the serum of participants with plateau hyperbilirubinemia and hyperuricemia, although the 
reasons and significance still require clarification.

The results of KEGG analysis showed that compared to the healthy control group, the serum differential 
metabolites of patients with hyperuricemia were primarily involved in metabolic pathways, caffeine metabo-
lism, and AA metabolism. Meanwhile, the serum differential metabolites of patients with hyperuricemia were 
primarily involved in metabolic pathways, bile secretion, purine metabolism, AA metabolism, and the sphin-
golipid signaling pathway. The pathway enrichment analysis showed that the significantly altered pathways of the 
serum differential metabolites in patients with hyperbilirubinemia included necroptosis, leishmaniasis, caffeine 
metabolism, AA metabolism, and thyroid hormone synthesis. The significantly altered pathways of serum dif-
ferential metabolites in patients with hyperuricemia included the sphingolipid signaling pathway, sphingolipid 
metabolism, and morphine addiction. Bile secretion can affect bilirubin levels in the body, and similarly, purine 
metabolism can affect uric acid levels in the body. Consistent with previous conclusions, AA metabolism was 
associated with hyperbilirubinemia and hyperuricemia. Additionally, it is speculated that the participants in the 
plateau had a habit of drinking tea, so the metabolites of which are involved in the caffeine metabolism pathway.

This study was a cross-sectional investigation with some shortcomings. First, lifestyle information, such as diet 
and physical activity, can affect metabolism, and we did not assess these factors. However, the selected soldiers 
all adopted a unified recipe and ate regularly and this weakened the influence of diet on the research results to a 
certain extent. Second, the people selected for this study were all young soldiers who lived in the Tibetan plateau 
for more than 2 years and were compared to the plateau population; this may weaken the representativeness of 
the study results, although it better reflects the metabolomics signatures of metabolic diseases in participants 
residing on the plateau and provides a certain basis for their prevention and treatment research. Due to the 
limited availability of previous similar studies and a lack of references for sample size calculation, we maximized 
the inclusion of eligible subjects based on the screening criteria, without conducting sample size estimation.
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Figure 5.   KEGG enrichment map of differential metabolites. (A) Golmud hyperbilirubinemia (GeH) vs. 
healthy control. (B) Yushu hyperbilirubinemia (YsH) vs. healthy control. (C) GeH vs. YsH. (D) Hyperuricemia 
group vs. healthy control. The abscissa represents the rich factor corresponding to each pathway, the ordinate 
is the pathway name, and the color of the point is the P-value. The size of the dots represents the number of 
enriched differential metabolites.
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Conclusions
In conclusion, our analysis of serum metabolites in different groups revealed that glycine derivatives, as well as 
AA and its derivatives, are distinctive metabolites associated with hyperbilirubinemia in people living in high-
altitude areas, while VA and PFOA are specific metabolites associated with hyperuricemia in people living in 
high-altitude areas. This study provides new perspectives and evidence for understanding the pathogenesis and 
prevention of hyperbilirubinemia and hyperuricemia in people living in high-altitude areas by using widely 
targeted metabolomics combined with clinical laboratory indicators.

Data availability
All materials are commercially available, and the datasets used and/or analyzed during the current study are 
available from the corresponding author on reasonable request.
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