
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12660  | https://doi.org/10.1038/s41598-023-39589-2

www.nature.com/scientificreports

Artificial intelligence inspired 
design of non‑isothermal aging 
for γ–γ′ two‑phase, Ni–Al alloys
Vickey Nandal 1*, Sae Dieb 1, Dmitry S. Bulgarevich 1, Toshio Osada 1, Toshiyuki Koyama 2, 
Satoshi Minamoto 1 & Masahiko Demura 1*

In this paper, a state-of-the-art Artificial Intelligence (AI) technique is used for a precipitation 
hardening of Ni-based alloy to predict more flexible non-isothermal aging (NIA) and to examine the 
possible routes for the enhancement in strength that may be practically achieved. Additionally, AI 
is used to integrate with Materials Integration by Network Technology, which is a computational 
workflow utilized to model the microstructure evolution and evaluate the 0.2% proof stress for 
isothermal aging and NIA. As a result, it is possible to find enhanced 0.2% proof stress for NIA for 
a fixed time of 10 min compared to the isothermal aging benchmark. The entire search space for 
aging scheduling was ~ 3 billion. Out of 1620 NIA schedules, we succeeded in designing the 110 NIA 
schedules that outperformed the isothermal aging benchmark. Interestingly, it is found that early-
stage high-temperature aging for a shorter time increases the γ′ precipitate size up to the critical size 
and later aging at lower temperature increases the γ′ fraction with no anomalous change in γ′ size. 
Therefore, employing this essence from AI, we designed an optimum aging route in which we attained 
an outperformed 0.2% proof stress to AI-designed NIA routes.

Ni-based alloys have been widely used in high-temperature applications such as aircraft industries and gas tur-
bines for several decades due to their exceptional high-temperature strength, excellent resistance to corrosion 
and oxidation, good ductility, and toughness1–4. Though the first “superalloys” started to appear in the 1940s and 
modern superalloys were developed in the 1980s4,5. The optimized chemistries for specific properties of alloy 
design6, metalworking, and heat treatment formulations7–11 are still hot topics in the research community. The 
influence of heat treatment at different temperatures on mechanical properties has been the focus of extensive 
research and is well documented12–16. Much effort has been expended in attempts to manipulate the aging treat-
ment (also known as age hardening or precipitation hardening), which is a critical step to achieve improved 
performance in the superalloys13,14,17,18.

Naturally, even with the same chemical composition of the material and pre-processing history, the material’s 
properties could differ drastically after selecting different types of aging routes. The optimum combination of 
microstructural features that result in improved strength in superalloys can be achieved by subjecting them to 
specific conditions during the solution heat treatment and aging treatment19,20. It is crucial to select the suit-
able temperature for aging treatment in high-temperature alloys1,2. Optimum aging treatment is a part of the 
manufacturing formula for successful commercial products such as, for example, high-temperature Ni-based 
superalloys with excellent tensile strength and creep properties for land-based and aircraft turbine parts1,21. 
With the development of new alloys, the manufacturer should also need to find the optimal aging scheduling for 
improved properties. There is a high demand for methodologies that can effectively optimize the aging schedule 
for these alloys.

For instance, the mechanical properties of Ni-based superalloys are intrinsically governed by the interplay 
between ordered γ′-L12 Ni3 (Al, Ti, Ta) intermetallic compound precipitates with the different morphologies 
(i.e., cubes, rounded cubes, spheres, or platelets) and disordered γ-fcc Ni solid solution matrix with Co, Mo, Cr, 
Ta, Hf, Nb, and W elements. In addition, the precipitation hardening by the γ′ precipitates and solid solution 
hardening significantly improves the mechanical properties in high-temperature alloys1,15,16,20,22. The morphology 
and volume fraction of γ′-precipitate revealed by the aging treatment history and critically affect the mechanical 
properties of the alloys by acting as barriers to dislocation motions19,23–28. Wu et al. found that the precipitates 
can change from small, spherical particles to larger, elongated particles as aging time increases29. This can occur 
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as a result of coarsening, where the particles grow in size due to the diffusion of atoms to the particle surface. 
In other cases, the morphology of precipitates can remain relatively constant over a range of aging times, par-
ticularly if the alloy system is designed to have a stable precipitate morphology, a high density of fine, uniformly 
distributed precipitates1.

