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Wide dynamic range and real‑time 
reagent identification and imaging 
using multi‑wavelength 
terahertz parametric generation 
and machine learning
Kosuke Murate *, Sota Mine , Yuki Torii , Hyuga Inoue  & Kodo Kawase 

In this study, we propose a technique for identifying and imaging reagents through shielding over a 
wide dynamic range using a real‑time terahertz (THz) spectroscopy system with multi‑wavelength 
THz parametric generation/detection and machine learning. To quickly identify reagents through 
shielding, the spectral information of the “detection Stokes beam” is used for reagent recognition via 
machine learning. In general THz wave‑based reagent identification, continuous spectra are acquired 
and analyzed quantitatively by post‑processing. In actual applications, however, such as testing for 
illicit drugs in mail, the technology must be able to quickly identify reagents as opposed to quantifying 
the amount present. In multi‑wavelength THz parametric generation/detection, THz spectral 
information can be measured instantly using a “multi‑wavelength detection Stokes beam” and near‑
infrared (NIR) camera. Moreover, machine learning enables reagent identification in real‑time and over 
a wide dynamic range. Furthermore, by plotting the identification results as pixel values, the spatial 
distribution of reagents can be imaged at high speed without the need for post‑processing.

Because terahertz (THz) waves have both the fingerprint spectrum of reagents and material transparency, they are 
expected to be especially useful for the identification of hidden objects (e.g., testing for illicit drugs or explosives 
hidden in mail)1–3. However, since the transparency of THz waves is not very high, a real-time  spectrometer4,5 
with a high dynamic range is required. It is also essential that spectroscopic performance is unaffected by the 
scattering of THz waves by shielding.

Methods that have been proposed for real-time measurement include the use of a single-frequency  source6–8, 
THz time-domain spectroscopy (THz-TDS)9–11, and multi-wavelength fast-switching injected-seeded THz para-
metric  generation12–16.

Our research has focused on the development of THz spectrometers, mainly based on the injection-seeded 
THz parametric generator (is-TPG)16,17. Because the is-TPG is a wavelength-tunable source, the measurement 
time increases with the number of wavelengths involved. In addition, spectroscopic imaging requires several 
hours of measurement, as well as post-processing of the obtained images. Therefore, there is a need for one-shot 
spectroscopy and real-time identification that can significantly shorten the measurement time. We proposed a 
multi-wavelength generation/detection is-TPG system and successfully obtained spectra in one  shot15,16; how-
ever, automatic identification in real-time has not yet been realized. Therefore, in this study, we applied machine 
 learning18 for the identification of spectra obtained in one shot. The goal was to devise a practical system to 
rapidly identify reagents, even through thick shields with attenuation rates of − 60 dB. Furthermore, by using this 
system for spectroscopic imaging, the information in each pixel can be identified instantly, making it possible to 
determine the spatial distribution of reagents in a 40 × 40  mm2 area within a few tens of seconds.

Results
An overview of a THz spectroscopy system using an is-TPG is shown in Fig. 1. When the multi-wavelength seed 
beams are injected into the crystal with the pump beam, multi-wavelengths THz-waves are  generated15,16. THz 
parametric  detection19 is also possible via the reverse generation sequence, in which multi-THz-waves are used 
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as seed beams, and NIR “detection Stokes beams” are generated and then captured by a camera. The generation 
angles of the detection Stokes beams are determined by the detected THz-waves according to the non-collinear 
phase-matching condition. Therefore, one-shot spectroscopy is achieved by converting the generation angles of 
detection Stokes beams into THz-wave frequencies. Since a frequency can be selected that avoids the absorption 
line of water vapor in multi-wavelength generation, purging with dry air is not performed.

In this section, we describe the reagent identification method used in this study. For our previously reported 
THz spectrometer with a single wavelength is-TPG16, the output of the detection Stokes beam was measured by 
an NIR pyroelectric detector with a lock-in amplifier. Without adjusting the intensity by changing the neutral 
density filter, a wide dynamic range of nearly 80 dB (in terms of THz wave intensity) was obtained. On the other 
hand, in the multi-wavelength is-TPG, an NIR camera is used instead of an NIR pyroelectric detector to meas-
ure the “multi-wavelength detection Stokes beam” output with different generation angles. NIR cameras have 
been used to acquire the detection Stokes  beam15; however, in these cases, the THz wave intensity is converted 
to a numerical value from the NIR camera image and then analyzed. Saturation is not tolerated, as no further 
numerical change can be obtained once the intensity saturates the camera. Thus, the dynamic range of the system 
in earlier studies was limited by the narrower dynamic range of the camera compared to the pyroelectric detec-
tor, which was about 40 dB, as shown in Fig. 2a. In addition, if images of the detection Stokes beam at adjacent 
wavelengths overlap when measuring the multi-wavelengths with a camera, the output becomes a mixture of 
information at different wavelengths and the spectrum cannot be measured accurately. Therefore, it is necessary 
to separate the beams so that they do not overlap, such that the wavelength spacing is wider.

In this research, the spectral information of the detection Stokes beam at each wavelength is recognized 
directly from the camera image by a convolutional neural network (CNN)20, which is a type of deep neural net-
work, without converting the information into numerical values. Thus, features in each image are extracted by 
the CNN for learning and identification. If the multi-wavelength detection Stokes beam images obtained from 
the camera contain different features for each reagent, they can be identified by machine learning. Therefore, 
quantitative absorption information obtained as a numerical value is not necessary, and the overlapping of 
detection Stokes beams at adjacent wavelengths and saturation are not problematic. A THz spectroscopy system 
with a wide dynamic range capable of discriminating samples with low to high attenuation can be constructed 
by injecting the detection Stokes beam without any concerns about saturation. As shown in Fig. 2b, changes in 
the detection Stokes beam were captured from 0 dB (without shielding) to − 60 dB (through heavy shielding). 
Compared to the case without image recognition, the dynamic range was improved by > 20 dB.

Real-time spectral discrimination was performed using the proposed system. Four reagents, maltose, 
Al(OH)3, lactose, and glucose, were used as the measurement samples; their spectra are shown in Fig. 3. Absorp-
tion spectra were measured using THz parametric detection after THz-wave output from the normal is-TPG 
was focused and transmitted through a sample placed at the focal point. A mixture of 75 mg of polyethylene 
powder and 75 mg of each reagent was compressed and pelletized in a hand press. Each sample was identified 
in the absence of shielding, through two sheets of cardboard (attenuation at 1.4 THz: − 30 dB), through natural 
leather (attenuation at 1.4 THz: − 50 dB), and through a layer of natural leather and a layer of synthetic leather 
(attenuation at 1.4 THz: − 60 dB). Four frequencies (1.12, 1.21, 1.37, and 1.44 THz; indicated by the red lines in 
Fig. 3) were used for the measurements based on the absorption spectrum of each reagent.

To identify reagents through any kind of shielding, it is necessary to train the CNN in advance with measure-
ment data obtained under various attenuation rates. Therefore, a total of 1650 images of the detection Stokes 

Figure 1.  Real-time spectroscopic system that combines machine learning and multi-wavelength terahertz 
(THz) parametric generation/detection. We used a camera (FLIR, GS3-U3-41C6NIR-C) synchronized with the 
pump laser, with an exposure time of 30 ms and a frame rate of 20 Hz, for data acquisition. An overview of real-
time spectroscopy and the high-speed imaging of reagents is shown on the right.
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Figure 2.  Evaluation of the dynamic range of a THz spectroscopy system. (a) Conventional method, in which 
the detection Stokes beam intensity at each wavelength is treated as a numerical value and only unsaturated 
beams can be injected. (b) With the new method, saturation is not an issue because image recognition is used, 
which allows for reagent identification over a wide dynamic range.

Figure 3.  Absorption spectra of reagents and shielding used for the spectroscopy measurements, the results of 
which are shown in Fig. 4.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12743  | https://doi.org/10.1038/s41598-023-40013-y

www.nature.com/scientificreports/

beam, obtained during measurements of the reagents over various numbers of sheets of copy paper (0–21 with 
an increment of 3), were used as the training data. At this time, multiple pellets were prepared for each reagent, 
and the pellets for acquiring training data and those used for identification were not mixed. As shown in Fig. 2, 
the images of the detection Stokes beams were significantly different depending on the attenuation rate (low 
vs. high), and there was concern that the discrimination accuracy would be reduced by the shielding, even for 
spectroscopic measurements of the same reagent. Therefore, we prepared high- and low-attenuation classes for 
each reagent, and classified the targets into nine categories, including one in which no sample was inserted. Note 
that regardless of whether the sample is classified as high or low attenuation, the same reagent is shown. It means 
that the user is not aware that the classes are divided into high and low attenuation.