The industrial aging treatments could be further improved, which is reflected by rich literature and industrial 
interest in this subject1,21. Latterly, an innovative approach of non-isothermal aging (NIA) has been developed 
to enhance the mechanical properties of several alloys30–36. For instance, there are a couple of examples of alloy 
systems, such as Fe–Cu31, Al–Zn–Mg32, Al–Zn–Mg–Cu12,33,34, Al–Cu–Mg–Si35, and 2A14 Al36, which showed the 
advantage of NIA treatments in achieving enhanced mechanical strength. The influence of NIA investigations on 
precipitation hardening and microstructure evolution has been studied31,32,34 and has achieved excellent results, 
as summarized in Table 1. For instance, Hutchinson et al.31 observed an enhancement in the strength of NIA 
treatments by 8% compared to the isothermal aging case in Fe–Cu binary alloy. Nicolas et al.32 proposed the NIA 
schedules in which controlling the heating and cooling rate allows modification of the supersaturation matrix 
and the precipitate critical size, directly impacting the mechanical strength of Al–Zn–Mg alloy. Recently, Zhan 
et al.35 have reported that NIA treatments could enhance the strength of Al–Cu–Mg–Si alloy. It is found that the 
NIA treatment increases the number density of finer intra-grain precipitates. On the other hand, Huang et al.36 
investigated the role of NIA treatment in 2A14 aluminum alloys and reported that at the cooling stage of the 
NIA process, the coarsening of precipitates and the occurrence of secondary precipitation occur concurrently, 
leading to the attainment of high strength and favorable toughness.

Furthermore, Jiang et al.34 investigated the Al 7050 alloy with varying aging conditions and found the NIA 
route with a higher yield strength of ~ 5% and shortened aging time than the isothermal aging condition. These 
observations in the literature show that the number of possible experiments/tests is limited to experimentally 
determining the optimal time and aging temperatures for these alloys. Another critical reason is that it has 
been exceedingly challenging to investigate a large number of different types of aging treatment scheduling. 
Obviously, such optimization is time-consuming and costly with traditional methods due to aging treatment 
multidimensionality1,12,37,38. As a result, it is challenging to determine whether the best solution has been found 
experimentally.

In the literature, there is no systematic report on NIA scheduling in Ni-based alloys. In addition, we didn’t 
find suitable methodologies in Ni-based superalloys or another alloy system. From a practical point of view, it 
could be combined with other statistical modules or tools to eliminate the manual search for optimized cost/
performance solutions. We should establish a way to design the NIA scheduling in a huge design-searching space 
of aging treatment conditions such as aging temperature and aging time.

In this paper, we would like to introduce AI-inspiring methodologies and report our attempt to address this 
problem for a Ni–Al binary alloy (i.e., Ni-19.11 at. % Al) with the γ/γ′ two-phase microstructure, which is a model 
for the Ni-based superalloys39. Recently, we have developed the computational workflow for high throughput 
prediction of 0.2% proof stress with different aging treatment scheduling40, which is implemented in our original 
material design system, MInt41,42. Herein, we are trying to design NIA schedules with supreme 0.2% proof stress 
to that obtained by isothermal aging treatment by connecting the prediction workflow with the AI algorithm 
for efficient searching of NIA. We specifically utilize Monte Carlo tree search (MCTS)43, which is a data-driven 
iterative design algorithm that has demonstrated efficiency in several materials inverse design problems44. Taking 
advantage of the use of computerized prediction methods45–53, we deeply analyze the microstructure evolution 
associated with NIA and examine the essence of AI-found NIA schedules based on expertise in materials science. 
Based on the specified essence, we finally propose a new concept of NIA design to optimize the high-temperature 
strength for the Ni-base two-phase alloys, which concept can be called AI-inspired one.