Figure 4 shows an image of the detection Stokes beam obtained when the reagent was inserted and the real-
time identification results obtained by machine learning. The reason for the differences in background noise 
and measured beam between Figs. 2 and 4 is that the alignment was slightly different, even though the same 
experimental setup was used. The identification results obtained when the reagents were inserted in sequence are 
displayed in color, in chronological order. Errors are inevitable during reagent replacement due to disturbance of 
the detection Stokes beam. Although real-time identification was possible with high accuracy with attenuation 
up to − 50 dB, high-frequency components could not be detected through a shield with − 70 dB attenuation, and 
three of the four reagents were incorrectly identified as Al(OH)3. The system has a dynamic range of > 60 dB. Due 
to additional attenuation by the reagent itself, measurements were possible through shielding with attenuation of 
up to − 50 dB. When measuring through cardboard, which has an uneven or etalon structure, the identification 
error increases slightly, but high overall accuracy is obtained, indicating that our method is resistant to the effects 
of shielding. In comparison, at low attenuation, although the differences in detection Stokes images for each 
reagent were small due to saturation, the system was able to achieve highly accurate identification with almost 
no errors, indicating that machine learning is useful for qualitative identification of reagents.

In addition, this measurement is intended to be used in the field, and each sample is inserted into the optical 
path manually. Although the angles and positions of the samples were not precisely aligned, they were identified 
with high accuracy, indicating the high practicality of this system.

In conventional spectroscopic imaging using an is-TPG2, the stage is moved for each pixel, imaging is per-
formed by averaging the values at each point, and the spatial distribution of the reagent is obtained through 
analysis. As the number of wavelengths increases, so too does the measurement time, such that several hours 
are required to obtain a single image. On the other hand, using the proposed system, information from multiple 

Figure 4.  Real-time identification results obtained by machine learning (displayed in color) in chronological 
order, along with screenshots of the detection Stokes beam obtained when the reagent was inserted. We 
measured four reagents under 0 to − 70 dB attenuating shielding materials.
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wavelengths can be obtained in one shot; thus, the measurement time does not increase with the number of wave-
lengths, and averaging is not necessary because machine learning enables instantaneous identification. The sam-
ple was continuously raster-scanned at a rate of about 26 mm/s using an automated stage, and the value of each 
pixel was identified simultaneously. Four kinds of pellets (50% reagent concentration) were arranged as shown 
in Fig. 5a, and spectroscopic imaging was performed (without shielding and through natural leather with − 50 dB 
attenuation). A 40 × 40  mm2 area was imaged with a spatial resolution of 1 mm. Not only the unshielded case 
(Fig. 5b) was imaged with high accuracy but also the − 50 dB attenuation case (Fig. 5c) was imaged with sufficient 
accuracy through the natural leather. The same system and training data were used to produce images under 
significantly different attenuation rates, and the results confirmed the wide dynamic range of the system. The 
images were acquired in 1 min 40 s, thereby reducing the measurement time to more than 1/100 compared to 
that of conventional  systems2. Next, in an attempt to achieve even higher speed, we set the spatial resolution to 
1.5 mm and the stage speed to its maximum of 30 mm/s; the measurement results are shown in Fig. 5d. Imaging 
was achieved in < 1 min, which represents a significant reduction in measurement time. Furthermore, the cur-
rent measurement time is limited by the stage speed, so if a faster stage were introduced, measurement could be 
performed more quickly. In such a case, the repetition rate of the laser and frame rate of the camera need to be 
improved to obtain sufficient resolution.

Next, the concentration of the reagent was measured and the spatial distribution of the reagent within the 
pellet was imaged. While qualitative measurements such as those shown in Fig. 5 are sufficient for detecting 
illicit drugs and prescription drug errors, quantitative measurements are required for pharmaceutical factory 
lines and quality control of various reagents. Therefore, to measure the concentrations quantitatively, we divided 
the identification targets (classes) into different concentrations. Pellets of Al(OH)3 were prepared at concentra-
tions of 20%, 40%, 60%, and 80% and used to train the machine learning model. The results of sample measure-
ments obtained at different concentrations are shown in Fig. 6a. The system was able to discriminate among 
the concentrations, indicating the plausibility of quantitative measurement. Here, we measured pellets with a 
20% difference in concentration; however, this system can distinguish differences of at least 5%. The system was 
also applied for the evaluation of pellet uniformity. Two samples were prepared with the same concentration of 
Al(OH)3, but one had a uniform distribution and the other had a non-uniform distribution. As shown in Fig. 6b, 
the concentration distribution can be visualized, which aids uniformity evaluation.

Figure 5.  Spectroscopic imaging results. (a) Sample photo. (b) Four reagents were measured without shielding. 
(c) Four reagents measured through a − 50 dB attenuation shield. (d) Measurement with the maximum stage 
speed and reduced resolution. The spatial distribution of the reagents was visualized in < 1 min.
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Summary
Real-time reagent identification using a multi-wavelength is-TPG was achieved by introducing machine learning 
to recognize the detection Stokes beam image. The images can be identified even if they are saturated, i.e., they 
can be recognized even if there are slight differences. This means that highly accurate real-time identification can 
be achieved with the same setup and training data, from unobstructed to obstructed with − 50 dB attenuation. 
This system acquires training data at various attenuation rates, and it can discriminate signals through shielding 
at any attenuation rate as long as the signal is not buried in noise. Furthermore, by plotting the identification 
results obtained with this system as pixel values, the spatial distribution of reagents can be imaged more rapidly 
than before.

In conventional spectral imaging using an is-TPG, the measurement time increases with the number of 
wavelengths included. In addition, given that data processing and imaging results are displayed after all wave-
lengths have been measured, identification results cannot be obtained in real time. With our proposed method, 
the imaging time is reduced to several tens of seconds, and the results can be confirmed in real time without any 
post-processing. Given that both qualitative and quantitative measurements can be obtained with this system, we 
believe that it can be applied not only for mail and explosive testing applications, but also to prescription error 
testing in pharmacies, mixing ratio testing of reagents in chemical plants, and quality control in pharmaceutical 
factory lines.

Method
Terahertz generation and detection using is‑TPG. When a high-power pump beam and seed beam 
are input to a MgO:LiNbO3 crystal, a Fourier transform-limited, narrow linewidth, high-brightness THz-wave is 
generated by parametric wavelength  conversion16,17. At that time, wide tunability (0.4–5 THz) of the THz-wave 
can be achieved by controlling the wavelength of the seed beam and its incident angle such that the non-collinear 
phase-matching condition of the MgO:LiNbO3 crystal is satisfied. Using sub-nanosecond pump pulses from a 
microchip Nd:YAG laser, the is-TPG suppresses the induced stimulated Brillouin scattering, which is a competi-
tive  process21, thus allowing for high power generation with a peak power of ≥ 50 kW.

Pump and seed laser sources for the is‑TPG. As a pump source, we used a Nd:YAG MOPA system, 
which includes a microchip Nd:YAG laser and a Nd:YAG amplifier. It has 25 mJ pulse energy at a wavelength of 
1064 nm, repetition rate of 50 Hz, and pulse duration of about 500-ps.

As a seed source, we used a combination of four external cavity laser diodes to generate multi-wavelength 
THz waves. The multi-wavelength seed beams were amplified to 300 mW using a semiconductor optical ampli-
fier, and were then injected into the MgO:LiNbO3 crystal using an achromatic optical setup, such that the phase 
matching angles were automatically satisfied at all wavelengths.

Machine learning method. A CNN, as a type of deep neural network, was used for image recognition. 
It has convolutional and pooling layers among its hidden layers. Convolution refers to the process of convert-
ing grid data (i.e., kernels) and numerical data for a partial image (of the same size as the kernel) into a single 
numerical value, by summing the products of each element. The local correlation is extracted by converting the 
data into small-grid numerical data, by gradually shifting the measurement window. Pooling is a method for 
reducing a large image while retaining the most important information, by dividing the image into small parts 
and extracting the maximum value from each part. By combining convolutional and pooling layers, it is possible 
to learn images efficiently.

For this study, the program was written in Python and the CNN framework was Keras. Our CNN model 
consists of three hidden layers and two fully connected layers. The first hidden layer comprises a convolutional 
layer with 30 filters (kernel size of filter: 3 × 3) and a pooling layer (kernel size of filter: 2 × 2). The second hidden 
layer comprises a convolutional layer with 20 filters (kernel size of filter: 3 × 3) and a pooling layer (kernel size 
of filter: 2 × 2). The third hidden layer comprises a convolutional layer with 10 filters (kernel size of filter: 3 × 3). 
For the activation function, ReLU is used for all hidden layers. The output from these hidden layers is converted 

Figure 6.  (a) Results of quantitative measurements for different reagent concentrations. (b) The uniformity 
of the reagents was evaluated using the same training data as in (a) (measurements were made with a spatial 
resolution of 0.5 mm).
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into a 1-dimensional vector and then inputted into the fully connected layers. The first fully connected layer has 
100 units and uses ReLU as the activation function. The second fully connected layer corresponds to a variable 
number of classes and uses a softmax function to output the class probability distribution. The model is compiled 
using cross-entropy as the loss function and Adam as the optimizer. In training the model, the batch size is set 
to 64, and the model is trained for a specified number of epochs (It was set to 300 in this study).

Data availability
Derived data supporting the findings of this study are available from the corresponding author K. M on request.
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