Computational methods
Setup for the searching conditions.  In this section, we discussed the setup for the searching space con-
ditions. For example, we set the aging time of the total aging scheduling as 10 min. In other words, we would like 
to design the NIA scheduling, which outperformed the isothermal aging benchmark for 10 min. It is noteworthy 
to mention that the aging time of 10 min is enough to obtain a reasonable size and volume fraction of γ′ at mild 
temperatures as the diffusion kinetics in the binary alloys is relatively higher than in the more conventional 
complex alloy system such as Ni-based superalloys. It should be noted that the NIA is designed for a total fixed 
time of 10 min with a time frame of 1 min each (i.e., a total number of 10 microstructures for each case, one 
microstructure for each minute). For example, 700 °C for 1st min, 550 °C for 2nd min, 575 °C for 3rd min … up 
to 10 min. Therefore, the fixed time of 10 min is considered for comparing the 0.2% proof stress with isothermal 
aging and NIA schedules.

Table 1.   The NIA cases are discussed in the literature.

Materials Methods Remarks References

Fe–2Cu Experimental and modeling Yield strength of NIA improved by 8% more than isothermal aging 31

Al–Zn–Mg Experimental and modeling NIA increases the precipitate phase fraction 32

Al 7050 Experimental Yield strength of NIA is ~ 5% more than isothermal aging, shortened aging time 34

Al–Cu–Mg–Si Experimental Yield strength of NIA enhanced by 5.8% than isothermal aging 35

2A14 Al Experimental Toughness and elongation of NIA increased by 4.4% and 6.5%, respectively 36
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Here, the digitization parameters employed are described in detail. The entire search space for digitalized 
conditions is 910 (i.e., 3,486,784,401). For instance, the considered temperature range for scheduling is 500–700 °C 
with 25 °C intervals for the further optimal solution search for the NIA schedule. As a result, the total considered 
temperature for scheduling is 9 (for example, 500, 525, 550, 575 °C…700 °C), and the total considered time 
interval is 10 (i.e., 1, 2, 3 min …10 min). Therefore, the optimized NIA schedules are obtained from a huge 
search space by the MCTS algorithm.

Figure 1a illustrates the coarse-tuned digitalized parameters (i.e., temperature interval and time step size) 
that the MCTS algorithm utilized to choose the starting temperature during the NIA scheduling. For example, 
the aging temperature input parameter for starting temperature is set to be in the range of 600–800 °C with an 
interval of 50 °C and for the fixed time of 10 min, as shown in Fig. 1a. After coarse tuning for the starting tem-
perature, the aging temperature range is considered for the fine-tuning to find the optimal solution, as illustrated 
in Fig. 1b. Finally, in this fine-tuned step, the types of the NIA reached up to ~ 3 billion.

Monte Carlo tree search.  MCTS is an iterative, guided, random best-first tree search algorithm that sys-
tematically explores a space of types of NIA schedules to determine the optimal solution to a problem. In this 
work, we have used a combination of the MInt system and an AI-based search algorithm, MCTS, to design NIA 
schedules. To design the NIA, a Python implementation of MCTS named MDTS was used as it automatically 
and adaptively balances the search exploration vs. exploitation hyperparameter54. In the case of MCTS design, 
the different types of NIA schedules are represented using a shallow tree, where each node in the tree is a pos-
sible end temperature assignment for a single step in the schedule, as illustrated in Fig. 2. A complete path from 
the root to a leaf in the maximum depth represents a full NIA schedule. In the beginning, the tree has no nodes. 
The search starts with random rollout selection, and then the tree expands gradually towards the promising 
area of the search space using previous observation. The tree is traversed iteratively from the root, following 
the path with the most promising path using the Upper Confidence Bound score (UCB)43. In each iteration, 
4 steps are conducted, selection using UCB score, expansion where a new node (possible NIA schedule step is 
added in the tree), simulation, where the route in the tree is completed using random roll out and the obtained 
schedule is evaluated using Mint system, finally, in the backpropagation step, tree information is updated for a 
more informed decision in the next iteration (see Fig. 2). We also computed the case of conventional isothermal 
heating and specified the best temperature to obtain the highest 0.2% proof stress at a service temperature. It 
is important to highlight that schedules obtained from the MCTS design are compared with the benchmark 
obtained from the isothermal aging conditions.

Simulation system, MInt.  In this section, we introduce the MInt system, which is used for the forward 
calculation in these alloys. MInt system is a computational workflow that we developed to simulate the micro-
structure evolution and evaluate the high-temperature strength for different alloys41,42. The detailed architecture 
of the MInt module system can be referred to in references40,42. The module was built as part of the Cross-min-
isterial Strategic Innovation Promotion Program (SIP) project on materials integration (MI)41. It consists of the 
microstructure prediction at different conditions using phase-field simulation55 for simulated microstructure 
image analysis, which includes γ′ size (the mean diameter of a circle of equal projection area for γ′-precipitate) 
as well as volume fraction and the performance prediction (i.e., 0.2% proof stress)19,56, as schematically shown 
in Fig. 3.

Alloy system and initial microstructure.  The composition of the modeled alloy is Ni-19.11 at. % Al. In 
this study, we assumed that there are no heterogeneities (i.e., no dendritic structures) in the starting microstruc-
ture. Therefore, the microstructure is in a completely homogenized state. The microstructure was obtained just 

Figure 1.   The plots show the digitalized parameters for the (a) coarse-tuned and (b) fine-tuned MCTS NIA 
schedules.
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after the complete homogenized heat treatment. Technically, phase-field modeling cannot treat precipitation. It 
should be noted that the present phase-field model simulates the evolution of microstructure during growing of 
the γ′ according to the partial differential equations57, including the diffusion and Gibbs free energy. To mimic 
the assumed initial microstructure, we prepare the initial microstructure with the phase-field simulation after 
isothermal annealing at 1000 °C for 32 s (i.e., prior to the NIA scheduling), which gives very fine γ′ precipitates 
in the microstructure with supersaturated γ, as shown in Fig. 4. It reasonably agrees with previously available 
experimental evidence provided by Osada et al.40 for the Ni-19.11 at. % Al alloy (i.e., using a similar alloy compo-
sition). The initial microstructure characteristics, such as alloy composition, γ′ precipitate size, and volume frac-
tion of γ′ precipitates, are tabulated in Table 2. For example, the γ′ size and volume fraction is given as 20.15 nm 
and 0.3916, respectively. The volume fraction of the initial microstructure is far from the equilibrium state. From 
this, the γ′ grows, and diffusion of Al happens during the aging treatment from the non-equilibrium state.

Results and discussion
Isothermal aging benchmark.  In this section, the isothermal aging benchmark has been obtained from 
the calculated 0.2% proof stress of the Ni-19.11 at.% Al alloy with γ–γ′ two-phase as a function of the aging 
temperature using the MInt system, as shown in Fig. 5. These calculations have been performed for temperatures 
from 500 to 900 °C with the temperature interval of 25 °C for fixed 10 min. It is apparent that the 0.2% proof 
stress increases with aging temperature until it reaches its maximum value (i.e., peak-aged state) and then gradu-

Figure 2.   Monte Carlo tree search (MCTS) for a Ni–Al binary alloy system. The different types of NIA space 
are represented as a shallow tree where each node represents a possible end temperature at a certain step in 
the NIA route assignment. A route from root to a leaf in the maximum depth represents a full NIA schedule. 
A full schedule can be obtained from such a tree by using the random rollout technique. The tree is expanded 
iteratively towards the promising area of the search space. Each iteration consists of 4 steps: selection, expansion, 
simulation, and backpropagation.

Figure 3.   Outline the MCTS-designed NIA routes by computational workflow management.
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ally drops, as illustrated in Fig. 5a. The benchmark (i.e., highest 0.2% proof stress) for the isothermal aging con-
dition at a service temperature (i.e., 725 °C) with a fixed time of 10 min was obtained; the best isothermal aging 
temperature was 642 °C. The obtained benchmark 0.2% proof stress is found to be 784.48 MPa. This condition 
is further referred to as the isothermal aging benchmark. It should be noted that the obtained benchmark value 
is examined up to a narrow range of 1 °C, as shown in Fig. 5b.

It is essential to show the simulated microstructural evolution for these conditions to understand the micro-
structural features. A clear and distinguishing feature of the microstructural evolution of γ′ precipitates as a 
function of aging temperature at the fixed aging time of 10 min in Ni–Al binary alloy is illustrated in Fig. 6. One 
can notice that the aging temperature heavily influences the microstructures. Finally, it is evident from the micro-
structures that coarsening of γ′ precipitates are significantly promoted after isothermal aging at temperatures 
more than 650 °C, as highlighted in Fig. 6h–p. In addition, the coarsening kinetics of the γ′ precipitates accelerate 
(see Fig. 6) as the precipitation hardening slows down as the aging temperature increases to 850 °C, resulting 
in a considerable (around 200 MPa) decrease in the 0.2% proof stress (refer to Fig. 6a). This may be related to 
the drop in number density of precipitates during the rapid coarsening (i.e., increase in interparticle spacing), 
which directly minimizes the obstruction to the dislocations by the precipitates in the system. It is noteworthy to 
mention that the critical size of γ′ is found to be around 41 nm (Supplementary Fig. S1, see online supplementary 
material), over which the over-aging occurred. The microstructures in Fig. 6a–p are zoomed-in images of simu-
lated 2 µm× 2 µm phase-field microstructures. It should be noted that the phase-field simulation is performed 

Figure 4.   Initial microstructure (prior to NIA scheduling) of Ni-19.11 at. % Al alloy, annealed at 1000 °C for 
32 s.

Table 2.   Initial microstructure characteristics of Ni-19.11 at. % Al alloy.

Alloy composition γ′—precipitate size Volume fraction of γ′

Ni-19.11 at. % Al 20.15 nm 0.3916

Figure 5.   Variation of the (a) 0.2% proof stress at 725 °C as a function of aging temperature in the range 
of 500–900 °C and (b) fine-tuned investigation to obtain benchmark 0.2% proof stress in the range of 625–
675 °C (0.2% PS: 0.2% proof stress).
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under periodic boundary conditions. Therefore, no inconsistencies are observed at the edges of microstructures. 
The detailed quantitative analysis of the microstructure evolution of Fig. 6 (Supplementary Fig. S1) and contour 
plots (Supplementary Fig. S2) as a function of aging temperature is given in the supplementary material.

Optimizing the NIA schedules using AI.  In order to promote solid solution hardening and age harden-
ing, the starting temperature plays a vital role. For instance, a higher starting temperature causes γ′ particles 
to coarsen more rapidly in the early state and with less tendency to nucleation than at lower temperatures1,39. 
However, an optimum starting temperature is required for the pronounced precipitation hardening effects with 
aging time. At the same time, we adjust the starting temperature range from 600 to 800 °C with an interval of 
50 °C between each temperature selection (as discussed in Fig. 1a). Figure 7 shows the variation of maximum 
0.2% proof stress with the number of iterations as a function of starting temperature.

It should be mentioned that each data point of the heat-treated sample in the plot corresponds to the NIA 
condition, which was heat treated for a fixed time of 10 min. Therefore, the relationship between 0.2% proof 
stress and the number of iterations has been established. The results revealed that a starting temperature of 700 °C 
(green curve) has superior 0.2% proof stress (after the 20th iterations) to the isothermal aging benchmark, as 
shown in Fig. 7. In contrast, the 650 °C (blue curve) achieved the 0.2% proof stress value after 2 iterations but 
it is less than 700 °C. Hence, we selected 700 °C as the starting temperature for fine-tuned searching for further 
NIA scheduling.

Figure 8 shows the more fine-tuned NIA searching to obtain the optimum 0.2% proof stress at the starting 
temperature of 700 °C for a fixed time of 10 min by the MCTS design. For instance, the total 12 independent 
MCTS trees are considered with a larger number of iterations of 135 for each tree as per computational budget. 
We plotted the iteration curve for the case finding the best five NIA schedules. It is noteworthy to mention that 
all these five trees have multiple types of NIA, which outperformed the isothermal aging benchmark, as shown 
in Fig. 8. The plot also demonstrates how the AI explored a huge search space to select the best NIA schedules.

The results also showed that the AI discovered NIA schedules (tree 1, orange curve) in fewer than 5 itera-
tions, outperforming the isothermal aging benchmark (grey dotted curve). In the case of tree 4, it achieves the 
NIA that outperforms the isothermal aging benchmark after 20 iterations. In this way, most of the trees find 
the supreme 0.2% proof stress case in the very early stage. In contrast, depending on the trees, sometimes after 
50–60 iterations, AI cannot find the NIA schedule that performs better. MCTS discovered substantially better 
examples as a result of these incubations. Interestingly, we successfully obtained 110 NIA schedules out of 1620 
NIA that outperformed the isothermal aging benchmark.

Furthermore, by using the 10 time frames of 1 min each, the MCTS discovered several NIA routes that out-
performed the best isothermal aging value, leading to the higher 0.2% proof stress by tuning the combination of 
heating and cooling rates (for example, cooling from 700 to 550 °C, the cooling rate is −2.5

◦
C/s ) in each time 

frame, as illustrated in Fig. 9a. Figure 9b–d compare the microstructure characteristics (for example, γ′ phase 
fraction and size) as well as 0.2% proof stress of best five outperformed NIA by the isothermal aging benchmark. 
For instance, the precipitation hardening process during isothermal aging and NIA as a function of aging time 
up to 10 min is demonstrated in Fig. 9d.

Figure 6.   Simulated phase-field microstructure showing the evolution of γ′ precipitates at 10 min in Ni–Al 
binary alloy at different isothermal aging temperatures of (a) 500 °C, (b) 525 °C, (c) 550 °C, (d) 575 °C, (e) 
600 °C, (f) 625 °C, (g) 642 °C, (h) 650 °C, (i) 675 °C, (j) 700 °C, (k) 725 °C, (l) 750 °C, (m) 775 °C, (n) 800 °C, 
(o) 825 °C, (p) 850 °C. The microstructures are all zoomed-in images of simulated 2µm× 2µm phase-field 
microstructure, as illustrated, for instance, in (a).
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For the example of isothermal aging, it can be noticed that the 0.2% proof stress increases steadily as the aging 
time increases from time 0 to 10 min (see grey dotted line in Fig. 9d). In contrast, when an alloy is subjected to 
700 °C for one minute for the case of NIA, the 0.2% proof stress increases significantly within the first 2 min (i.e., 
1 min at 700 °C from starting temperature of 700 °C and 1 min during cooling from 700 °C to lower temperatures 
such as 550 °C), as shown in Fig. 9d. It can be attributed to the increase in γ′ precipitate size to ~ 40 nm within 
2 min of aging, as illustrated in Fig. 9c. The phase fraction also rises remarkably during this stage and higher 
phase fraction of ~ 56% is obtained in this time period. Following that, the size nearly stabilizes, and the fraction 
increases from 56 to 57.7% (see Fig. 9b).

It is interesting to note that the higher 0.2% proof stress, which is more prominent than the 0.2% proof stress 
of the isothermal aging benchmark value, is obtained in the case of NIA conditions in just 2 min (refer to Fig. 9d). 
It is evident that many NIA scheduling theoretically offers a 0.2% proof stress that is higher than the isothermal 
aging benchmark (see the inset in Fig. 9d). For instance, the microstructural observations of one of the best 
NIA cases (i.e., having 0.2% proof stress of ~ 789 MPa) clearly illustrate the highly stable nature of γ′ precipitate 
in simulated phase-field microstructures in these alloys, shown in Fig. 10. The result indicates that the aging 
temperature is relatively low in the later stages of NIA (see Fig. 9a), and the coarsening kinetics is expected to 
be weaker, as seen in Fig. 10c–j. At lower temperatures, the precipitate becomes much more stable. Thus, even 
though the fraction increases, the precipitate size does not vary significantly. However, this is shown to be a 
favorable factor for increasing strength.

A useful way of visualizing the correlations between γ′ phase fraction and γ′ size exhibited by this alloy is 
plotted in Fig. 11. It clearly shows the statistical and comparative results of the γ′ phase fraction and γ′ size of 
the top five NIA schedules, which performed better than the isothermal aging benchmark. The plot illustrates 
the statistical results of the isothermal aging benchmark at 10 min which are similar to those at 2 min for NIA 

Figure 7.   Variation of maximum 0.2% proof stress with the number of iterations as a function of different 
starting temperatures for a fixed time of 10 min.

Figure 8.   Fine-tuned NIA scheduling for 0.2% proof stress versus the number of iterations at starting 
temperature of 700 °C for 10 min.
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conditions. For instance, the average γ′ precipitate size in NIA (shown by the orange symbol in the zoomed-in 
Fig. 11) is almost similar to the precipitate size in the isothermal aging benchmark. As the aging time for NIA 
scheduling increases from 2 min to 10 min, the phase fraction increases, followed by the NIA path, as shown 
in zoomed-in Fig. 11. The size of γ′ precipitate increases first and then stabilizes as the aging time increases. 
Therefore, optimum NIA scheduling routes are obtained, which provide a higher phase fraction (~ 57.7%) and 

Figure 9.   (a) Sketch map of NIA scheduling processes in this study, (b) γ′ phase fraction, (c) γ′ size and 
(d) 0.2% proof stress as a function of aging time (the reader is referred to the web version of this article for 
interpretation of the color references in this figure legend).

Figure 10.   Simulated phase-field microstructure of best performed NIA (i.e., NIA 1) route proposed by MCTS 
at different stages (interval of 1 min time frame) of scheduling at (a) 700 °C, (b) 550 °C, (c) 500 °C, (d) 500 °C, 
(e) 550 °C, (f) 600 °C, (g) 525 °C, (h) 575 °C, (i) 600 °C, (j) 500 °C.
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critical γ′ precipitate size (~ 41 nm). It is clearly observed that the upward path is followed by the NIA schedules 
(as indicated by the green arrows in Fig. 11).

The above analysis implies the essence of the NIA, the top 5 NIA schedules discovered by AI have some com-
mon features, such as early high-temperature aging for a shorter time, which quickly increases the γ′ precipitate 
size to near critical size in the early stage and then, followed by the lower temperature aging to increase the γ′ 
phase fraction by keeping the γ′ under the critical size. The early-stage high-temperature aging (in this case, 
700 °C) increases the γ′ size near the critical size (~ 41 nm). It is essential to keep the duration of the high tem-
perature short and immediately lower the temperature. This is because if the size of γ′ increases more than the 
critical size, the number density (i.e., distribution of precipitates in the microstructure) of γ′ reduces, yielding an 
over-aging. According to Osada et al.19 the number density of the secondary γ′ within the trimodal distributed 
γ′ (i.e., primary, secondary and tertiary γ′ precipitates) in a Ni-based disk superalloy plays a significant role in 
precipitation strengthening. Furthermore, to increase the phase fraction of the γ′ precipitates, a subsequent 
aging at a relatively lower temperature is also effective in enhancing the strength. The γ′ is more stable at lower 
temperatures1,39 and thus, the volume fraction was assumed to increase slightly at the lower-temperature aging.

AI‑inspired expert‑designed NIA.  Based on the above-mentioned discussion, we can understand that 
the AI-founded top 5 NIA commonly consists of two steps, as follows: Step 1. High-temperature, short-time 
aging; and Step 2. Low-temperature, long-time aging. The question arises whether the small and complex tem-
perature changes in Step 2 (see Fig. 9a) are not essentially necessary. In other words, we considered that it was 
possible to design a much simpler NIA and attain higher 0.2% proof stress by employing the essence of AI. 
Then, we designed a simple two-step aging consisting of 1-min isothermal aging at 700 °C, cooling down to a 
lower temperature, and 8-min isothermal aging at the lower temperature. This newly proposed NIA route can be 
referred to as AI-Inspired expert-designed NIA schedule.

We here examined the optimal temperature for the second step in the range of 525–575 °C in order to attain 
the highest 0.2% proof stress with an efficient increase of the γ′ phase fraction, as shown in Fig. 12a. We found that 
555 °C is the optimal second-step temperature yielding the maximum 0.2% proof stress, as shown by the black 
dotted arrow in Fig. 12b. Note that our newly proposed two-step aging with the optimal second-step tempera-
ture outperformed not only the isothermal aging benchmark (refer to grey dashed lines) but also the AI-found 
best NIA (refer to orange dotted lines). The results show the potential for collaborative creation between AI and 
experts in materials research. The comparison of 0.2% proof stress values is also tabulated in Table 3.

It is also important to compare the microstructural evolution characteristics such as γ′ phase fraction and size 
of the best-performed AI-Inspired expert-designed NIA with the isothermal aging benchmark and maximum 
NIA by AI (i.e., AI-assisted maximum 0.2% proof stress NIA). For instance, we aged the alloy at 700 °C for 1 min 
from the starting temperature of 700 °C (i.e., 1 min isothermal aging at 700 °C), then cooled it to 555 °C from 
700 °C in 1 min (i.e., the cooling rate of − 2.416 °C/s), and then maintained for 8 min at the same temperature 
(i.e., isothermal aging for 8 min at 555 °C). Figure 13a–c compare the AI-Inspired expert-designed NIA phase 
fraction, size, and 0.2% proof stress to those of the isothermal aging benchmark and AI max. NIA route (i.e., 
NIA 1 in Fig. 9), respectively.

The results demonstrate that the AI-Inspired expert-designed NIA has a slightly higher γ′ phase fraction 
than AI max. NIA, as shown in Fig. 13a. While the γ′ size of the AI-Inspired expert-designed NIA is less (i.e., 
near to critical size ~ 41 nm) than AI max. NIA, as shown in Fig. 13b. Hence, it results in improved 0.2% proof 
stress, as illustrated in Fig. 13c. The difference in 0.2% proof stress is clearly shown in the inset plot of Fig. 13c. 
One may relate this to the best combination of γ′ phase fraction and their size to achieve the optimum strength 
in the alloy. One hypothesis is that the early-stage high-temperature and later low-temperature heating may be 
able to bridge the best combination of γ′ precipitate size and γ′ phase fraction in these alloys. Therefore, early 

Figure 11.   Variation of γ′ phase fraction with γ′ size of isothermal aging benchmark and outperformed NIA 
schedules. A black dotted box highlights the zoomed-in image (IAB isothermal aging benchmark).
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high-temperature heating helps in reaching the γ′ precipitate size near critical size (i.e., ~ 41 nm) and later lower 
temperature aging increases the γ′ phase fraction in these alloys.

We utilized Ni/Ni3Al two-phase alloy as an example in this study. The fundamental ideas, nevertheless, are 
rather general and should be applicable to various precipitate-hardening systems. This work may be the first 
step in the development of various heating scheduling methods employing machine learning, MCTS, in order 
to enhance strength and design NIA routes.

In conclusion, our study developed the pipeline to optimize the NIA schedules to maximize 0.2% proof 
stress at 725 °C for the Ni–Al (Ni-19.11 at. % Al) binary alloy with the γ–γ′ two-phase microstructure. The 
pipeline consisted of the computational workflow predicting the 0.2% proof stress in MInt and the MCTS, the 
AI algorithm finding the NIA routes efficiently. The search space was defined as follows. That is, the aging time 
was set to be 10 min, and the temperature was allowed to change in 25 °C steps in the range of 500–700 °C every 
minute. The number of possible different NIA schedules was huge, 910 (i.e., 3,486,784,401). The MCTS found 
the 110 NIA schedules that outperformed the isothermal aging benchmark in terms of 0.2% proof stress. The 
detailed analysis of the AI-found top 5 NIA schedules revealed that they commonly consisted of two stages, as 
follows: early high-temperature aging for a shorter time to rapidly increase the γ′ precipitate size to the near-
critical size ~ 41 nm and the subsequent lower temperature aging to increase the γ′ phase fraction by keeping the 
γ′ under the critical size. Based on the essence of the AI-found NIA revealed by the analysis, we proposed a new 
concept of two-step aging consisting of 1-min isothermal aging at 700 °C, cooling down to a lower temperature, 
and 8-min isothermal aging at a lower temperature. We found the optimum lower temperature for the second 
step to be 555 °C for the considered alloy and then confirmed that this AI-Inspired NIA outperforms the AI-
found best one. The design methodology using the AI-found solutions as a source of inspiration and the newly 
proposed two-step aging concept based on the methodology should be effective for Ni-base superalloys with a 
similar γ–γ′ two-phase microstructure.

Figure 12.   (a) Scheduling of isothermal aging benchmark, AI-assisted maximum 0.2% proof stress NIA and 
AI-inspired expert-designed NIA in this study and (b) variation of 0.2% proof stress as a function of second step 
temperature.

Table 3.   Different aging routes and their corresponding 0.2% proof stresses (ST starting temperature).

Design Aging scheduling detail 0.2% proof stress

Isothermal aging benchmark 642 °C–10 min 784.48 MPa

Maximum NIA by AI ST 700 °C → 700 → 550 → 500 → 500 → 
550 → 600 → 525 → 575 → 600 → 500 °C 788.50 MPa

Optimum AI-inspired expert-designed NIA ST 700 °C, 700 °C–1 min, 700 °C → 555 °C (− 2.416 °C/s), 555 °C–8 min 789.53 MPa
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